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MAOHMATIKA.— On continuous homomorphisms between topologi-
cal tensor algebras, by Anastasios Mallios*. *>Averowddn 910 tod
*Axadnuoirot x. @ik, Baacihelov.

The purpose of the present paper is to give an abstract treatment,
within the context of the general theory of topological tensor (product)
algebras, concerning certain particular features of (continuous algebra)
homomorphisms between «generalized group algebras» consisting of
vector-valued functions, as these algebras have been considered, for
instance, in Ref. [1]. Now, the later algebras constitute a particular
instance of topological tensor product algebras [3], and the present dis-
cussion is essentially founded upon the basic formula (decomposition)
relating the spectrum of an abstract (topological) tensor (product) algebra
to the spectra of the factor algebras [5], as well as its refinements (cf.,
for instance, Ref. [4], p. 104, Theorem 2.1). On the other hand, the
main feature of the results contained herein, is an analogous decompo-
sition of a continuous algebra homomorphism, between suitable tensor
product algebras, in case the (algebra) homomorphism considered preser-
ves, in an appropriate sense, the first factor algebra of its domain of
definition (cf. Theorems 2.1 and 2.2 below). Besides, the results obtain-
ed specialize to those of A. Hausner in [1], whose paper has also been
the motive to this study.

1. The algebras considered in the following are linear associative
ones over the complex number field. On the other hand, the topological
spaces involved are supposed to be Hausdorff. We use in the sequel the
terminology of [4] concerning the general theory of topological tensor
product algebras. Besides, we also refer to [7] regarding, in particular,
the class of the locally m-convex topological algebras.

Now, given the topological algebras E, F we denote by Hom (E, F)
the set of all continuous (algebra) homomorphisms between them, which
is also considered as a topological space, denoted by Homs (E, F), the
corresponding topology on it being that of the simple convergence in E.
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On the other hand, we denote by Ls (E, F) the corresponding space of
continuous linear maps between the topological vector spaces indicated,
topologized as above.

We start with the following lemma which will be used in the sequel
(cf. Theorem 2.1 below). Its proof being plausible is omitted. Thus,
we have.

Lemma 1.1. Let E, F, G be topological algebras and let ue Hom
(E, F). Moreover, let ’
(1.1) tu: Ly (F, G) > Ls (E, G)

be the corresponding «transpose map» of u, with respect to (the topolo-

gical vector space) G. Then, one has
(1.2) Im (| som (, ¢)) = Hom (E, G).

Besides, we also need the following.

Lemma 1.2. Let E, F be (commutative) semi-simple topological
algebras and let E@F be the respective complete topological tensor
(product) algebra, under a «faithful» topology t on E®F [3]. Moreover,
let z be an element of E@F with z =50, in such a way that one has
the relation
(1.3) Z = %0,
with x€E, concerning the corresponding Gel’ fand transforms of the
elements indicated, and ¢ being a continuous complex - valued function

on M(F) (:the spectrum [4] of the topological algebra F). Then, there
exists an element y € F such that one has z = x®y.

Proof: 1f x®yeE ®@F, one defines a map.
(1.4) Px,y: M(E) > F:f—> x5 (f): = £ (x)y,

which is obviously continuous, so that for every zeE® F, one defines a
continuous map ¢z: M (E)—> F, extending (1. 4) by linearity and then by
continuity. Now, if x 540, since E is semi-simple there exists an f,e M (E)
such that;((fo) = f,(x) 5= 0. On the other hand, consider the relation:

(1.5) y = (1/ 2¢01) @z (f,) € F.
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Now, for every ge M (F), one obtains by (1.5),
g (y)=(1'2u0) g (@2(£)) = (1/2¢0)) 2 (£, ® g)

= (U200 (x0) (£, ®8) = (1/ 20)) x () 0 (&) = e (8),
that is, we obtain g (y) = ;(g) = 0(g), for every ge M (F), and hence one
has o= ;7 Therefore, 7= §g =§§——— x/®\y, so that since E @ F is semi-
simple (cf., for instance, [3; p. 252, Theorem 2.1]), one obtains z=x®y,

and this finishes the proof of the lemma.

We conclude this section with the following theorem whose one
half will be used in the sequel (cf. Theorem 2.1 below), and which also
has an independent, interest per se. Thus, we have:

Theorem 1.1. et E, F be topological algebras with locally equicon-
tinuous spectra M (E), M (F) respectively, and let E®F be the comple-
tion of the corresponding tensor (product) algebrar E®F under an
«admissible» topology t [3]. Then, the following assertions are equi-
valent :

1) The Gel’fand maps of the algebras E and F are continuous.

2) The Gel’fand map of the algebra E@F is continuous.

Proof: 1)=2): By [4; p. 104, Theorem 2.1], one has, concern-
ing the spectra of the topological algebras involved, the relation
M(E@F) = M(E) X M(F), within a homeomorphism. Hence, if

Ke M(E@F) is a compact subset, then K < pr,(K) Xpr,(K), where
pr, (K) = M(E) and pr,(K) = M(F) are compact subsets of the spectra
indicated, so that they also are equicontinuous subsets of the same spa-
ces by hypothesis and Ref. [5; p. 305, Theorem 3. 1]. Theorefore (cf. also

[3; p. 247, Definition 1.1]), pr, (K) ® pr, (K) = M(E)® M (F) = M(E 6:) B)=
M(E@F) is an equicontinuous subset of M (E @ F) and a fortiori of K,
which proves the assertion (cf. [5], p. 305, Theorem 3. 1).

2) = 1) : We shall prove that the map g: E—> C. (M(E)) is conti-

nuous. Indeed, let (x5) be a net of elements of E converging to OeE.
Now, if K< M(E) is compact, there exist elements yeF and geM(F)

with y(g)0, so that, since the net (xs®y) converges to 0eEQ®F,



52 INNIPAKTIKA THZ AKAAHMIATE AGHNQN

one concludes by hypothesis that the net (x5 ®y) converges to 0 in

C. (M(E@F)), so that one has that it «finally» admits a given arbitrary
bound on the compact set K X {g} <= M(E) X M(F) =M(E@F), and

hence one obtains the analogous conclusion for the net (125) in C. (M(E))
on the compact set K, which proves the assertion. An analogous argu-
ment can be provided for the corresponding Gel’fand map of the alge-
bra F, and the proof of the theorem is completed.

2. The present section contains the main results of this paper,
which also motivated the whole material presented herein. Thus, we

start with the following.

Theorem 2.1. Let E, F, G, H be topological algebras such that E
has an approximate identity, F has an identity element 1z, G is com-
plete and semi-simple with a locally equicontinuous spectrum such that
the corresponding Gel’fand map is continuous, and the algebra H is
semi-simple, it has an identity element 1y and a locally equicontinuous
spectrum such that the respective Gel’fand map is continuous. Moreo-
ver, suppose that the following condition holds true, concerning the
algebras E, F, G:

For any T eHom (E(?F,G) and q@eHom (E, G) with
T(x®1r) = @(x), for every xeE, there exists an

(1) feM(F) such that T = ¢ ®f, where t denotes an
«admissible» topology on the respective tensor product
algebra [3].

Then, for any TeHom (E®F, GO®H) and ¢eHom (E, G), with
T(x®1p) = @(x)®1y, for every xeE, there exists an element
o€ Hom (F, H) such that T = ¢® o, where o denotes a «faithful» topo-
logy [3] on the tensor product algebra G ® H.

Scholium 2.1. The class of the topological algebras considered in
the preceding theorem is to be specified in such a way that the results
exhibited, for instance, in Ref. [4] to be valid. In particular, one can
apply locally m-convex topological algebras [7].

On the other hand, concerning the cond. (1) of the same theorem,
we remark that this is automatically verified if, in particular, the alge-
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bras E and G have also identity elements and the sets Hom (E, G) and
Hom (F, G) are locally equicontinuous subsets of the respective spaces
of linear maps, so that the assertion is now a consequence of Theorem
3.1 in Ref. [6; p. 80].

Proof of Theorem 2.1. Let (u,) be an approximate identity of the
algebra E. Then, for any xe E and ye€F, one has

(2.1) x@y = (lim(uey)) xel:),
so that by hypothesis for T', one obtains :
2.2) T(x®y) = (lim T(1.®y)) T (x®1r) = (lim T(1 ®y)) (¢ (x) ® 1n).

Now, by considering the respective Gel’fand transforms of the preceding
relation and by taking into account the hypothesis for the corresponding
Gel’fand maps and Theorem 1.1 in the preceding, we have.

PR P L
(2.3) T(x®y) = (@(x)®1x) (ljm T(W®y)),

so that one may consider the last relation as being of the form

AN S
(2.4) TE®y) = o(x). v,
where y denotes a complex-valued continuous function on the spectrum
of H defined by the relation

AN
(2.5) Y (h) = (li.,r.n T (1w ®y)) (g h),

for a given element geM(G), and for every he M(H). Therefore, by
Lemma 1.2 in the foregoing, there exists an element beH such that

one has T@y) = cp(@, so that by the semi-simplicity of the
algebra G(E)H (cf. also [3; p. 252, Theorem 2.1] and [4; p. 104, § 3,1)]),
one obtains

(2. 6) Tx®y) = ¢(x)®b.

On the other hand, it is evident from the relation (2.5) that the defini-

tion of v is independent of the approximate identity (u.) and the ele-
ment x € E. Thus, for every ge M(G), one obtains a map

(2.7) 0g: F—>H:y—>ly): =b.

Now, we shall show that the element b e H, as defined above, is actually
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independent of the element ge€M(G): Indeed, let g,, g,e M(G) with
g, 5= g, such that b, = g, (y) and b, = gg.(y). Then, for every he M(H),
one obtains :

(2.8) h(b,) = h(b,) = f(y),
where feM(F): This is a consequence of the following.

Scholium 2.1. By keeping fix the notation applied in the foregoing,
let ids denote the identity map of the algebra G, and let h e M (H). Now,
if 'T' is the map given by the statement of T'heorem 2. 1, consider the map

(2.9) x=(ids ® h) o T:E®F > G,

where its range is actually the algebra G(?,C, with C denoting the

algebra of complex numbers, and t’ the topology of G making it a topo-
logical algebra, so that it is trivially compatible with the structure of
the tensor (product) algebra G ® C = G, this relation being valid within
an algebraic (onto) isomorphism and hence, by the completeness of the
algebra G, one gets as the range of the map x (actually of its extension
by continuity) the same algebra G. Now, by the relation (2. 9) above, one
obtains, for every x€E, the relation :

1(x@lr) = (ide @h) (T(x®1r)) = (ide ®h) (¢ (x)® 1n)
= ¢ (x)h(ln) = @ (x),
so that, by the condition (1) of Theorem 2.1 above, there exists an ele-
ment feM(F) such that one has the relation

(2. 10) v = (ids @ h) o T = p @ 1.

End of the proof of Theorem 2.1: Now, by the preceding relation
(2.10), one obtains, for every geM(G) and for any elements xeE and

yeF, the relation:

[(ide ®h) (T (x®7Y))]

N A
= ¢(x)i(y)(g) = 1(y). o(x) (2),

so that by the relations (2.7), (2.8) above, one has

g((ide ®h) (T (x®vy))) = g((ids ®h) (@ (x) ®0g (¥)))
= g(e(x)h(eg(y))) = h(e(y)) @(x)(g),

A e N
(g) = Wx®y) (@) = (v®f) (x®V) (g)
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and hence, by the preceding, one finally gets the relation

h(eg(v)) @ (x)(g) = f(v) @ (x)(g),

for any elements x € K and ge M (G), so that we have

(2.11) h(eg (y)) = f(y),

and this proves the relation (2.9) in the preceding. Now, by the same
relation, one has B, (h)y = Bg (h), for every heM(H), that is, Bi = %,, )
that by the semi-simplicity of the algebra H, one obtains b, =b,, and
this proves the assertion, concerning the definition of the element
0¢ (v) = beH. Hence, one has a continuous (algebra) homomorphism

(2.12) e:F>H:y—>0o(y): = ¢ (y),

for an arbitrary geM(G), this relation being actually independent of the
particular element g considered, as it has been proved before. Therefore,
by the relations (2. 6), (2.12), as above, one obtains the relation

(2.13) T(xey)=0(x)®o[y)= (00 (x®V),

for every decomposable tensor x® ye E ® F, so that by extending (2. 13)
by linearity and then by continuity, one finally gets the relation

(2.14) T=0¢®eo,
and this completes the proof of the theorem.
In particular, we have the following.

Corollary 2.1. Suppose that the conditions of the preceding Theorem
2.1 are satisfied. Moreover, let that the (continuous algebra) homomor-
phisms T and ¢ as defined therein are bijections, in such a way that the
restriction of T to the algebra E®F is an onto map, i.e. one has
T (E®F) = G ®H. Then, the map o, as defined by the same theorem,
is also a bijection.

Proof: Let y,, y, be elements of F withy, 5 y,, and let x€ E with
¢ (x)5~0. Then, x®y, #* X ®Y,, so that, since I' is an injection, one has
T(x®y,)s#* T(x®Yy,), so that by the relation (2. 14) above one obtains
¢ (x) ® e(y,) #¢(x) ®(y,), and hence, since ¢(x) =0, one gets o(y,) %
o(y,), that is the map o is an injection. On the other hand, o is an onto
map: Indeed, if beH, consider the element ¢(x)®beG® H, with
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¢(x) = 0eG as above. Then, since T is an onto map, there exists an
element ze E®F such that T'(z) = ¢ (x)®b. Now, if geM(G) with
g(@(x)) 5= 0, then for every he M(H), one gets the relation

(2.15) k(T(z)) = (g®h) (@(x)®b) = g(e(x)) h(b),

where one has k = g@heM(G@H) (cf. also [4], p. 104, Theorem 2. 1).
Thus, there exists an element y€F such that h(b) = h(o(y)), for every
heM(H), so that by the semi-simplicity of the algebra H, one concludes

the relation b = (y), with yeF as above, which proves the assertion,
and this completes the proof.

On the other hand, we get the following result, by which we also
conclude the present discussion. Thus, one has:

Theorem 2.2. Let E, F, G, H be topological algebras with locally
equicontinuous spectra [5], in such a way that the spectra of the alge-
bras E and G are, moreover, connected and the spectrum of the algebra
F totally disconnected. Moreover, suppose that the algebras F and H
have identity elements 1¢ and 1y respectively, and the algebras G and H
are semi-simple. Finally, let the following continuous (algebra) homo-

morphisms be given :
T eHom (E@F, G%H) and 9eHom (E, G), such that one has
TEx®lr)=0o(x)®1u,

for every xeE, where by a, §, we mean a «compatible» topology, res-
pectively a «faithful» one on the tensor (product) algebras indicated [3].
Then, there exists a continuous (algebra) homomorphism ¢ € Hom
(F, H) such that one has the relation

T=9®o0,

that is, T(x®vy) = (p®0) (x®Y) = @(x)®0(y), for every decomposable
tensor x @ ye E® F, the last relation being extended by (linearity and)

continuity to the completed algebra E @ F.
Proof : By hypothesis M(E) is connected and M (F) totally discon-
nected, so that the connected components of M (E (? F) = M(E) X M(F)

(the equality being valid within a homeomorphism [4]) are exactly of
the form M(E) X {f}, with feM(F).




