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ABSTRACT

The spectral decomposition of compliance S is extended to the principal
stress planes offering a possibility of characterization of the elastic properties
of anisotropic media under plane-stress conditions. It is shown that the three
eigenvalues of S, together with a «new» dimensionless parameter w,, called
the plane eigenangle, constitute the essential parameters for an invariant des-
cription of the elastic behaviour of anisotropic plates. Both the variational li-
mits of the eigenangle o, and the restrictive bounds for the values of the Pois-
son’s ratios imposed by thermodynamics are considered. Finally, it is shown
that the plane eigenangle w, may be employed as a monoparametric indica-
tion of the anisotropy of the material.

1. INTRODUCTION

After the ineffectual attempts (Olszak and Urbanowski, 1956; Olszak and
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Maciejewska, 1985) to extend the theory of separation of elastic energies from
the isotropic to anisotropic bodies into a term of dilatational and another one
of distortional type of energy, it was succeeded (Rychlewski, 1984a, b) to
prove the possibility of always decomposing the compliance, stiffness or fai-
lure fourth-rank tensors into their eigenvectors. This decomposition was shown
to be the simplest one, rendering orthonormal components of stresses and
strains, thus yielding a simple means of separating the total energy of the de-
formed body into its terms.

Then, using the spectral decomposition principle (Theocaris and Philip-
pidis, 1989a, b; 1990; 1991), it was succeeded to decompose the elastic stiffness,
or compliance or failure fourth-rank tensors for the transversely isotropic bo-
dy. In this way, the elastic energy densities in transversely isotropic bodies,
such as the uniaxial fiber reinforced composites could be splitted readily by
evaluating the eigenvalues in terms of the components of their compliance
tensor in a Cartesian coordinate system, whose axes were collinear with the
principal strength directions of the solid. As a result, the elastic strain energy
density of the transversely isotropic materials was divided into discrete con-
stituents, each associated to an elastic eigenstate, pointing out the absence
of a pure distortional energy component.

From the spectral decomposition of the compliance tensor emerged four
invariant parameters, that is four elastic constants, which are described in
terms of the typical engineering elastic constants. These are the four eigen-
values of the compliance fourth-rank tensor, which together with a dimen-
sionless quantity presented a full characterization of the elastic properties of
a transversely isotropic medium. In addition, the dimensionless parameter,
called eigenangle w, determined the arrangement and orientation of the eigen-
tensors in the principal stress space.

However, since all the experimental evidence today exists for plane stress
problems, the three-dimensional spectral decomposition of the fourth-rank
tensors has to be extended to encompass the equally important two-dimensio-
nal equivalent. Then, the evaluation of the spectral decomposition of the com-
pliance tensor on the principal stress planes offers a possibility of characteri-
zation of the elastic properties of anisotropic media under plane-stress condi-
tions. Furthermore, it suggests a way for the separation of the total elastic
energy density of plane laminae into distinct elements (Theocaris, 1989).

According to this two-dimensional spectral decomposition, the elastic
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properties of a material can be described properly by means of three eigenva-
lues, corresponding to the three energy-orthogonal eigenstates, together with
a «new» dimensionless parameter w,, called the plane eigenangle, which in-
fluences the alignment of the eigentensors on the principal stress plane.

Furthermore, the variation of the eigenangle w, is investigated within
the limits set by the classical thermodynamics principles. However, it is indi-
cated that the positiveness of the eigenvalues of the compliance tensor impo-
ses new restrictive bounds for the values of the Poisson’s ratios. Finally, it is
shown that the plane eigenangle v, may be used as a momoparametric index
of the anisotropy of the material. A few examples of representative uniaxial
fiber composites and inorganic crystals of the hexagonal system illustrate the
results of our theoretical analysis.

2. SPECTRAL DECOMPOSITION OF COMPLIANCE TENSOR ON THE (o,, 6;) PLANE

It was previously proved that the fourth-rank compliance tensor may be
spectrally decomposed into four energy-orthogonal states, each of which with
the ability to decompose the stress and strain tensors into four energy-ortho-
gonal stress, strain states (Theocaris and Philippidis, 1989a, b; 1990; 1991).

In this paper, the spectral decomposition of the compliance tensor will
be considered on the principal stress plane (o, 65). In this way, it will be shown
that energy may be separated into two orthonormal components.

Consider now the decomposition of the compliance tensor S of a trans-
versely isotropic linear elastic solid. We assume the Cartesian coordinate sys-
tem, which the stress and strain tensors are referred to, being oriented along
the principal material directions, with the 33-axis normal to the isotropic
(transverse) plane. Following the classical analysis for transversely isotropic
materials and defining the usual elastic moduli and Poisson’s ratios Ep, Er,
vi,, vy, where the subscript T denotes the elastic properties on the isotropic
plane and the subscript L the corresponding ones on the normal (longitudi-
nal) plane, we obtain the following basic stress-strain relationships:

il
a=g @ v o)- ELL o (La)
&, — i (65 — vp 67) — L oy (1b)
Ep Ey
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1 VL,
gg = — 63~ — (06, +© 1e
3 B 3 By (o4 2) (1c)
4 1 1
2eyp=— 015 , 2e3= — Gy3 , 2e93 = — Oy (1d)
Gy i L

However, we restrict our attention to plane stress situations for which ¢, = 0.
In addition, if the deformation along the 22-direction remains the same for
all (6, o5) planes, then (g5, €55) = 0. Therefore, the stress-strain relationships
become:

1 Vi
1= 1‘@1’163 (2a)
Vp v
€ = —~— G;— — G 2b
2 E %™ (2b)
1 Vi
gy = — 03— — 2c
3 By G3 By L5 (2¢)
1
25 = G_ C13 (2d)
L

However, the component of strain along the 22-direction does not produce
an energy component, since its scalar product with the component of stress is
always equal to zero. In this case, the compliance tensor S is associated to the
following square matrix:

[ i B VL O .\
Er E
s=|_.xm 1 , 3)
E, E
L 2GLJ

The eigenvalues of the associated square matrix of rank three to tensor S
defined above were evaluated to be:
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1 2 2 11/2
)\1:_+L+[<i__.i_ +V_L} (43)

2E;, 2E; 2E;, 2Ep E.2
2 211/2
;\ZzLjL_i__[(_L___l_) +_‘£] (4b)
2EL 2ET [ 2EL 2ET EL2
Ay = i. (4c)
2Gy,

The corresponding three idempotent tensors of the spectral decomposi-
tion of S were also evaluated to be:

B, = B =f® =i fa (5a)

E,=Eju=g®g=giga ab,fgeL (5b)
1

E, = Bl = 3 (aik b+ ai bjk + ajx ba+ aj bik) (5¢)

where L is the second-rank symmetric tensor space over R3.

Tensors f and g are axisymmetric and depend on the components of the
compliance tensor S. They are given by:

f=coswpb + sinwpa (6a)

g = sinwp, b— coswp a (6b)

with

tan2w, = — Zvg (i - i) (7)
Er, E;r Ep
and the second-rank symmetric tensors a and b are defined as follows:
a=k®k, b=j®} (8)

with k and j the unit vectors of R®, associated with the 33 and 11-directions
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of the Cartesian coordinate system. For the eigenvalues and the associated
idempotent tensors defined in relations (5),...,(8), it is valid that:

S =ME; + ME; + NE; 9)

The idempotent tensors En, m = 1,...,3 decompose the unit element I of
the fourth-rank symmetric tensor space and satisfy the following set of equa-
tions:

I=E, +E, +E, (10a)
EnExn=0, m#n (10b)
Em'Em = Em (100)

Tensors Em, m = 1,...,3 divide the second-rank symmetric tensor space,
L, into orthogonal subspaces Ly, consisting of eigentensors of the compliance
tensor S.

It should be noted that in the case of an isotropic elastic body, it is valid
that: By, = E; =E, Gy, = Gy =G and v, = vy =v. Then, relations (8) and
(9) may be written as:

I=Er + Ep (11a)
S = 3Ep + AED (11b)
in which
| 1 E 1
MW=—, Mph=—, K= . Er=—(1Q1)- 12
T’ UK 3oy, oy den (12)

If the stress states om constitute the eigenstates of tensor S they should
satisfy the eigenvalue equation:

S'O'm = Am Om (13)
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in which the index m varies between 1 and 3, and the Ay values are described
in terms of relations (4). Therefore, the eigentensors of the transversely iso-
tropic compliance tensor, S, are derived by the orthogonal projection of a
second-rank symmetric tensor ¢ on subspaces Lj,, produced by the linear
operators En, as follows:

Cni=Bavie ; =13 (14)

Denoting by ¢ the contracted stress tensor in the form of a 3-D vector, this
tensor is given by:

6 = [06,65,043]" (15)

Carrying out the calculations implied by relations (13), it was found that:

6, = (coswp(c;) + sinwp(cy)) [coswp,sinwp,0]T (16a)
6, = (sinwp(cy)— Coswp(a3)) [sinwy,— cosep,0]T (16b)
O3 — [070’613]T (160)

Moreover, it should be noted that relations (16) state that the stress
eigenstates corresponding to a spectral decomposition of the compliance
tensor S for transversely isotropic plates, break down the generic stress tensor
¢ into three elements, that is:

6 =06, + 6, + 03 (17)

As can be observed, eigentensors ¢, and ¢, are dependent on the value of
the plane eigenangle «,, given by relation (7), and the engineering elastic
constants of the material. On the contrary, the third eigentensor o, is inde-
pendent of the eigenangle w, and the material properties, thus remaining the
same for all transversely isotropic materials. Therefore, the three eigenvalues
A A, and 2y, together with the eigenangle «p constitute the four invariant
elastic constants required for the description of the elastic behaviour of trans-
versely isotropic plates.
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If we now consider the definition of the strain energy density we have that:

2T(6) =6:e=06-S-6 =
= (61106, +63) - (ME; +2,E; +23E3) * (6, +65+63)
= M6, ° 61 +A0,: 6, +A;65- 0 (18)

Therefore, the strain energy density is given by:
2T(o) = T(oy) + T(o,) + T(o;) (19)

that is the elastic potential is decomposed in distinct energy components,
each associated with the same eigenstress tensor. We denote by T(ow) the fol-

lowing quantity:
Ton) = da(6n6n), m=1,...3 (20)

Thus, any eigenstate 6m has its own potential T(6w), which does not depend on
the action of the other ¢’s. From relations (18), (19) and (20) it can be seen
that, in order for the strain energy density T to be positive definite, the eigen-
values have to be positive definite, that is:

km(in =1...3) > 0 (21)

Substituting relations (16) into relation (20), the following expressions are
obtained for the strain energy density parts of a transversely isotropic medium:

9 2 =12
T(°1)= L-}__Il_._l_ (_1___1_) _|_V_E
2B, 2B, 2F;, 2E;/ E2

x [cosep(sy) + sinwp(sy)]? (22a)
2 12
g [ ) 2]
2, 2B, |[\2E, 2B,/ ®2
x [sinwp(o;) — coswp(cs)]? (22b)
Tiey) = A (013)? (22¢)
2Gr,
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It is observed from relations (22) that the two energy components T(s,) and
T(o,) depend upon the value of the plane eigenangle w, given by relation (7),
and are associated with both shape distortion and volume change of the me-
dium. The third energy component T(c,) is independent of the value of the
eigenangle o, and is solely associated with shape distortion of the medium.

Finally, the value of the plane eigenangle v, should be compared with the
value of the eigenangle w obtained by the general spectral decomposition of
the compliance tensor, defined as:

2'\/2—VL /(1_\"1‘__1) 23
tan2w = — 7 / —ET B (23)

It should be noted that the value of the eigenangle w is associated to that
of the plane eigenangle &, when the value of the transverse Poisson’s ratio vy
vanishes. Bearing in mind that the stress eigenstates, obtained by the spectral
decomposition of the compliance tensor on the principal stress space, are
aligned in parallel and normally to the principal diagonal plane (o3, 3;5), then,
the V2 factor corresponds to the projection of these eigenstates on the
principal stress plane (o, o;) over an angle = /4.

3. VARIATION INTERVAL OF THE EIGENANGLE wp

When, the eigentensors 6, m = 1...3 are projected on the principal stress
plane (cy,03), the projection of eigentensor &, vanishes. The projections of o,
and o, are represented by two orthogonal vectors with associated unit vectors
e, and e, having as direction cosines (Fig. 1):

e, = [coseyp, sinwp|T (24a)
e, = [sinwp,—coswp |T (24b)

The unit vector e, subtends with axis Oc, an angle equal to (w,—m/2), whereas
the unit vector e, is inclined to the same axis by an angle (- ©p).

It should be noted that the elastic strain energy associated with both
the eigendeformation tensor e, = A6, and the eigendeformation tensor e, —
2,0, is a mixed type of energy, that is both distortional and dilatational.
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Moreover, since the eigentensors ¢, and ¢, depend on material elastic pro-
perties, their corresponding strain energies differ for the various kinds of
transversely isotropic solids.

5

Fig. 1. Geometric representation of the eigentensors of the transver-
sely isotropic compliance tensor on the principal stress plane (o4, o).

For an isotropic material, for which E;, = Ex =E and v, = vy =v, the
eigenangle w, takes the value wp, = 135°. As a result, the eigentensor o, beco-
mes a spherical tensor, whereas 6; becomes a deviatoric tensor, their corres-
ponding strain energies being the dilatational and distortional elastic energy

respectively.
e = [- 1/V21 2] (25a)
e = [Lv2,L V2]t (25b)
In addition, it can be shown that the eigenangle ), takes values in the

interval (00, 180°), whereas for an isotropic material it was shown that op
equals 1350. However, there are two possible angles wp, which correspond to
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the isotropic medium, namely 45° and 135°¢. The value of wp equal to 45° is
associated with a negative value of Poisson’s ratio, whereas the value of wp
equal to 1350 refers to a positive one.

However, although a negative value of Poisson’s ratio is admissible in
terms of thermodynamics, isotropic elastic behavior will be associated to a
value of w, equal to 135°.

The compliance tensor S and the strain energy density T can be assured
to be strictly positive, if all the eigenvalues of the compliance tensor are strict-
ly positive.

The variation of the longitudinal Poisson’s ratio vy, is shown in Fig. 2
in terms of the eigenangle w, and the ratio of the elastic moduli Ey,/E;. Each
of the graphs included in the figure corresponds to a distinct value of the ra-
tio Er, /Er and the interval of values of v, was such that the following inequa-
lity was satisfied:

E 1/2
lve | < ( E_L-> (26)
T

An extensive discussion and definition of the limits of variation of Pois-
son’s ratios in anisotropic materials based on a more stringent bound for these
variables is undertaken in a forthcoming companion paper. See also Theoca-
ris (1994; 1996), and Theocaris and Philippidis (1992; 1994).

As far as the variation of the eigenangle wp with respect to the engineer-
ing elastic constants is concerned, for some values of the ratio of longitudinal
to transverse elastic moduli Ey,/Eq, it is observed that diminishing the ratio
Er /Er reduced significantly the interval of variation of the eigenangle wp.
When Ep, /Ep = 0.4, the interval of variation of wp is approximately [58°,
1220], whereas the interval of values vy, is [-0.63, 0.63]. However, since no ne-
gative value of v, has ever been measured, the associated phenomenological
mterval of values of wp is the set [90°, 1220].

In the same figure, the ratio of the moduli was considered equal to unity
(Er,/Er = 1). This special case corresponds to an isotropic material with dif-
ferent values of Poisson’s ratio v,. Then, it is noted that negative values of
Poisson’s ratio correspond to wp = 459, whereas positive Poisson’s ratios
yields a value of w, = 1350.

When the ratio of the moduli Er,/Er was set equal to two, the thermody-
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Fig. 2. Variation of the longitudinal Poisson’s ratio vy, with the eigenangle wp for the entire
thermodynamically acceptable spectrum of values for some values of the ratio of longitu-
dinal to transverse elastic moduli Ey, /Er.
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namically admissible interval of variation of the eigenangle w, was expanded
to [00, 175°], whereas the interval of values of v;, was [~ 1.414, 1.414]. In addi-
tion, the corresponding phenomenological interval of eigenangle w, values is
[900, 175°]. Finally, when the ratio of the moduli Ef, /E;x was taken equal to
ten, the interval of values of the eigenangle w, was further expanded to [0°,
1800], the interval of values of vy, was [-3.16, 3.16], and the associated pheno-
menological interval of variation of the eigenangle w, was [900, 1800].

In Table 1, the value of the eigenangle w,, as well as the engineering ela-
stic constants are tabulated for a large spectrum of transversely isotropic-
composite media and for real natural materials possessing an axis of infinitc
order of elastic symmetry, as for example crystals of the hexagonal system.
The first section of Table 1 contains fiber composite solids with various fiber
and matrix types. The second section is comprised of inorganic crystals of the
hexagonal system. The third section contains a compression annealed pyrolytic
graphite material and woven fabric comporites.

TABLE 1.

The values of the elastic properties and the plane eigenangle wp for a series
of transversely isotropic media

Transversely isotropic ~ GPa N - - Ref
L of.

medium

EL Er GL

Thornel 758 Gr/Epoxy 3805.19 6.464 6.3 0.366 0.539 179.55
Thornel 508 Gr/Epoxy 221.73 7.450 6.1 0.278 0.491 179.45 Smith, 1972
Courtaulds HTS 158.76 10.623 6.7 0.300 0.398 178.77

C/Epoxy

T 300/5208 Gr/Epoxy 125.36 10.624 5.9 0.327 0.410 178.27 Knight, 1982

Thornel 50 160.00 29.800 18.9 0.440 0.419 174.31 Blessing and
Gr /[Aluminum Elban, 1981

Borsic 1100 Aluminum 233.53 138.03 €0.5 0.240 0.410 162.62 Gieske and
Allred, 1974
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Boron /Aluminum alloy 230.00 1389.00 56.9 0.170 0.480 166.28 Read and Led-
6061 better, 1977
Si0, B-quartz 94.16 106.27 36.1 0.247 0.064 128.51
BaTiO, 147.92 122.25 54.6 0.238 0.364 146.90
H,0 (-16°C) 11.765 9.620 3.184 0.282 0.413 145.79
BaTiO, + 5% CaTiO, 118.76 124.22 47.4 0.314 0.304 132.99 Huntington,
1958
Co 313.48 211.86 75.53 0.216 0.489 158.99
Cd 28.4% ., 80,3, 18.62 0,262 0.122...409.36
Zn 35.24 119.33 38.3 0.257 -0.063 108.05
Compression Annealed, 37.00 920 0.250 0.010 0.160 90.60 Blakslee et al.,
Pyrolytic Graphite 1970
Graphite /Epoxy 1 7.36 148 3.82 0.52 0.31 113.88
Graphite /Epoxy 2 9.31 132 4.61 0.48 0.28 112.18 Ishikawa and”
Chou, 1982
Graphite /[Epoxy 3 8.82 113’ 4.46 « 0.42' .0.80,. 144,18
Kevlar /Epoxy 5.5 .85.3 2.5 0.50 0.40 113.47 Zweben and .
Norman, 1976
Glass /[Epoxy 15.9 47.5 6.23" 0.40 0.27 115.1%4 Chevalier and
‘ Nouamani, 1990
Glass /Polyimide 15.7 41.2 5.59 0.46 0.30 118.05 Ishikawa and

Chou, 1982

4. DISCUSSION

The spectral decomposition of the elastic compliance fourth-rank tensor

S for transversely isotropic plates permits the separation of the stress and

strain tensors in energy-orthogonal components.

The decomposition of the stress tensor ¢ obtained for transversely iso-

tropic solids, yielded three energy-orthogonal stress states, which separate

the elastic strain energy directly. The stress tensor may be effectively descri-

bed by eigentensors 6,, 6, and ¢,. Additionally, the normality of the eigen-

14
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tensors of stress and strain corresponding to a different that the former stress
- eigentensor was shown.

Furthermore, the three eigenvalues of the compliance tensor S together
with the value of the eigenangle v, may be used together for an invariant des-
cription of the elastic behavior. According to relation (7), the eigenangle w,
for an isotropic body is equal to 135° and, in general, varies between 0° and
1800. For highly anisotropic fiber composites, the value of the eigenangle w;
is very nearly equal to 180°, whereas for matrix composites, characterised by
a moderate anisotropy, the values of the eigenangle «», approach the limiting
case of the isotropic material, that is 135°.

Considering for example, Thornel 75S Gr/Epoxy (Smith, 1972), the va-
lue of the eigenangle w, was equal to 179.55° and therefore, the resulting
strain tensor from a pure hydrostatic loading differs much from the spherical
one. As a result, this material does not possess the property of isotropic ma-
terials to exhibit extremely high strength under hydrostatic pressure. On the
other hand, by taking as an example the crystal BaTiO, + 59 CaTiO, (Hun-
tington, 1958), the eigenangle w, was evaluated equal to 137.16°, so that the
stress eigentensor ¢, is very nearly a hydrostatic loading, and the associated
strain eigentensor is almost a spherical tensor. Consequently, these materials
possess nearly infinite strength under hydrostatic loading.

According to equation (7), the value of the eigenangle vy is a function of
the longitudinal and transverse elastic moduli Ey,, Er and the longitudinal
Poisson’s ratio vi,. In addition, the eigenangle v, is independent of the value
of the longitudinal shear modulus G,. However, the value of the shear modu-
lus, Gp, is very important for the characterisation of the fracture toughness
of a material, since it is responsible for the distribution of strains. Moreover,
according to the classical anisotropic elasticity theory (Lekhnitskii, 1968), the
stress concentration factor Ky in the presence of an elliptic crack in a trans-
versely isotropic plate loaded in tension along the strongest material direction
is given by (Theocaris and Philippidis, 1989¢):

: 12 \ 1/2
By = 14 2(&> 19 (Er_ ) = 27)
Eq 2G;, b

in which b /a denotes the ratio of the elliptic crack semi-axes.
Therefore, the dependence between the eigenangle «, and the longitudi-
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nal elastic modulus Gy, was sought for, by plotting the relationship between the
eigenangle wp and the ratio Ep,/2Gy, in Fig. 3. It is clear from the graph that
the ratio Ep,/2Gy, rises to very high values as the value of the eigenangle w,
tends to either 90° or 180°. On the contrary, as the eigenangle o, approaches
the limiting value 135° corresponding to an isotropic body, the ratio Ey,/2G;,
is decreased, holding a very steady value, for eigenangles belonging in the in-
terval [1100, 170°].

T8 ‘ I
IREEEERE
~NU x  Compression Annealed Pyrolytic Graphite
30 O Inorganic Crystals
I A Carbon and Graphite Fibers
- l V  Unidirectional Fiber Composites
Q 20 ©  Woven Fabric Composites
=
m

\ :
0 \—E'ﬁeee@ﬂ v
90 120 150 180
Wp(deg) —

Fig. 3. Phenomenological functional dependence of ratio EL/2GL on the plane eigenangle wp.

The continuous curve of Fig. 3 is supposed to represent the mean be-
havior of Ef,/2G;, with respect to the eigenangle wp for all the experimental
points. In the interval [90°, 1350] lie all the weak-axis and woven fabric com-
posites, whereas in the region [135°, 180°] which is quite similar, if not iden-
tical, to the behavior in the interval [90°, 1350] lie all the strong axis fiber rein-
forced materials.

It should be noted that the results mentioned above are in accordance
with what was found for the spectral decomposition of the compliance tensor
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in the principal stress space (Theocaris and Philippidis, 1990). Therefore,
once more, it is concluded that departure of the eigenangle «, from the value
corresponding to the isotropic body leads to an increase in the value of the ra-
tio Ey, /2Gy,. On the contrary, if Gy, itself increases, while the other elastic con-
stants remain the same, the eigenangle w, approaches the value 135°, leading
to enhanced fracture toughness. In conclusion, the eigenangle w, serves as a
single parameter characterising the elasticity and toughness of transversely
isotropic materials on the principal stress plane (o;, o).
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MEPIAHWIXE

@uopotiky Gvalvoig T@V TOVLETOV £voooEmg S

gig émumédovg mhakog GvicoTpOn@OV DAKGY

‘H Ocwpia 95 paopatiniic avahdcens Tob Tavuotod &vdbocwg S Emexveivertal
elc 0 dpbpov adrd 3’ Emimeda mpoBMipata Tdoewy. AnpiovpyeiTat ToLOUTOTEOTWS 1)
Suvatdrng e TOV yarpanTNELGWOY TEHY EhacTIX®Y I3LoTNTOY TV GVicoTEOTWY Uécwy
ele Emumédovg mhdnag o cuvbijracg Emmédov Evratiniic xatamovicews. Aswpoluey
P0G TODTO %APTECLAVOV GUGTNUA GUVTETHYWLEVEY TTp0G TO bTolov dvapépovTaL ot Tu-
YWOTUL TEGEWS, O, %ol THPALOPPWGEWS, €, xal Tol 6molou al Seubivesic Taurilovrat
.t Tag nptag Sreubivoeig 1ol péoov, ut Tov &ova 33 dg Tov loyvpdy &Eova Tob ué-
oov, xdletov énl Tob looTpémov (Eyxapatiov) Emimédou.

“Yrohoytlovrar ai Exgpdoeig TéY TpLdv iSrotipdyv Tol S cuvapthicet TGV Eha-
TGy pétpwy xal Tob Adyou Poisson tob péoou. *Ev cuveyeiy Sidetor t0 civodrov
@&y tavwetév (Em), of 6molor dvakbouy tov povadiatov tavustny I. Adtol 6pilovran

&

amd Todg cuppetpixods Tavuetas f xal 8, of émotor év cuveyeln bpilovrar dmwd Todg
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ouuueTpxolE TavueTtas a xal b. Totovtotpdmac, dpiletar TApwE 7 QaopaTLvy Gvd-
Aete 1ol TavueTod dvdbaewe S. Téhog, Gptletar «éan ddidoTatos THPAWUETPOS Wp, T
omota dvopdletar Eminedog idtoymvia, #) dmola xppdleral cuvapTAce. TGV EMaoTL-
%Gy otabepdv Tob péoov. ‘H {Soywvia adth, perd tév iStotipdy T S dmoteholy
Tag dvayxatag Tapapétpoug Sua Ty dvalhotwTov TEpLYpa QY THE EAaGTIXTG GupTE-
pLPopdic TMY EYraPCLOG LoOTPOTWY TAAKGV.

"Ev ovveyeta, 6ptlovrar of Tpels tdtotavustal 6y, 6, xal 65 GUVAPTACEL TGV Gu-
VLGTOEEY TEHY TAGEWY Gy, 63 Xl Gy3, %00 Emiong xal Tig Emmédov idroywviag wp.
> Amodewvietar 8t of idlotavuoTal 6; xal 6, EExprdvTal povoonuavTes €x Tig idto-
yoviag wp. *Avtifétwsg 6 Tpitog totavuatic 64 elvan dmoxAivey xal Tapapméver oTo-
Oepoc 8¢’ 8ha T Eyrapaotwg lobrpoma cmpata. " AmodetnvieTon dmimAéov bt 6 idroTa-
YWGTHG 65 ouvdéeTal dmoxheloTinds P& THY oTpopukiy dhacTiy évépyelay, Evé ol
dméhotmor do iStotavvotal 6; xal 6, Exgpalovrar pé cuvdvasuols THg GTEOPLXTC
%ol StoyrwTindic dvepyetag.

Mekerddvror téoov 7 peraBoli) 7 idtoywviag wp, ooy xal T& Gola TEY TLLGY
&Y GvisoTpémwy Adywv Tob Poisson, dmaxobovra el tods vépouvs tig Ocppoduvae-
#¥jc. Edptoxerar 671 4 mupn w7 ISroywviag wp, 7 avriororyolon elg 76 lodTpomov G-
o toobron pe 1359, &vdd, yevinde, ) yovia adry) Sid Ta dvicbTpoma cMpaTe weTaBdh-
Aetor petald TEY TRV TEHY Yovdy wp = 00 xal 1800, Meherdvror ol Tupal tag 6-
molog hapPdver 7 droymvic wp, S Gerpay BNy Eyxapcing iooTeéT®Y DGV al To-
patpeital 67t e v abbnow Tig dvicotporing Tob YAwxol, i Tiul THe iStoywving
op mpooeYYilel dvtioTolymwe Ta Bpta 900 xal 1800, 2vd dvrilérwe, petworg g dvi-
sotpoiag 63nyel el Tupag Thg idtoywviag wp, TANGiov Tob bplov Tév 135°. Eig iy
weptntwow adthy, 6 tdiotavwetig 65, mposeyyiler Ty UdpocTaTIXY QOPTIGLY Xal
Emopéves 6 AvTioToLY0G TAVVGTIG THG TapXULopPPMGEWS TposeYYllel TOV GQaLpLeoy
TAVUGTAY. Zuvends T8 VDAxd adTd Tapovstalovy 6yeddv dmeptdploToy avToyiy UTo
Oty H8postatinny @bpticy. Téhog dmodetnviertar &tu 7 émimedog iStoywvin wp
gtvar lxavl) va ypnoipomorn0f) Sid Ty TANEYN TEPLYPAQTY [LOVOTHQAUETPIXES THE

avisotporiog Tob OAtxol Eyxapoinwg tooTpbmey Emimédwy TAAXY.




