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SEISMOAOTIA. — Geoelectric Structure of the VAN-Station at Ioannina Sensitive
to the Detection of Seismic Electric Signals (SES), by J. Makris, N. Bogris
and K. Eftaxias*, dus 7ol dxadnuaized x. Kaisagoc >Adcomodiov.

ABSTRACGT

Magnetotelluric and magnetic prospections of the area around the VAN-station of Ioan-
nina region, indicate that the geoelectric structure is compatible with the following model:
the regional conductivity structure is two-dimensional (2D) with strike-direction ~N40°W,
while small-scale near-surface 3D-inhomogeneities are also present. These near-surface
semi-static scatterers reflect strong local channelling with (linear) polarization directions of
the electric field which vary drastically with the measuring site (e.g., even at distances of
the order of 100m). The combination of the impedance tensor decomposition analysis with
the magnetotelluric study of Mohr circles and the magnetic prospection analysis success-
fully resolves the characteristics of the near-surface 3D-distorting bodies and the principal
axis system (together with strike and dip-directions) of the underlying regional 2D-stru-
cture. Furthermore, the magnetic prospection as well as the 1D-Occam inversion indicate
the probable existence of a very conductive body (of the order of a few Qm) at a depth of
the order of a few Km, embedded in a more resistive medium with resistivity of the order of
a few thousands Qm.

INTRODUCTION

Since 1981, Varotsos et al /Varotsos et al., 1996 ] are studying experimen-
tally and theoretically the transient variations of the electric field of the
earth hereafter called Seismic Electric Signals (SES) in a research effort aiming
in predicting earthquakes. The SES-study revealed two basic properties:

(i) SES are detectable only at certain sites of the earth’s surface, which
are called «sensitive sites».

(i) Each of these sites is sensitive only to SES from certain focal area(s)

that are not always close to them.

These two properties conform what Varotsos et al. call «selectivity ef-
fect». The peculiarity of a «sensitive site» is probably correlated with the
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geoelectric structure of the crust just beneath this site and /or of the crust of
the vast region between the focal area and the «sensitive site».

The main objective of this paper is to present an extensive magnetotel-
luric (MT) study of an area sensitive to the detection of SES. As a first step
we selected the region around Toannina-city, at north-western Greece where the
VAN-station (IOA) is operated since 1981 (see I'ig. 1). The MT-measurements
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Fig. 1. Map of Greece showing the basic configuration of the VAN-telemetric network. The
Toannina (IOA) station, sensitive to the detection of SES, is the subject of an extensive MT-
prospection.
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were conducted at three neighbouring areas (hereafter cited as A, B and C
respectively) and a site between areas B and C, cited (B-C), where the short
dipoles of IOA-station are installed (see Fig. 2). The MT-study was extended
to two additional locations: Lykotrichi area, ~4 Km north-west from I0A -
station (see Fig. 2) and Protopappas area, ~15 Km north-west from TOA -
station.

The magnetotelluric (MT) method was proposed as an efficient technique
for mapping the subsurface electrical conductivity structure. The method as-
sumes a linear relationship between the horizontal natural magnetic and elec-
tric fields at the earth’s surface, over a broad frequency range and indepen-
dent of source polarization and position. The field transfer function, termed
the impedance tensor, is estimated in the frequency domain from the experi-
mental MT-data. The extraction from the data of scalar parameters that will
have interpretable physical meaning, in terms of the actual conductivity stru-
cture within the earth, is the aim of the impedance tensor analysis. The inter-
pretation is easiest in those cases where the surveyed structure is either one -
dimensional (1D) i.e., homogeneous or horizontally layered, or two-dimensio-
nal (2D) i.e., uniform along a horizontal axis (strike-direction). However, the
experimentally determined MT-impedance tensor very rarely conform to the
ideal 1D or 2D-form. Therefore, a 3D-modeling is necessary in order to ana-
lyze the responses of arbitrary (3D) geoelectric structures.

In the MT-study we proceed in two consecutive stages; the first is the
conventional MT-analysis where the electromagnetic response of the subsur-
face hemispace is considered as unified (see chapter I), while in the subsequent
MT-tensor decomposition analysis (discussed in chapter II), the impedance
tensor is decomposed in more than one tensors.

I. CONVENTIONAL MAGNETOTELLURIC ANALYSIS

A linear relationship between the horizontal electric and magnetic field
at the earth’s surface is assumed and hence, in the frequency domain, the
transfer function, between the electric and magnetic field, i.e., the impedance
tensor, is given by the pair of the following linear equations /[Kaufman et al.,
1981], [Keller et al., 1986]:

20
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Ex(r,0) = Zxx(r,0)Hx + Zyy(r,0)Hy (L.1a]

Ey(l‘,(ﬂ) = Zyx(rym)HX #+ ZYY(rv(‘))HY [Iib]

or, in matrix notation:

E=Z+H [1.2]
where:
E ZxX (P,Cl)) Zx v (I',(,l))
%R ( Bl B ) LL.3]

The conventional interpretation of MT-data requires the extraction of
scalar parameters from the impedance tensor Z which depends on the frequency
and the selected measuring coordinate system. The latter dependence imposes
the extraction of scalar parameters not only from the measured impedance
tensor corresponding to the selected coordinate system, but from the princi-
pal impedance tensor corresponding to the intrinsic of the structure coordinate
system as well. An important special case arises when the subsurface is assu-
med as uniform along one horizontal axis of the coordinate system (2D-sym-
metry).

From the rotation of the impedance tensor:

Z/(0) = RZxRt [1.4]
where:
cosh sinb
s (—sinﬂ cosB) [L.5]

is the rotation operator, a new rotated impedance tensor Z' (0) is defined in
another coordinate system which results from the rotation of the measuring
coordinate system 0 degrees clockwise. If there is an angle 0, in which the
tensor Z'(0,) can be considered as approaching the ideal form of the impedance
tensor for a 2D-structure, then the Z’'(6,) is termed the principal impedance
tensor. Therefore, it is evident that a procedure for the analytic calculation of
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the strike angle 8, should be specified. Furthermore, scalar parameters that
will indicate the deviation of the actual structure from the ideal 2D-structure
should be defined; these parameters will represent the reliability of the strike
angle 0, and of other scalar parameters e.g., the principal apparent resistivi-
ties and their corresponding phases.

Tensor rotation on the complex plane

The clockwise rotated impedance tensor elements are given by the equa-
tions [Swift, 1967], [Eggers, 1982]:

Z'e = Z + Zg 5in(20) + Z, cos(26) [1.6.a]
ZL'xy = Zy + Zy c08(20) — Z, sin(20) [1.6.b]
Lo = —Zy + Zg 008(20) - Z, $in(26) = —Z'xy (e + g) [L6.c)
Ty = Ly — Zig 5in(20) — Z4 ¢05(20) = Z'xx (e + ’2‘) [1.6.d]
where:
= (Z_\V_; ZY}), - (Zxx -2l— Zw), A (ny;-Zyx)7 - (Z_xx;@

All the elem ents Z';(6) trace out ellipses in the complex plane under a rotation
through = radians (see Fig. I.1). A study of eqs [1.6.a-d] leads to the following
properties:
= 7Z,, Z, are rotationally invariant.
= The diagonal elements of theimpedance tensor trace out the same ellipse
with centroid Z,.
» The off-diagonal elements of the impedence tensor trace out ellipses with
centroids +7,.
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= The ellipses of all the elements of the impedance tensor have the same
size and shape and are defined by the conjugate radii Z; and Z,.

» The following relations hold:

Im

Fig. I.1. Rotational diagrams, at the complex plane, of the impedance tensor elements for
the case of a 3D-structure.

Zyel8) = — Z'xy ( 0+ —’2‘—)

Zlyy(e) = Z/xx (9 i 3

oA
S

which explain the relative position of the elements (Zxy, Zyx) and (Zxx,
Zyy) in the corresponding ellipses.

= When the off-diagonal elements are on the main axis of the ellipse, the
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diagonal are on the secondary one. The impedance which corresponds to
this configuration is the principal impedance.
In the case of the 1D-structure i.e.,

(6 z
z_(ﬂog) [L7]

the aforementioned ellipses are reduced to points [Fig. [.2(a)]; the diagonal
elements are then located in the origin of the coordinate system, while the
off-diagonal elements are located in the points:

T B
iZ1=i(—y2~L)=izo

In the case of the 2D-structure i.e.,

2=( 2 5) "

the ellipses reduce to straight lines [Fig. 1.2(b)]. The mid points of the lines
which trace out the diagonal elements, are located in the symmetrical to the

origin of the coordinate system points:

(Zxx + Zyy)
2

Zy— —0

The mid points of the lines which trace out the off-diagonal elements, are
located in the symmetrical to the origin of the coordinate system points:

=E Zl ==+ —“——(ny ;_—ZYX)

Determination of the strike angle 6,

The principal axes (of the intrinsic coordinate system) arise from the ro-
tation of the measuring coordinate system through an angle 6, (termed as
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the sirike angle), at which Z; and Z, reach their largest and smallest values

respectively /Swift, 1967], [Sims and Bostick, 1969], i.e.,

|Zs| = | Z'xy(0) + Z'yx(8) | = max
|Zy| = | Z' x(0) — Z'yy(0) | = min

Such a scheme finds the true principal axis coordinate system only in the case
of a 2D-structure. The above conditions give the following relation for the

angle 0,:
*
-y [1.9.a]
|Z4| 2—[Z3| =
or
b= 1 tanfl(___‘giﬁlR@'*Izﬁﬁ | ) [19.b]
4 (R2-Ry?) + (I, - 1,%)

where R,, R, and I, I, denote the real and imaginary parts of the complex
quantities Zxx — Zyy and Zyy + Zyx respectively.

The same angle arises from the maximization and minimization of the
following functions /Swift, 1967 ] respectively:

|Z/5(0) P + | Z'yx(0) P = max
| Z/xx(0)  + [Zy5(0) [* = min

The strike angle defines the intrinsic coordinate system, but it does not
distinguish between the strike and dip-directions of the 2D-geoelectric struc-
ture. This can be achieved with additional information derived either from the
vertical component of the magnetic field (see chapter 1V), or from geological
insights.

Determination of skew and ellipticity

Skew and ellipticity are two additional parameters which are extracted
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from the rotated impedance tensor Z' and indicate the extend to which the
rotated impedance tensor deviates from that of an ideal 1D or 2D-structure.

The skew measures the distance from the origin of the diagonal element
rotation ellipse, normalized by the distance from the origin of the off-diagonal
rotation ellipses:

| Za| _|Zxx + Zyy|

- {1.10]
|Zy| | Zxy — Zyx|

N =

The ellipticity of the rotation ellipse is defined as:

g — |Z4(90)| _ |Z"5x (89) — Z'yy (65) | (1.11]
|Z'5(00)| | Z'xy (6p) + Z'yx (0p) |

Note that the skew s is a rotationally invariant parameter, while the ellipticity
is not. Furthermore, the skew is more sensitive to the departure from an ideal
1D or 2D-structure for higher {requencies, while the ellipticity for lower fre-
quencies; hence, the two indices are complimentary.

Determination of apparent resistivities and phases from the impedance tensor

The apparent resistivities and their corresponding phases are estimated
using the relations:

1Z (0, 0)

Wity

pii (0,0) [1.12]

{7 (0,0)] :
i (6,0) = -1 el !
00 = e (B ) o

The necessity of defining the apparent resistivities arises from the fact that, in
the frequency domain, the impedance tensor elements do not have any direct
physical meaning. For the MT-interpretation we look for scalar parameters
which are more amenable to physical intuition with regard to the unknown
subsurface conductivity distribution. The principal apparent resistivities and
phases correspond to the off-diagonal elements of the rotated (through the
strike angle 0,), impedance tensor.
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1.1. Experimental analysis for the sites A, B, C and (B-C) at Ioannina VAN
station

The magnetotelluric rotation diagrams have been plotted for each one of
the four sites called A, B, C and (B-C) of Toannina station [Makris, 1997]. In
Fig. 1.3 the magnetotelluric rotation diagrams for site B are depicted. An ins-
pection of these diagrams (for all the sites) indicates that the structure can be
considered as two-dimensional (2D).

Fig. 1.4 depicts the strike angle as a function of the period, 0y -~ 0, (T),

[ = 0oA [Swift] a 00B[Swift] « 00C [Swift] —#—Bo(B-C) |Swift] |
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¥ig. L.4. Strike angle, 6,, derived from the conventional MT-analysis for the sites A, B, C
and (B-C) of Toannina region.

for the sites A, B, C and (B-C), while Fig. 1.5 shows 8 =8 (T) and s = s (T)
for the sites A, B, C and (B-C) respectively.

At each one of the measuring sites and in the range of periods T = 10 -
200sec, an intrinsic coordinate system of the 2D-structure arises from the
rotation of the measuring coordinate system (x = NS, y = EW) through the
strike angles 0yA ~ 120, 6,8 ~ 30, 6,C ~ 15° degrees clockwise and 6,P-C ~66°
counterclockwise.

The apparent resistivities and the corresponding phases of the measuring
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Fig. 1.5. Ellipticity, B, derived from the conventional MT-analysis for the sites A, B, C
and (B-C) of Ioannina region, and skew, s, for the site (B-C).

and the strike (intrinsic) coordinate system, for site B, are presented in Fig.
1.6. Similar plots for the other sites can be found in [Makris, 1997].

An inspection of the MT-rotation diagrams and a study of the plots 6, =
0o(T), =R (T), s = s(T) and pi; = pii(T), @iy = ¢ij(T) for all the sites indicate
that, at each site, the subsurface geoelectric structure approximates that of
a 2D-symmetry [because s(T) < 0.3 and B(T) < 0.2]; note however, that the
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strike angle varies from site to site, and that a significant difference exists

when comparing pxy and pyx.

1.2. Eigenstate formulation of the magnetotelluric impedance tensor

The following set of scalar parameters was introduced in the previous

section:
{60787ﬁ7Pij(emT)a(Pij(eO;T)}

However, there are two important problems in this approach. The apparent
resistivities, as defined from the off-diagonal elements of the rotated (to the
strike) impedance tensor, areindependent of the trace of the impedance tensor.
It is therefore problematic that the apparent resistivities, which should have
physical analogues and are most heavily used in the interpretation, are insen-
sitive to the addition of an arbitrary constant to the diagonal elements of the
impedance tensor. Furthermore, the aforementioned parameter set is inco-
mplete. There are two degrees of freedom in the impedance tensor which are
transparent to all the parameters.

Eggers [Eggers, 1982], tried to overcome these problems by considering
the eigenstate formulation of the impedance tensor. The eigenstates are de-

fined by the equation:
El= Al - Hi [1.14]

where Ei - Hi = 0 in the frequency domain.
The necessary and sufficient condition for this to be true for non-trivial Hi is

that Al to be skew symmetric:

Al — ( 0 N) [[.15]
-0

and identical (in form) to the operator relating the electric and magnetic

fields of an arbitrary polarization at the Transverse Electromagnetic Mode

(TEM) of wave propagation in a homogeneous medium. The eigenvalues and

the corresponding eigenvectors are given by:
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rt =%, £ VZ 5" dotZ [1.16]

B e

WheI‘e Zl = and deth = Zxeyy = nyZyx,

HE= ( liz_ - "Y) [1.17.a]
Bt = ( ke %rvl‘g ) [1.17.b]
e

The properties of the eigenvalues and the eigenvectors can be summa-
rized as follows:

» Since Z, and detZy are rotationally invariant, the eigenvalues A™ are also
rotationally invariant.

u For the 1D-case, the impedance tensor takes the anti-symmetric form:e

0 3z
- 0
1D (—ZOO)

and hence, Z, = z, and detZ;p = z,%.
The eigenvalues degenerate (A" = z,), and are equal to the conventional
principal components.

= For the 2D-case, in the intrinsic coordinate system, the impedance tensor
takes the form:

ZZD:(O Z1>
—z5 0
Zy + Zy

where Z, = o and detZyp = z,z,.

There are two distinct eigenvalues which are identical to the principal
impedances z; and z,. As the eigenvalues are rotationally invariant, the
generality is not lost when using the rotated form of the impedance
tensor.
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= For the general 3D-case:

ZI — ny; ZX and detZ;D —2 Zxeyy = ZXYZ.Vx

therefore, the eigenvalues are given by the equation:

7\+ = Zl + VZ32— Zxeyy [I.18J

ny + Zyx

where Z, = 5

= The two pairs of eigenvectors (E+, H+) and (E-,H-) define the two pola-
rization states of the electromagnetic field.
The orientation of the major axis of the polarization ellipse is given, in
terms of elements of the eigenvectors, by the relation:

2Re (E,Ep)

tan 2¢ = [1.19]
P I By
The ellipticity of the polarization ellipse is defined as follows:
P [1.20]
1+r

|EX + Ej|
where ©r = ;-5 ; L. —

|E2| + | E2| - 2Im (EsE})

In the case of a 2D-structure the eigenvectors of the electric and magne-
tic field should be linearly polarized and perpendicular to each other (y+— ¢~
=900, £° =0). The depart from these conditions, indicates the presence of

a 3D-structure.

1.3. Experimental analysis using Eggers’ procedure

Following Eggers’ analysis, the scalar parameters 2™ (the eigenvalues),
¢~ (the apparent resistivities), o™ (the corresponding phases), ¢* (the orienta-
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tion of the major axis of each polarization ellipse) and & (the corresponding
ellipticity) are presented in Tables I, IT and III for the sites A, B and C respe-
ctively. Indicatively, the polarization ellipses for the eigenvectors of the
electric and magnetic field at site B are depicted in Fig. 1.7.

From the inspection of Tables I-III and Fig. 1.7 it is evident that there is
a deviation from the ideal 2D-structure, because the two eigenvectors of the
electric field (and correspondingly those of the magnetic field) are not perpen-
dicular to each other.

II. THE DECOMPOSITION OF THE MAGNETOTELLURIC IMPENDANCE TENSOR
IN THE PRESENCE OF 3D-LOCAL GALVANIC DISTORTION

II.1. The physical background

The aim of the magnetotelluric method is the mapping of the actual con-
ductivity distribution in the subsurface under prospection. It is considered
that the earth consists of a 1D or 2D-background termed as regional structure
(i.e., the horizontal dimensions of which are comparable with the depth of
penetration) coupled with local (compared to the penetration depth) three-
dimensional (3D) zones of anomalous conductivity. These near surface ano-
malies act as semi-static scatierers (usually called galpanic) which mainly
affect the observed electric field in direction and magnitude. Physically, 3D -
galvanic distortion is caused by the presence of electric charges at discontinui-
ties or gradients in electrical conductivity. The local 3D-surface structure
causes the observed magnetotelluric impedance tensor to be a location de-
pendent mixture of the local and regional responses; this can include
distortion of both in magnitude and phase. The above phenomenon is usually
termed as «static shift».

Thus, let us consider a model of the earth where the regional conductivity
structure is disturbed from the existence of a local surface inhomogeneity. The
regional electromagnetic field far from the inhomogeneity is denoted (er, hr).
The local surface scatterer distorts the electromagnetic field (e, hr) and the
distortion is described by the relations:

e =e’ + Der [II.1.a]

h = hr + Fer [I1.1.b]
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where the 3rd-order matrices D and F are real and frequency independent,
under the assumption that the wave-lengths of the investigated band are ap-
preciably larger than the scale-length of the local inhomogeneity /[ Wannamaker
et al., 1984a, 1984b], [ Zhang, 1989].

Generally, the electric and magnetic fields (e, hr) exhibit horizontal and
vertical components:

e =ep + e [i1.2:ai]
h* — h%, + b [1L.2.b]

It is a fundamental hypothesis of the magnetotelluric study that the incident
electromagnetic field to the surface of the earth has only horizontal compo-
nents. Thus, eq. [II.1.a], due to eq. [1I.2.a] can be written:

e=e" + De" = e, + e; + Dyey + D.e70, + Dyeity + [1L3]
i (sze; =+ Dzye; L Dzze;)ﬁz

where i, iy and @, denote the unit vectors. Introducing the transfer function
XDx; Y™Dxz
XrDy; YDy,
the relation between the horizontal regional electric field, er, and the horizon-

e, = X'e;x + Y€ and the tensor D, = ( ) , eq. [IL.3] provides

tal electric field at the measuring site, e:
ep = I+ Dy + D,)ey [I1.4.a]

We define the effective distortion tensor: Pn = Dp -+ D;. Then, eq. [Il.4.a]
takes the form:

en = (I + Py)el [1L.4.b]

An analogous procedure leads to the relation between the horizontal
components of the regional magnetic field, hr, and the horizontal components
of the magnetic field at the measuring site, h. Thus, the combination of eqs
[II.1.b] and [11.2.b] gives:
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h=h" + Fe" = hy + h; + Fuey + Fy,ez0, + Fy.efty + [1L5]
(Foxes + Foyel + Fo.e;)0, '
Introducing now the transfer function e, = X'ex + Y'ey and defining the
Xrsz Y!‘sz

tensor F, = (
XrFy, YrFy,

) , eq. [11.5] takes the form:

hy = hi, + (Fy + F,)ef. [11.6.a]

We define again the effective distortion tensor: Qn=Fn+ F,. Then, eq.
[11.6.a] can be as:

hy = hy + Qnen = hy + QuZ:hy = (I+ QuZ;)hy [1L.6.b]

where Z; the impedance tensor that refers to the regional geoelectric structure.

Hereafter we refer only to the horizontal components of the electroma-
gnetic fields, by using the notation (er, hy) for the regionally induced electro-
magnetic field and (e, h) for the measured electromagnetic field respectively.
The measured quantities are correlated through:

e = Znh [11.7]

where Z, is the (measured) impedance tensor. The combination of eqs [11.4.b],
[IL.6.b] and [II.7] leads to the relation:

Zo = (1 + PYZi(T + QZ:)™ [11.8.a]

This relation correlates the impedance tensor Zm at a measuring site (i.e.,
close to the surface scatterer) with the impedance tensor Z: that would be
measured if the inhomogeneity were not present.

In the low frequency range the variation of the quantity |Z.| with the

. it
period T obeys the rule o« — thus eq. [11.8.a] takes the approximate form:

VT

Zn ~ (I+ P)Zy [11.8.b]
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where the elements of the tensor P are real numbers and frequency indepen-
dent. Defining the distortion tensor C as:

C=I+P:<C1 C2) (11.9]
g, €,

where C; =1+ P,, C,=P,, Cg=P; and C,=1 + P, eq. [11.8.b] is trans-
formed to the relation:

Zo  CZy = (Cl Cy )z, [11.10]
Cs Gy

and the quantities C,, C,, C; and C, are real numbers and frequency indepen-
dent [ Wannamaker et al., 1984a],[Chave et al., 1994].

Notice that the conventional magnetotelluric analysis is not sufficient
when galvanic distortion exists, since the extracted scalar parameters are not
adequate to describe the structure even if the regional structure has an ideal
1D or 2D-symmetry. Indeed, for a galvanicaly distorting body embedded
in a 1D-geoelectric structure the measured impedance tensor is:

B = = (Cl Cﬁ)( p Z°> == (“CZZ" Clz°) [11.11]
C; Cy/ \—2, O —Cyzy Cszy

The following remarks are valid:

a) Theobserved apparent resistivities differ from the actual regional apparent
resistivities and they are static shifted (i.e., their frequency dependence
results in a parallel displacement when compared with those of the 1D -
structure).

b) The phases remain unchanged and are identical to those of the 1D-impe-
dance tensor.

¢) In the conventional analysis the skew is defined as follows:

S=]Zxx+zyyl:|&_ Cgl

| Zay ~Zax| |Gyt Cyf

The skew index depends only on the distortion tensor elements (which
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are real numbers); it does not depend on the regional tensor elements
hence, in other words, the skew index measures not the deviation of the
geoelectric structure from the ideal 1D-symmetry, but the deviation of
the distortion tensor from the form:

=(32)
0 C4
The latter form of the distortion tensor would give a zero skew value if

were calculated within the conventional magnetotellyric analysis.
d) By using egs [1.9.a] and [II.11] it is derived:

soy— %~ Cal (g + ) [11.12)

(Cxx — Gyy)? — (Cxy + Cyx)?

It is evident that, even if there was not a strike angle (e.g., when
1D-regional structure is considered), the conventional analysis results to the
determination of a strike angle which depends only on the elements of the

distortion tensor.

11.2. The Bahr’s procedure for the decomposttion of the impedance tensor

An important aspect in the interpretation of the magnetotelluric data is
the evaluation of the regional impedance tensor when local 3D-surface ano-
malies exist. Bahr [Bahr, 1985], [Bahr, 1988], [Bahr, 1991], attempted to
extract information about the regional impedance tensor from the measured
one. He found that galvanic distortion or current channelling does not destroy
most of the existing information about an underlying 2D-inductive process.

By considering a 2D-regional geoelectric structure, the impedance ten-

sor in the intrinsic coordinate system is given as:

Bon — ( _(L ;) [11.13]

The scattering of the electric field by the local inhomogeneity can be described
by an impedance tensor of the following form [superposition model 3D-(local )|
2D-(regional)]:
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i/ Yoo 0 ~Cb Cax

Since the distortion tensor is real and frequency independent (at low frequen-
cies), the elements at each column of the impedance tensor should have the
same phase. This does not happen in an arbitrary measuring coordinate sy-
stem, where the elements of the impedance tensor should be linear combina-
tions of the principal impedances; it is therefore evident that a dimensionality
parameter must be defined that could describe how much the particular data
depart from the aforementioned model assumed. By using the condition that
the elements at each column of the impedance tensor should have the same
phase, a rotationally invariant scalar parameter is defined, termed as the
regional skew:

= Iﬂ)l’—szlﬁ%]jlz 11.15
m ( D,| ) [11.15]

where:

Sl = Zxx + Zyy Dl = ZXX = Zyy
S ny + Zyx D2 == ny - ZYK

and [A,B] = Re(A)Im(B) — Re(B)Im(A) the vector product of the complex
A and B.

When the regional structure is 2D, the elements at each column of the
impedance tensor in eq. [I1.14] have the same phase, thus the regional skew
becomes zero. If the regional structure is 1D, the elements of the impedance
tensor in eq. [I1.13] have the same phase, resulting again in null value of the
regional skew, 7 = 0. Thus, another rotationally invariant parameter, which
is a measure of the phase difference is introduced:

= | [Dlasz] 5 [Sl’DZ] I”Z [1116]
Dy

It should be noted that p. becomes unstable if the conventional skew s, defined

in eq. [1.10], is very small. The same happens for the regional skew when the

parameter p. is very small indicating a less complex model than that of eq.

[11.14]. So, p. is referred as an indicator of a regional 1D-structure.
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II.3. Experimental results using Bahr’s analysis

In Table IV the calculated values of w and 7 for various periods T and
for the four neighbouring sites A, B, C and (B-C) of Ioannina region are pre-
sented (the skew s has also been calculated according to the conventional
analysis).

An inspection of these results, indicates that the MT-data are compatible
with the 3D-(local) /2D-(regional) model. Furthermore, by applying the tech-
nique of the telluric vectors suggested by Bahr /Bakr, 1991], and calculating
the skew angles 3, and B, and their difference -£; + B,, (see Table V) we found
that -8, + B, ~ 90° in a wide period range and for all the measuring sites. This
means that the local scatterer acts in such a way, so that the linear polariza-
tion of the electric field does not at all depend on the magnetic field polariza-
tion (local channelling).

11.4. The Groom & Bailey’s procedure for the decomposttion of the impedance

tensor

It is usually assumed /[ Groom, 1988 ] that the earth is essentially flat with
a two-dimensional conductivity structure on a large regional scale; this assum-
ption implies that any local three-dimensional structures are all inductively
weak. In the principal axis system of this two-dimensional structure (i.e., the
x-horizontal axis is along the strike of the 2D-structure and the vertical axis
is normal to the earth’s surface), the regional horizontal electric field com-
ponents, er, and magnetic field components, hr, are linearly related:

0
or = <_b g) o = Zaphic [11.17]

where « denotes the quantity Z) which is the impedance associated with the
2D-mode containing current only perpendicular to the strike and b denotes the
quantity Z; which is the impedance associated with the mode containing
current only parallel to the strike. When the horizontal electric field, e, and the
horizontal magnetic field, h, are measured at a point of the earth surface, they
deviate from the regional values er and hy, due to local conductivity varia-
tions. The electric field can be strongly distorted by charges that are accu-
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mulated at conductivity gradients or boundaries; on the other hand, the ma-
gnetic field is not so strongly disturbed since it is due to a weighted spatial
average of the telluric current density over a much larger volume. Therefore,
we are justified to adopt the approximation: h = hy, but the electric field, e,
should be related to e; through a distortion or channelling tensor, C [Bahr,
1985], [ Berdichevsky & Dmitrieo, 1976]:

e :(Cl Cz)er [11.18]
C; Gy

When small-scale surface scatterers (which are assumed to be inductively
weak) are present, their effects can be considered as frequency independent
and the elements of the tensor C as real numbers. In the absence of distortions,
C will reduce to the identity tensor I.

In the case of a galvanic distortion and in order to recover information
concerning the two-dimensional impedances, it has been shown, [Bahr, 1985],
[Zhang et al. 1987], that the exact knowledge of the elements of C is not ne-
cessary. The decomposition of the measured impedance tensor, however, it is
a requisite to be done uniquely.

In the intrinsic (or principal axis) system of the regional structure, the
impedance tensor that refers to the 2D-structure obeys the relation:

€r = ZzD hr
which, using eq. [11.18], gives:

e = CZZD hr [11198]

or in the measuring coordinate system:
e = RCZ,p Rth = Zyh [11.19.b]

where Z, is the measured impedance tensor, Z,p is the regional 2D-tensor in
the regional inductive principal axis system (i.e., it has the form of eq. [I1.17]),
C is the distortion tensor expressed also at the regional intrinsic system and
R is the rotation operator which performs the vector transformation from the
principal axis system to the measurement axis system.
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The incompleteness of the above decomposition, due to the non-unique-
ness, is best illustrated by the following argument [Groom, 1988], [Groom &
Bailey, 1989]. By considering the transformations:

Z;p = WZ,p = (W1 ? )Zzp and C’ = CW-!
0 W,

where W, and W, are non-zero real numbers, the new decomposition:
Zm = RC'Z3pRt [11.20]

is also valid as that of eq. [I1.19.b], since C’ is still real and Zjp still has the
ideal 2D-form. We therefore conclude that, although the decomposition of
theimpedance tensor expressed with eq. [I1.19.b] is physically correct, it is not
unique and hence not yet a useful one.

Groom and Bailey [Groom & Bailey, 1989] proceeded to a useful facto-
rization of the distortion tensor using a modified form of the Pauli spin ma-
trices [Spitz, 1985]:

1 :(1 O)’ Z1:(0 1>7 ¥, — (O —1), 23:(1 O)
01 10 4G 0 -1
and suggested the following representation for the distortion tensor:

C = ¢TSA [11.21]

where g is a real scalar, while the tensor factors are defined from the equations:

T = No(I + tX,) [T1.22.a]
S = Ny(I + eX;) [11.22.b]
A = Ny(I + sXy) [11.22.c]

The normalizing factors N; are defined in such a way so that each one of these
tensors to preserve the power (but not the isotropy) of an isotropically pola-
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rized random electric field. The meaning of this is that the intensity of the
electric field distorted from a scatterer (the effect of which is described by
one of the tensors T, S or A) will be the same with that of the field in the case
where the scatterer is not present, for a random but isotropic polarization.
For example:

N, (EfTtTE) = (E4,E) [11.23]

where the mean value is obtained versus the random of the isotropic polari-
zation of the electric field. Equation [I1.23] provides for the tensor T:

N (s B, )(: ﬂ(i» = (=5 (Ey» X

1
= N2(1 + t2) [(Ex®) + (Ey®)] = (Ex®) + (Ey) =N, = Vi ﬁ

For tensor S it is derived:

Ny=
V1 + e?
And finally for tensor A:
1
N —_—pe
SR T

It is underlined that the product TSA, however, does not necessarily preserve
the power of the electric field.

A physical insight into the effect of each one of these distortion tensors
on the regional electric field can be obtained by studying Figs IL.1, II.2 and
I1.3 which depict the effects of the tensors T, S and A, on a family of unit ve-
ctors. The act of the splitting tensor, A:

= Tl . 9B = N3<1 ; ; . (i S) [11.24.a]
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results to an amplification of the two field components by different factors
Ny(1 + s) and Ny(1 —s). This generates an anisotropy which is added to the
anisotropy already existing in the regional impedance tensor Z,p. We clarify
that this type of distortion due to the local anisotropy (havingintrinsic system
identical with the principal axis system of the regional structure) cannot be
distinguished experimentally from the regional anisotropy except for cases
where the latter is known independently.
The act of twist tensor, T:

T =Nyl + t8,) =N, (: ‘f) [11.24.b]

results to a clockwise rotation of the regional electric field through an angle
@t = tan-'t.
Finally, the shear tensor, S:

S = N,(I+ e£)) = N, (1 j) [11.24.¢]
e

generates an anisotropy in directions which bisect the regional principal
axes. Note that the vectors which are aligned with the regional principal dire-
ctions exhibit the greater angular deviations (e.g. a vector on the x-axis is
rotated clockwise by an angle ¢, = tan-'e, and a vector on the y-axis is rota-
ted counter-clockwise by the same angle). So, it is justified to define the shear
parameter e through a shear angle: . = tan-'e. A physical model for the ex-
planation of such a type of distortion might be the concentration of current
into a long conductive channel.

The real scalar quantity g produces a «static shift» of the electric field
and characterizes the measuring site. We clarify that the aforementioned de-
composition of the impedance tensor, initially proposed by Groom and Bailey
[Groom, 1988], [Groom & Bailey, 1989], leads to the determination of the
regional impedance Zsp = gAZ5p and not of the actual Zp. However, the
absorption of gA into the regional impedance tensor does not destroy the ideal
form of the latter and allows the determination of the regional impedances ex-
cept for the correction of «static shift». On the other hand, the conventional
analysis fails to determine the correct regional principal impedances, due to
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the fact that except gA it absorbs also the twist and shear tensors into the
regional 2D-tensor, thus dramatically destroying its two-dimensional form,
as it is shown later in this paper.

Uniqueness of the impedance tensor decomposition by Groom and Bailey

The distortion tensor, C, is written analytically:

(1 +s){(1—te) (1-s)(e- t)) I
— 5 . [.25.a
1/(1+e2(14t2 +s2(1+s(e+t1 s)(1 + te) L ]
If we consider weak distortions (i.e., t, e and s much smaller than unity), we
may ignore 2nd-order terms for the parameters e, s and t, then eq. [11.25.a]
becomes:

G, C 1+s e-t
(c c) g(e+t 1_8) [11.25.b]
The distortion parameters are easily derived from eq. [11.25.b]:

G+C | GG G-CG GG
2 ' el Bkl O GG,

o
t=}

~
~

In eq. [11.25.a] the normalizing factors are incorporated into g. We consider
the set 7" of all the physically realistic distortion tensors. From this set it is
nessecary to exclude the tensors that have the following forms:

C:(Cl 0) C_ ( 0 C2)7 C:(O Cz)

C; 0/ Cs O 0 C,

due to the fact that their effect cannot be attributed to any physical arrange-
ment of earth conductivities. This is evident by studying their effect at the
family of unit vectors (see Fig. I1.4). The exclusion of these tensors imposes:

s #-L1.
Groom and Bailey /Groom & Bailey, 1989] define:
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G e-t

y= 2 =1l i 0 [11.26.a]
4

6 — gs . 1‘3 +t"’, if €y #0 [11.26.b]
1 — te

Let us examine some special cases:
= [f v = B there is a unique solution:

t:O’e_—:Y:B, g:%c‘l,s:gﬁ
2 2g

= [f~y =B, then there is also a unique solution:

G+G _G-G
g 2g

e:O7t:#Y‘:Bv 8=

Fig. 115 depicts the effects of the distortion tensors which satisfy the restri-
ctions y =B or y = -B.
= If y # £ B then the distortion parameters e and t can be found by solving
the quadratic equations:

(v + B)e* + 2e(1 —yB) - (B + 1) =0
(Y-~ 2t(1 + yB) - (y-B) =0

Each one of the above equations must have two real solutions:

o B+ 1) £ V(I + A+ )
=P

_(B-DEVE+ (A + 87
Y+8

Groom and Bailey denote t+ the solution with the positive square root for the
twist parameter and t- the alternative solution; an analogous notation can be
used for the shear parameter. It is easy to show:
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tt-t-=-1 et.e=-1 [11.27]

Thus, there are two sets of solutions for the shear and twist distortion para-
meters:

(eg,t4) = (et,t7) [11.28.a]
(e,ty) = (e7,t%) [11.28.b]

Also, note that if yp = -1 < t = 41 and if yB = + 1 & e = +1. Furthermore,
if we consider for the distortion parameters the solution set (g, t, e, s) as valid,
then the solution set (-gets, -t%, -e'1, s71) also holds. This does not imply that
it is always possible to discriminate between «small» distortion (|t], |e| <1)
and «large» distortion (|t|, |e] > 1) solution. Only if 0 < |yB]|< 1, then |ty <|[t,]
and |e,| < |e,|, so we may distinguish between «small» and «large» distortion
solutions. Generally, when |yB| > 1, the «small» and «large» distortion solu-
tions are mixed. The effects of the distortion tensor with all the aforementioned
possible configurations are depicted in Fig. IL6.
For the spitting parameter, eq. [11.25.a] gives:

1+s*(1+te‘ (08
1-s 1—te)'c4

where te # 1 and C, # 0. This equation leads to the solutions:

(G- GCy) + e, 4, (Cy + Cy)

= [11.29.a]
(Cy+ Cy) + e, 1, (Cy— Cy)
= i [11.29.b]
By

We underline that the condition |y8| < 1 does not necessarily implies the exi-
stence of a «small» anisotropy distortion.

The «static shift» parameter g is determined by multiplying the distor-
tion tensor C with the tensor factor S-'T-1. The inverse of T always exists, but
the inverse of tensor S exists only if e # & 1. I this is the case, then Groom
and Bailey proved that the «static shift» parameter is given by:
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il
2g; = mm [Ci(1 + eiti) — Colei + ti) — Cylei — ti) + Cy(1 — ties)] [IL.30.a]

where i =1, 2. On the other hand, if e = + 1, then t # & 1; in such a case
we find:

g=- G [11.30.b]

(s-1)(t£1)

A final issue to investigate is the order of factorization of the distortion
tensor C. The tensor A, as mentioned above, is absorbed into the regional im-
pedance tensor and hence it does not commute with the others; furthermore
the equation TS = ST is not generally valid. Thus, we restrict ourselves to
two possible factorizations of C:

C = gTSA or C=gSTA

Groom and Bailey showed that the latter factorization leads to equations
that not always produce a real set of solutions for the distortion parameters
and hence it is rejected. Therefore, only one possible order of factorization for
the distortion tensor remains:

C = gTSA [11.31]

The above discussion leads to the conclusion that the decomposition of
any physically realistic distortion tensor provides a pair of solution sets for
the distortion parameters and a selection of one of them can be achieved only
after comparisons with physical and geological conditions and restrictions.
As a summary, Figs 1.7, I1.8 and I1.9 depict the distorting effect of a semi -
static scatterer on the regionally induced electric field for different orders of
symmetry of the regional geoelectric structure and for different types of
scatterers.

Inserting eq. [I1.31] to eq. [11.19.b], the decomposition of the measured
impedance tensor is expressed by:

Zn = RgTSAZ,pR! [11.32.a]
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Fig. I1.7. The geometrical locus of the electric field vector trace as a result of the rotation

of the incident horizontal linearly polarized unitary magnetic field, for (a) an ideal 1D-stru-

cture; (b), (¢), (d) a 1D-regional structure with the presence of a local near-surface semi -

static scatterer, with different distortion parameters.

Recalling that the matrix gA is absorbed into the tensor Zp the above equa-

tion becomes:

where:

r

Zp = g

Z.. = Rrsz, Rt

0
1-s)b

(s

(1 + s)e

0

)

[11.32.b]

[11.33]
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Fig. I1.8. The geometrical locus of the electric field vector trace as a result of the rotation

of the incident horizontal linearly polarized unitary magnetic field, for (a) an ideal 2D-

structure; (b), (¢), (d) a 2D-regional structure, with the presence of a local near-surface

semi-static scatterer, with different distortion parameters.

Equation [I1.32.b] describes the impedance tensor decomposition suggested
by Groom and Bailey [Groom, 1988], [Groom & Bailey, 1989]. This decom-
position is described through seven real parameters:

= the scaled real and imaginary parts of the major principal impedance o’

(or equivalently the major apparent resistivity and phase),

» the scaled real and imaginary parts of the minor principal impedance b’

(or equivalently the minor apparent resistivity and phase),
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Fig. I1.9. The geometrical locus of the electric field vector trace as a result of the rotation
of the incident horizontal linearly polarized unitary magnetic field, (a) for a 2D-structure
with high anisotropy; (b), (1), (d) a 2D-regional structure with high anisotropy, but with
the presence of a near-surface semi-static scatterer, with different distortion parameters.

» the azimuth angular deviation 6 between the principal axis system of the
regional structure and the measuring coordinate system,

= the shear parameter e and

= the twist parameter t.

In order to determine the above parameters, the measured impedance
tensor is represented:
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Zm 215 ( ao I+ of Z; + o' Zp + a3 23) [11.34]
where:
& = Lsx + By [I1.35.a]
ar = Zxy + Zyx [11.35.b]
02 = Zyx — Zxy [11.35.c]
o = Lo — K [11.35.d]

By inserting eq. [11.34] to eq. [I1.32.b], the following non-linear system of com-
plex equations is obtained for the coefficients a;:

o = to + el [11.36.a]
o; = (3 — eto)cos20 — (t3 + es)sin20 [11.36.b]
oy = —c + etd [I.36.c]
a3 = —(t8 + ec)cos20 — (3 — eto)sin20 [11.36.d]
where:
c=ao +b" and §=0a' -b’ [11.37]

The above system can be solved analytically for the set of parameters
(0, 3, e, t, 0) from the experimental data. However, it is evident that multiple
solutions exist. By restricting the azimuth angle to be 0< 6 < = we overcome the
uncertainty 0 + xm of the angle determination. After this restriction four possible
solutions still remain, due to two multiplicities. The first is generated from the
two equivalent solutions for the set of the distortion tensor parameters that has
been previously discussed. The last multiplicity can be described by the argu-
ment that if (o, 3, e, t, 0) is a solution of the system [II.36.a-d], then the set
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Fig. I1.10. The geometrical locus of the electric field vector trace as a result of the rotation

of the incident horizontal linearly polarized unitary magnetic field, for (a), (b) an ideal 2D -

structure, when the measuring and the intrinsic coordinate systems have an angular devia-

tion of 6 = 0° and 6 = 25° respectively; (c), (d): a 2D-regional structure with the presence of

a local near-surface semi-static scatterer, for the decomposition parameter sets (o, 3, e, t, 6)
and (o, -3, -e, t, 0 + 90°), respectively.

(— e, t,oc,—93,0+ g ) is also a solution; this is depicted with the example of

Fig. I1.10. Groom [Groom, 1988 ] has shown that the effect of a twist (t) and a
shear (~e) on the electric field in a principal axis system with angular devia-

tion 6 from the measuring system, is the same with that of a twist (t) and a

shear (e) on the electric field in a principal axis system with angular deviation




IYNEAPIA THX 29 MA-T-OY 1997 351

0+ g from the measuring system. Also, the sums o of the regional principal

impedances are the same and the relevant differences 8 have opposite signs at
the two possible solutions. The meaning of the aforementioned arguments is
that there is no physical basis to distinguish between the two solutions which
are both physically equivalent. The 90° -ambiguity for the angle 6 can be re-

solved by adopting either the condition |e|> b’ | or the restriction <O <0< g )

Comparison between the tensor decomposition by Groom & Bailey and the
conventional analysis

Let us assume that the measured impedance tensor results from a local
galvanic distortion of the regionally induced electric field at a large-scale
conductivity structure with at most 2D-symmetry and that the magnetic
field distortion in negligible.

In the conventional magnetotelluric analysis a measure of the departure
from the ideal two-dimensionality of the geoelectric structure is the skew
index, [Swift, 1967 ]:

= | ; [11.38.a]

In the case of the presence of a small-scale surface galvanic scatterer (that
distorts the regionally induced electric field), a combination of eqs [11.36.a&c]

gives:

o [11.38.b]
c —ted
It is evident that even if the regional conductivity structure is two-dimensio-
nal, the existence of galvanic distortions makes the skew index frequency de-
pendent and non-zero. As an example we consider two marginal cases:
a) If the tensor Zjp determined by Groom and Bailey decomposition is
isotropic, i.e., o' = b’ then eq. [11.38.b] provides:

s =t = tangg
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Thus, at measuring sites where t = 0, the skew index will be zero, irrespectively
of the probable existence of shear distortion (see Fig. 11.11 and 11.12).

b) If the tensor Zjp is extremely anisotropic, i.e., [o'| >> |b’[, then 3 % o,
and the skew index is found to be:

L e

§ =
1 —et

= tan(pt + Pe)

so, we may define the skew angle q = tan ! s; in such a case, the skew index
is determined only from the distortion parameters, thus driving the conven-
tional analysis to the false conclusion that the geoelectric structure has a
3D-symmetry.

One of the most interesting parameters for the modeling of the earth con-
ductivity structure is the azimuth angle 0 (strike-angle) which denotes the
azimuth angular deviation of the regional principal axis system from the mea-
suring coordinate system. The conventional method determines the strike -
angle by minimizing the quantity |Zyx(0')[2 + |Zyy(0')2, [Swift, 1967], [Sims
and Bostick, 1969], or equivalently by minimizing the quantity |«,(0)|2, where:

oy(0") = —(t3 + ec)cos2(0 — 0') — (3 — ets)sin2(D - 0') [11.39]

It the local inhomogeneities influence the induced electric field only with
splitting distortion (s # 0, t =0, e = 0), then eq. [11.39] becomes:

as(0) = -3 sin 2(8 - ©)

and the intrinsic system of the regional geoelectric structure is correctly

determined. In all the other cases, i.e., where twist (t # 0) and /or shear (e # 0)

are present, the conventionally derived angle 0’ will be different from the

actual strike-angle 6. Groom and Bailey [Groom & Bailey, 1989] examine

the aforementioned argument at the two marginal cases discussed above:
In the isotropic case a) where § x 0, the conventional analysis gives:

1 1 T i
0'=0—_ tan? = L 11.40.a
T (t) el iy I 1

with the assumption that t # 0 (see Figs 11.12 and 11.13).
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In the anisotropic case b) where § x o, the conventional analysis gives:
6 =0+ % tan~1( :—*—e) —0+—gq [11.40.b]

with the assumption that both e and t are not zero (see Figs I1.14 and I1.15).
Thus, they proved that generally the conventional analysis, which does not
perform a decomposition of the impedance tensor, fails to determine correctly
the principal axes of the two-dimensional geoelectric structure.

We now turn to the interesting case of a strong shear local distortion, i.e.,
le| is approximately unity. Then, the shear tensor S strongly polarizes the
electric field which arises from the 2D-geoelectric structure, at a direction that

deviates angleg (or — g , if e is negative) from the principal axis system.

Furthermore, the twist tensor T rotates the direction of polarization by the
twist angle (Fig. 11.16). Therefore, the azimuth angle of the strong local elec-
tric field polarization direction at the measuring coordinate system (local or

channelling strike) is:
K
0, =0+ ot + . [11.41]

Let us now compare the parameter 6; that refers to the characteristic direction
of the electric field strong local polarization with the conventional strike angle
6" which refers to the characteristic directions of the regional two-dimensional
earth conductivity structure for the isotropic and anisotropic cases already
discussed. In the isotropic case a), the comparison of eqs [11.40.a] and [II. 41]
shows that the angles 6; and 6’ differ only by the half of the twist angle (Fig.
I1.13). In the anisotropic case b), with strong shear distortion (e ~ 1), eq. [IL.
40.b] becomes (see also Fig. 11.16):

0 =04 (g n C[Jt) [11.42]

Thus, the difference between 0, and 0 is the angle (cpe ;_—(PL)
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Smith [Smith et al., 1995], [Balasis et al., 1997] has recently shown that
the parameterizations of Bahr’s and Groom and Bailey’s are equivalent.

II.5. Experimental results using the impedance lensor decomposition

Groom et al [Groom et al., 1993] proposed a methodology in order to deal
with three-dimensional galvanic distortions and retrieve information for an
underlying two-dimensional earth geoelectric structure [superposition model:
3D~(local) [2D-(regional) i.e., 3D-local galvanic distortion over a 2D-regional
earth conductivity model]. Their first objective was to assess the dimensiona-
lity of the data, while the second was the determination of the structural pa-
rameters (after removing the 3D-distortion effects) that provide a physical
insight of the actual earth structure of the crust under investigation. At each
stage a measure to evaluate quantitatively the error of fit of the model tensor
elements to the corresponding experimental tensor elements was calculated.
This is the residual error of fit:

g tmimtl T T [11.43]

where Zj' and Zit}’ the measured and the modeled tensor elements respecti-
vely and oj; the variance of each element of the measured tensor. An accept-
able misfit must lie within the range 0-4.

An important aspect of the selection of the best model that fits the MT -
data is that its appropriateness is not solely based on the lowest residual error
but also on the fewer number of model parameters used over a data set (i.e.,
a set of frequencies or a set of stations or both). This is the so called, by Groom
et al. [Groom et al., 1993], «smoothness» of the model and it is extensively
performed in their methodology by constraining structural and /or distortion
parameters of the model. The methodology block diagram is depicted in Fig.
11.17 and was followed in order to process and decompose the MT-data of
Toannina region.

This methodology successfully determines the dimensionality of the do-
minative conductivity structure and also recovers the regional impedance res-
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Fig. I1.17. The methodology block diagram of the impedance tensor decomposition.
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ponses (cf. in case, of course, where the regional structure can be approxima-
tely characterized as 1D or 2D). Figs I1.18-23 depict the basic steps and results
of the methodology followed for the analysis of the MT-data of site B (cf.
the same work was repeated for the analysis of the MT-data of sites A and
(). The conclusions can be summarized as follows:

T 10°
b = \ o) 1 10*
i 3
o e W . I 410°
Lt B W)
(a) S ~{i0 (b)
oo 410"
- e he. ' Jigt
F, Py om] ot
3F e py[@Qm] - . i 3107
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____________ | |
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30 ; ) - Ve S b L SN | L5 | S —— R 60
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: ! i o |
-90 : . ; h i bt
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Fig. 11.18. Study of the fitting of a 1D-model to the MT data from site B of Ioannina region,
(a) ¢ residual error of fitting; (b), (d) apparent resistivity and phase of the 1D-structure
calculated from the trace impedance; (¢) the parameters of the model.

(i) A common characteristic of the local near-surface 3D-inhomogeneities
at all the sites A, B and C, is that they cause strong shear distortion of
the regionally induced electric field; their relevant shear-parameter
is close to unity (|e| — 1). This result is consistent with Bahr’s analysis
and also in agreement with the experimental polarization diagrams
for each site. The directional angle (local strike) of this local channel-
ling was also determined, at each site, by the Groom et al method:
0.4 » 810, 6,5 ~ 620 and 0,C x 90°. These values are compatible with
the respective linear polarization angles resulting from the constru-
ction of the measured electric field polarization diagrams, Egw — Ens,
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the 2D-structure; (¢) the parameters of the model; (e)-(h) fit of the model parametrization to the

scaled impedance data.



372 ITIPAKTIKA THEX AKAAHMIAY AGHNON

l03 it S ,_-.T e e _.N e ey

-1 o SRS - s
(a) ' sl 1 2SN R S R— 7 ()
107 |t TR iF
10.3 A0 oM S Sty e TR RSOV ST STSTESISoY/ HIYHTY STaS - E— o
10-4 ] - I
107
1()-(\: o o h: '
90 : T : ~ ¢ E T 180
eg.) /a1 (loc. - [de
60 | memmm e maywmgn® 2D mg)/.?D(oc) .................. e Py :[dcgrees] 120
P = . | . o (D [degrees]
wesos me » ossewae,  dccomposition = -
5 | 7| parameters L“ oo
L] H i 4
it ] i
© of :
im +0 49
-30 o o
0 oan o o 5 o :
-60 s —stiike i[éi'egfrécé =7 shear [degrees] ———] fea® e -
- ik i twist [degrees
gl " Jooa Snikc(deg) FEE gy ; 180
10! 10 10° 10* 10° 100 - 10 10° 10* 10°
® Real o Imaginary : —Real —Imaginaryfit _ _
1.5 - v - e - - . 1.5
: it e
§ 1) O R, PR, s o ' i 1 L LSO A | —— »._.(ny |. 1.0
; 3 )
0.5F M HYT g 0.5
(e) 0t ’ 0 (f)
-0.5 T, e 105
) . 1.0
i ] —_— 1y
; o 1.5
5 [~—
Z I g f Z . |
yX 1 | Kl vy 1.0
§ y} s a7 | Fe ]
3 ) 3
J% L e 3
4 | ¢ [ ‘k\’e’ 0.5
o (h)
0.5 2105
<10 - — )
Z 5
15 e o s P I - ———
10! 10 10° 10* 10° 10' 10 10° 10 10*
T [sec] T [sec]

Fig. I1.21. Study of the fitting of a 2D-(regional) /3D-(local) model to the MT-data from site B of

Toannina region; (a) * residual error of fitting; (b), (d) apparent resistivities pxy, pyx and respective

phases @xy, @vx of the 2D-basement; (¢) the unconstrained parameters of the model; (e)- (h) fit
of the model parameterization to the scaled impedance data.
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Fig. I1.22. Study of the fitting of a 2D-(regional) /3D-(local) model to the MT-data from site B of

Toannina region; (a) ¢* residual error of fitting; (b), (d) apparent resistivities @xy, Pxy and the res-

pective phases Pxy, Pyx of the 2D-basement; (¢) the parameters of the model [the strike direction
is constrained to —41°]; (e)-(h) fit of the model parameterization to the scaled impedance data.
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ters of the model [the strike direction is constrained to —41°]; (e)-(h) fit of the model parameteriza-
tion to the scaled impedance data.
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Toannina station, 18-9-94, 6:00-7:00 GMT, sampling rate: 1Hz, Areas A, B & C
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Fig. I1.24. Experimental polarization diagrams of the measured electric field at the sites
A, B and C of Toannina region. The local polarization angle (clockwise from NS-direction)
of the electric field is depicted. For the sake of comparison, the same diagram for the ma-

gnetic field is also given.

at each one of the sites A, B and Crespectively (see Fig. I1.24); in the
same figure we also depict, for the sake of comparison, the polariza-

tion diagram of the measured magnetic field, Hgw — Hns. Figure IL.
24 shows that, the electric field at all sites A, B and C, exhibits strong
polarization but at different directions (i.e., ~N86°E, ~N62°E and
~N87°E) respectively, which are in agreement with the values men-

tioned above. The value of the twist-parameter was approximately
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found to be —0.6. This indicates a moderate twist distortion of the
regional electric field.

(ii) The model of the geoelectric structure beneath IOA-station that
better fits the MT-data is 3D-(local)| 2D-(regional). The same con-
clusion is obtained when independently analyzing the MT-data col-
lected at sites A, B and C.

(iii) The regional principal axes deviate from the measuring coordinate
axes (x - NS, y > EW) 400 £ 15° counter-clockwise.

The apparent resistivities, that correspond to the regional principal directions,
have a ratio of the order of 10. Note that this decomposition of the impedance
tensor does not allow an accurate determination of the values of the 2D-base-
ment apparent resistivities. Furthermore, we recall that the principal dire-
ctions of the regional induction are determined with the ambiguity concern-
ing the strike-direction.

III. MOHR CIRCLES IN MAGNETOTELLURIC ANALYSIS

II1.1. The magnetotelluric representation of Mohr circles

In general, Mohr circles have been used to represent tensor information
[Nye, 1957]. In geophysics, Mohr circles have been mainly adopted to study
the mechanical stress. Lilley [Lilley, 1976], [Lilley et al., 1989] introduced
Mohr circles as a tool displaying information of the magnetotelluric impe-
dance tensor. In this form, Mohr circles illustrate the variation of the real
and imaginary parts of the element Z;, (0) versus the real and imaginary parts
either of the element Zi, (0) or the element Zi, (0), as the horizontal axes of
the measuring coordinate system are rotated clockwise through an angle 6,
varying 0°< 6< 180° (the real and imaginary parts are taken separately). By
this representation it is possible to extract information from the impedance
tensor, in a very convenient way, concerning the dimensionality of the geo-
electric structure and the decomposition model parameters that best fit the
MT data.

Let us consider the initially selected measurig coordinate system to be:
x-axis - NS, y-axis > EW, at which the experimental MT-data are collected
and the impedance tensor, Zn, is derived. The clockwise rotation of this system
through an angle 0 produces a new measuring coordinate system (x’,y’). At
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this system, the elements Zi;(0) of the impedance tensor Z'(0) are determined
from the expansion of the equation:

Z'(0) = R(0)ZaRt(0) [I11.1]

Thus, it is:
Z.y = (Z“; Zyy) 5 (Zxy : Zyx) sin(20) + (ZLX;LW) cos(20) [II1.2.a]
s, — Ly ;ZE‘) 4 By ;ZJ 008(26) — @ﬂ-; Zy7) in(20)  [IT1.2.b]

L=~ (Z‘L;_ZV") + (_ZJ‘—“; Zyx) cos(20) — (Zi"‘---;ZW) sin(20)  [111.2.c]

By taking the real parts of the complex quantities Z; the combination of
eqs [I11.2.a] and [1I1.2.b] leads to:

: 2 = 2
(Zi 2,(0) — Z5,)? + (Zig, (0) — Zy )2 = (Zw, : zyxr) B (Z__ziwg) [I1L3]
where the rotationally invariant quantities Z, and Z,_ are given respectively:

Zy o= -— L __ 2 [1I1.4.a]

[111.4.b]

Equation [1I1.3] describes a circle at a diagram of the quantity Zy, () versus
the quantity Zgy (0), with the variation of the rotation angle 0 (see Fig. IT1.1).

The circle is characterized by the parameters:
= centre coordinates: Zyy, =7, , Zzx = Zy [TIL.5.a]

T2

= radius: R = [(Zer + Zyx,)? + (Zxx, — Zyy )? [LIL.5.b]

bs9g)i==
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’
ZXY r

\ J

Fig. ITI.1. Mohr circle for a 3D-structure. Point A corresponds to the measuring coordinate

system, while point B to the coordinate system that has an angular deviation 6 from the

measuring one.

If the point A (Zxy,, Zxx,) of the circle (see Fig. II1.1) refers to the initial mea-
suring system, the clockwise rotation of the latter at an angle 6 produces a
counter-clockwise angular displacement 20 of A on the circle. The new point B
[Ziy, (0), Zzx (0)] refers to the new measuring system (x’,y’). The same study
is repeated by taking the imaginary parts. These diagrams are the magneto-
telluric Mohr circles.

In this paper we also suggest the study of the «conjugaten-form of these
circles by substituting the element Zy, (0) with the element Zj, (6) at the
construction of the relevant Mohr circles. As it will be shown, additional
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important information concerning the earth geoelectric structure can be de-
duced from such a representation.

Mohr circle morphology as a result of the geoelectric structure dimenstonality

We study the Mohr circle representation, in cases where the earth con-
ductivity structure has an ideal 1D or 2D-symmetry.
a. 1D-symmetry
The following restrictions hold:
Zi:f8) = L. (0) = @
Z:y(0) + Zye(0) =0

By inserting them into eqs [I11.5.a-b], we find that the Mohr circle degenerates
to a point, i.e., 1ts centre, which lies at the Z;, -axis (see Fig. 111.2).

b. 2D-symmetry

The following restrictions hold:
Z::0) +Z;;8) =0
Zey(0) + Zy:(0) # 0

At the principal axis system they become:
Zizx(8) = Zyy (6,) = 0
Zicy (%) + Zyx(0,) # 0

By substituting them in eqs [II1.5.a-b], we reach to the following conclusions:

Zxxr =t Zyy e

i) The ordinate of the circle centre, , is equal to zero and

hence, the centre lies at the Z\, -axis. It is evident that the depart of the
centre from Z;y -axis is a measure of the deviation from the two-dimensio-
nality.

1i) The points where the Mohr circle intersects the Zy, -axis are the li-
mits of the quantity Z;, (0). The radius is calculated from (see Fig. IIL.3).:

R — Z’:y, (e)1max2_ Z;iyr (e)]min

[1IL6]
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In this case the radius of Mohr circle is a measure of the conductivity contrast
at the strike and dip directions, i.e., is a measure of the 2D-anisotropy.

i) The counter-clockwise angular displacements 20, and (20, + =) res-
pectively, from the circle intersections with the Z., -axis, of the point A
[Ziy, (0 = 0),Z¢s (6 =0)], which refers to the measuring system, actually

provide the angles 0, and 0, + ;31 (through which the measuring system (x,y)

must be rotated clockwise in order to be aligned with the principal axes, i.e.,
the strike and dip directions of the 2D-structure).

The morphology of the Mohr circle depicted in Fig. III.1 refers to a geoe-
lectric structure with no specific symmetry (3D). A measure of the three-
dimensionality is the angular deviation (hereafter called skew angle), v, of
the centre from the Zg,_ -axis.

Mohr circle morphology in case of distortion of 1D-geoelectric structure

In this section we study the effect on Mohr circle morphology of a static
shift and of a 3D-distortion of 1D-data; see also [Lilley, 1993]. We restrict
ourselves only to the real parts of the impedance tensor elements although the
same study can be extended for the quadrature parts. In this frame, we con-
sider a model of a homogeneous or horizontally layered earth in which a small-
scale surface inhomogeneity (two-dimensional in symmetry) is embedded.
This model is referred to as 2D-(local) /1D-(regional). At the intrinsic system
of the inhomogeneity the distorted impedance tensor is given by:

Zl(e — el) — (Clxx O )( 0 Z0> — ( O ClszO)
0 o) \~n 0 ~Ciyzo 0

The relevant Mohr circle has the parameters:

1
= centre coordinates: Zgy :E (Cf{x + Clyy)zo, I =0 [IIL.7.a]

= radius: R :% i~ € 0m [TI1.7.b]
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=
Lo, (a)
K
o - lg'-(Zo,O) ) g Z;yr
E
Z*xf} (b)
|
é & =%(Ctxx ‘dw)zﬂ
|
’ B
S J

Fig. ITL.4. Mohr circle for (a) a 1D-structure; (b) 1D-(regional) /2D-(local).
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In the case of 1D-structure, Mohr circle degenerates, as mentioned above, to
its centre with coordinates (zy, 0), [see also Fig. ITI.4(a)]. Therefore, eqs [III.
7.a&b] reveal the following remark: the act of the static shift causes a hori-

zontal displacement of the centre at the position ;—(CimL Ciy)zg, 0| and

furthermore a «circular dilation» of the point-circle to a circle with radius
R :%(Cix - Clyy)z0 [see Fig. IIL.4(b)]. It is therefore evident that the ra-
dius is a measure of the anisotropy of the 2D-scatterer. Lilley, / Lilley, 1993 ],
deflined another measure of this anisotropy, termed as anisotropy angle, 2,
which is given by:

§ (G + €
= tam [; (—VT‘IX_Y‘) ] [TI1.8]
= Cxx ny

and it is independent of the impedance and of frequency. Hence, for all the
frequencies Mohr circles (for real and imaginary parts) will lie within an enve-
lope defined by this angle.

Let us suppose now that the embedded inhomogeneity is described by a
distortion tensor with no symmetry (3D) which is referred to as 3D-(local)/
ID-~(regional). In this case the distorted impedance tensor is written as:

20— 09— (G ) (0 ) (< Chun)
TR e IR L, VT h

yyZo

The corresponding Mohr circle parameters are:

1 1 1 ’ 1 1 1
9 (Cxx H cyy)zo; Zxxr = 2 (ny“‘ C,y)zo [IIIQa]

s centre coordinates: YASEES

: T W SR -
» radius: R = i Vich - ez + (CLy + Co)2 l 2 [1I1.9.b]

<y

Therefore, the 3D-distortion moves the centre away from the Z;, -axis and
takes place a «circular dilation» of the point-circle at a new position.
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II1.2. Interconnection of the impedance tensor decomposiiion parameters
in the magnetotelluric representation of Mohr circles

As already discussed in detail, Groom and Bailey [Groom, 1988], [Groom
& Bailey, 1989], [Groom et al., 1993] suggested a decomposition of the mea-
sured impedance tensor when a small-scale near-surface inhomogeneity, with
no specific symmetry (3D), is embedded in a two-dimensional regional geo-
electric structure. The regional magnetic field is considered to remain unaf-
fected, while the distorting effect on the regionally induced electric field of
the semi-static scatterer is described by the tensor product:

C = gTSA

We now proceed to a study of the engagement of the parameters t, e, o, 8 and
0 of Groom and Bailey’s decomposition in the expressions of the parameters
of the magnetotelluric representation of Mohr circles [ Lilley, 1993].

At the measuring system the measured impedance tensor is decomposed:

Zn = R TSZ,pRt

and the analysis explained in a previous section leads to the non-linear set of
complex equations [I.36.a-d] which relate the parameters of the decomposi-
tion (t, e, o, 3, 0) with the elements Z; of the measured impedance tensor,
Z.. Lilley [Lilley, 1993] introduced the following substitutions:

tanA =t [II1.10.a[
i = 2 [II1.10.b]
tanD
ed
tanC =— = tanE . tanD [II1.10.c]
G
P - [TIL10.d]
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tanE = e

Hence, the set of equations [I1.36.a-d] is transformed to the set:

oy = o(tanA + tanC)
oy = O[(1 — tanA. - tanB)cos20 — (tanA + tanB)sin26]

oy = ~o(1 — tanA - tanC)

as = d[—(tanA + tanB)cos20 — (1 — tanA - tanB)sin20]

385

[T11.10.e]

[1I1.11.a]

[1I1.11.b]

[TIL.11.c]

[1I1.11.d]

where, the quantities o, o, oy, a3 are given from equations [I1.35.a-d].
The set of equations [II1.11.a-d] can be studied graphically using Mohr circles.
We recall that the analysis proceeds separately for the real and imaginary

parts.

We now proceed to the formation of an «atlas» of different models of the

geoelectric structure which belong to the general types 3D-(local) /2D-(regio-
nal) or 3D-(local) /1D-(regional) by selecting different sets of the decomposi-
tion parameters [Lilley, 1993]. For each case we give the morphology of the
corresponding Mohr circle together with its characteristic parameters:

s the centre coordinates:

(nyr— Zyxr Zxxr o Zwr)
e 2

= the circle radius:

1/2
R— [(Zxxr s P+ i, + zyxr)z]

£
2
s the skew angle:

v = tan-! (Zxx’ i Zyy‘)

Zer = Zyxr

The study is restricted below to the real parts only.

[1I1.12.a]

[TI1.12.b)

[II1.12.c]

25
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A. Two-dimensional geoelectric structure of the basement
1) Shear distortion only (e # 0, t = 0), [Fig. IIL.5(a)]
The impedance tensor in the regional principal axis system is given by:

dinie 0 a —eb «
B (T — TRA3
e (e 1) (—b o) (—b eoc) LHLA5]

The Mohr circle parameters are:

Centre coordinates: g—, e8>
2 2

Radius:
2 271/2 211/2
1= (—99> +(§> . 1+(e_o-)J Zi(1+tan2B)'/2=R:—8—secB
2 2 2 3 2 2
Skew angle: tany = = tanC=y=C
G

2) Twist distortion only (e = 0, t # 0), [Fig. IIL.5(b)]
The impedance tensor in the regional principal axis system is given by:

1 <t 0 « th «
’ . = II1.14
B = = (t 1 ) (—b O) (~b toc) [ I

The Mohr circle parameters are:

Centre coordinates: (E,P—G)
2 2

Radius:

2 /2
R:[(—ts_) b (S)T —_—58» ( + t3)12 — 58 (1 + tan2A)/2 = R = 28 secA
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Skew angle: tany =i tanA = y=A
G

3) When shear and twist distortion are present (e#0, t#0), [Fig. I11.5(c)]
The impedance tensor in the regional principal axis system is given by:

o= (1) (0)(5 D)~ (2470 7)o

The Mohr circle parameters are:

Centre coordinates: (a(i —te) + b(1 + te) b(t—e)+ «(t + e)) =

2 : 2
_(G—Set ct+8e)

3

2 2

Radius:

R—= [(— ts__l__gg)z + (ttic_ 2j1/2 — E [(1 s t%).(d_ + 9263)]”23
2 2 2 32

=R =% secA - secB

Skew angle:
ed
t 4+ ed k : tanA + tanC
tany = 2 = = =tan(A+C)=>y=A+C
c —ted 1_tg§ 1 —tanA-tanC
(o}

We now study two extreme cases: the weak distortion (|e[,|t| << 1) and the
strong (2D) distortion (je| — 1).

4) Weak distortion (|e],|t| << 1)
(4.1) Shear distortion only (e # 0, t = 0), [Fig. I11.6(a)]
The impedance tensor in the regional principal axis system is given by:
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—eb >0 o )

Z’:SZZD:( -b ex— 0

as (le|] << 1).
The Mohr circle parameters are:

Centre coordinates: ( ; , %8 — 0)

2
Radius: R = ( —ef)z.i_ <.8_)2 & :Rﬂiﬂﬁ
2 2 2

Skew angle: tany = B tan@r=>p =€ 2/0°
G

(4.2) Twist distortion only (e = 0, t # 0), [Fig. I11.6(b)]
The impedance tensor in the regional principal axis system is given:

7' —TZyp (tb—+0 o )

-b ta—>0
The Mohr circle parameters are:

to

Centre coordinates: (E, — - 0)
2" 2

2 S\ 2]1/2 tl<< 1
Radius: R=K—%) +(3)J —-82—(1+t2)”2==~RU< -

b
2 2

Skew angle: tany = bhef tanA =y =A ~ (°
G

(4.3) When shear and twist distortion are present (e#0, t=0), [Fig. I11.6(c)]
The impedance tensor in the regional principal axis system is given:

, b(t —e) a(l —te)\te~o/b(t—e€)
7 = = %
i (—b(i + te) aft + e) ) - ( -b  x(t+ e))
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The Mohr circle parameters are:

Centre coordinates: (G-_@» & , o | §e>
2 2 2
Radius:
2 271/2 geaoiy 11/2 1t < <1
R_ (_t8+ec)+(8) 3 i +t2).(1+9‘c_) zRIG’II_K*_.)S
2 2 2 32 2
te~0
Skew angle: tany = i ez LA b+ - tanA + tanC  [III.16.a]
c —ted c G
The following relation holds:
68 te-0
1-tanA.tanC=1-t-" 1 [TI1.16.h]
G

The combination of eqs [1I1.16.a and b] provides:

s e G ool . Gy B €
1-tanA-tanC

5) Strong (2D) distortion (Je| - 1)

(5.1) Shear distortion only (e # 0, t = 0), [Fig. I11.7(a)]
The impedance tensor in the regional principal axis system is given by:

- -1
Z':Szzp:( eb oz)lelz (:Fb oc)
-b e b +a

The Mohr circle parameters are:

Centre coordinates: ( . , iﬁ)
2% 2

The distance of the circle centre from the origin of the axes is calculated from:
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2 /as\212 5 o2\12 3 S
il Y = (—)] =ﬂ(1+—) =2 HrootDfBsds S cseD [IL.17.4
[(2) 2 A 5t Jiiwda ) cseDl ]

Radius:

46\2. /S\22 S/, oGP\l 3§ 5
Rl == = = (1+=—) =—(1+cot2D)!2=Ra —ecscD [IIL.17.b
K 2)+(2)J 2( 82) 5! yi#=Ra 5 cscDLHL17.b]

We draw attention to the fact that the equality of eqs [[11.17.a and b] implies
that the circle passes through the origin of the axes.

Skew angle: tany = o +tanD =y ~ £D
G

Rz%cscD Rz%secA-cscD

y=~D y~A+D

(@) o Zy, (0] %

(a) (b) 3lo-%)

Fig. III.7. Mohr circles for 2D-(regional) /3D-(local) with strong shear distortion (le| — 1):
(a) without twist; (b) with twist.

=

(5.2) When shear and twist distortion are present (e # 0, t # 0),
[Fig. II1.7(b)]
The impedance tensor in the regional principal axis system is given by:

. _/ b(t - e) a(l — te)\lel>1 7 bt F1) ol F t)
o _TSZZD_(—bu +te) aft + e) ) ~ (—b(i Lt) aft + 1))
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The Mohr circle parameters are:

Centre coordinates: (G :]; St, Gt;: 8)

The distance of the circle centre from the origin of the axes is calculated from:

d z[(ﬂ;—si)%r ("tzi 8) J”z = [(1 + t2). (1 + 5 ]”22

B 1/2 B
= 5[(1 + tan2A)-(1 + COtzD)] = d-z 5 secA . eseD

[1I1.18.a]

Radius:

R

124

)+ =l (3

5 5 [1I1.18.b]

= [(1 + tan?A)- (1 + cotzD)] =Rz T secA.cseD
We draw attention to the fact that the equality of eqs [III.18.a and b] implies
that the circle passes through the origin of the axes.

Skew angle:

tany =~ sh --izw =tan(A+ D)=y x A+D

c?tBﬂiqztE 1FtanA.tanD
c

B. Two-dimensional geoelectric structure of the basement with high
anisotropy (|a| >> |b])
1) Shear distortion only (e # 0, t = 0), [Fig. I11.8(a)]
The impedance tensor at the regional intrinsic coordinate system has the same

form as in eq. [II1.13] by considering also that: ¢ ~ 8.
The Mohr circle parameters are:

Centre coordinates: i,(—ai ~ E,E
2" 2
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The distance of the circle centre from the origin of the axes is calculated from:

2 212 o G
ad :‘_) (E) ] =% U+ ey 2=da-Z secE [IIL19.a
[( =) +(% 2 @y [ ]

Radius:

O D T

Y (1+e)'2= R » L secE
9 2

[111.19.b]

Eqgs [111.19.a and b] imply that in this case also the circle passes through the
origin of the axes.

3
Skew angle: tany = Ta® =i ¥ =B
G G

2) Twist distortion only (e = 0, t # 0), [Fig. IIL.8(b)]
The impedance tensor in the regional intrinsic coordinate system has the same
form as in eq. [1I1.14]. The Mohr circle parameters are:

Centre coordinates: (E, tc—;)
27" 3

The distance of the circle centre from the origin of the axes is calculated:

2 27112
. [(_G_) . (tf’) =2 (1+3)2=dx > secA [I11.20.a]
2 9 2 2

Radius:

2 231/2
R — [<_ t_g) s (i) J ~Z(1+t)2 =Ry & secA [II1.20.b]
2 2 2 2

Egs [111.20.a and b] are equal, hence the circle passes through the origin of
the axes.
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Skew angle: tany = gt tanA = y=A
G

3) When shear and twist distortion are present (e # 0, t # 0),
[Fig. IIL.8(c)]
The impedance tensor at the regional intrinsic coordinate system has the
same form as in eq. [III.15]. The Mohr circle parameters are:

Centre coordinates: (G—_—Se—t ct+8e) 03 ’ (G(i—et) o+ 9
& ° 3 2 ' 2 )

The distance of the circle centre from the origin of the axes is calculated:

d {["“‘-99]2+ ["‘—”—”]2}1/2?2— [+ (1 + eH]'2 =

2 2
- [II1.21.a]
= d ~ — secA.secE
2
Radius:

13 + ec \2? 3 — tes\2]1/2 § 22\ 12 g5

R=|{-————) +{—— =il -8l =— =

[( 2 ) ( 2 )} 2[(+ )(+82>] -
- [II1.21.b]

;"SR 5 % [A+t3)-(1+e)]?=>R » % secA-secE

The equality of eqs [IIT.21.a and b] implies again that the Mohr circle passes
through the origin of the axes.

ot+edo~st+e tanA + tanE

~ —— =———————— —tan(A+ E ~ A+E
c—ted 1-te 1-tanA-tanE an( )=y

Skew angle: tany =

C. One-dimensional geoelectric structure of the basement («=b = z,)

The impedance tensor has the simple form: Z;p = ( 0 (Z)0>
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In this case: ¢ = 2z, and § = 0.
1) Shear distortion only (e # 0, t = 0), [Fig. II1.9(a)]
The impedance tensor becomes:

7 — SZyp — (1 e)( 0 zo) _J (—ez0 z0>
e 1/\-z 0 —Zy €Zg
The Mohr circle parameters are:

Centre coordinates: (%, O)

2 271/2
Radius: R=K—e—6) +<—8—)] _—_9—(—5=>R:i tanE
2 2 2 2

Skew angle: tany = o == 1) = =109
G

2) Twist distortion only (e =0, t # 0), [Fig. IIL.9(b)]
The impedance tensor has the form:

7 —TZyp — (1 —t)( 0 zo)_;(tzo zo)
t 1/\-z O -z tz

The Mohr circle parameters are:

Centre coordinates: (—G~, t—c)
0 2

2 2712
Radius: R= [(— t—;) + (%) ] =-;— (A + A P=f=R=10

which means that the circle degenerates to its centre.

Skew angle: tany = ke s tanpA =>y=A
G
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3) When shear and twist distortion are present (e#0, t=0), [Fig. I11.9(c)]
The impedance tensor is given by:

o (0D (A7 500

The Mohr circle parameters are:

Centre coordinates: (G = Seit, i Se) = <i, tj)
2 2 2 2

Radius:

2 271/2
R - [(_ B e") it ( “ H —[(1+12)- (324 e26?)]Y2=R = ‘; secA-tanE
ot
Skew angle: tany = — =tanA =y =A
G

I11.3. Experimental analysis using Mohr circles

Figs 111.10-12 depict, for different periods, the Mohr circles, Zi (0) vs
Zixy (0), (solid line circle groups) constructed separately for the real and ima-
ginary parts for the sites A, B and C of Ioannina region. An inspection of
these figures shows that, for the frequency band under consideration, all the
circles pass approximately through the origin (Ziy;, =0, Zi; = 0), where
i=r, q the real and imaginary parts respectively. This striking peculiarity
indicates that il we rotate clockwise the measuring system by an angle 0, i.e.,
(xop, vo,), the elements of the first raw of the (rotated) impedance tensor
Z'(0) = R(0)ZunRt(6,) become both approximately zero:

Ero; = Zyx (0)Hioy + Ziy (0)Hye, = 0
which physically means that irrespectively of the polarization of the incident

magnetic field, the electric field is linearly polarized in the direction of yg,-
axis. These rotation angles were calculated analytically from the plots (for
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the real and imaginary parts) of the Mohr circles at each one of the sites A, B
and C, by minimizing the quantity:

ViZix OF + [Ziy OF =% in

and are presented versus the period in Fig. II1.13. This figure indicates that
the local electric field must be strongly linearly polarized in the directions
~N80°E, ~N60°E and ~N9O°E at the sites A, B and C respectively; this is a re-
sult of the fact that (taking either the real or the imaginary parts) the rota-
tion angles were found to be 62 ~ 1700, 6,8 ~ 150° and 0,° x~ 180° for the
sites A, B and C respectively (we emphasize that these angles are frequency
independent). An independent confirmation results from the construction of
the measured electric field polarization diagrams (see Fig. I1.24); they show
that the electric field at all the sites A, B and C, exhibits strong polarization but
in different directions (i.e., ~N86°E, ~N62°E and ~N87°K respectively), which
agree with the values mentioned above. We also draw attention to the fact
that approximately the same angles have been independently determined
(as local channelling directions i.e., ~N81°E, ~N62°E and ~N90°E respecti-
vely), from the implementation of Groom and Bailey’s decomposition methodo-
logy on the experimental data (local strike).

A «conjugate» form of the magnetotelluric representation of Mohr circles
has been introduced by Makris [Makris, 1997 ]. As the horizontal axes of the
measuring coordinate system (x — NS, y — EW) are rotated clockwise by the
angle 0 (where 0°< 0< 180°), the variation of the real (imaginary) part of
the impedance tensor element Zi, (0) is plotted versus the element Zjy (0)
[instead of representing the variation of the real (imaginary) part of element
Zix (0) versus the element Z;, 0)]. The corresponding Mohr circles, taking the
real and the imaginary parts separately, for the same periods and for each one
of the sites A, B and C are also depicted in Figs III.10-12 (dashed-line circle
groups). These circles exhibit the same peculiarity, i.e., they also pass through
the origin of the axes (Zjx , Zxx ), independently of the measuring site, the period
and the consideration of either the real or the imaginary parts. This chara-
cteristic can be considered as a «signature» of the regional geoelectric stru-
cture of Ioannina region. It implies that if we rotate clockwise the measuring
system by an angle 0: (x5, ys ), the elements of the first column of the (ro-
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Fig. II1.13. The local strike 61 and the regional strike O, directions deduced from the Mohr
circles constructed using the real and imaginary parts of Z'xy and Z'yx respectively vs Z'xx,
for various periods for the sites A, B, C of Ioannina region.
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tated) impedance tensor Z'(6;) = ﬁ(er)meU(Or), i.e., Zx (0r) and Z! (0:), both
become approximately zero. By recalling that it is:

Brp = Ziox (0)Hys_+ Ziy (Or)Hy,

By, = Zin (O0) g+ Ziy 0y,

we conclude to the following physical explanation: the incident magnetic
field, linearly polarized in the direction-xg_, does not practically induce electric
field; this result refers to the H-polarization mode of an ideal 2D-regional stru-
cture (e.g. a vertical conductivity boundary), where the measuring site lies on
the conductive medium but close to the resistivity contrast [d’Erceville and
Kunetz, 1962], [Swift, 1971], [Nabighian, 1991], [Fischer et al., 1992 ]. In this
case the magnetic field polarization direction indicates the 2D-regional strike-
axis direction. The significance of the aforementioned statement depends on the
stability of the rotational angle, 0, upon the change of the measuring site, the
period and the consideration of either the real or the imaginary parts. The rota-
tional angle, O, versus the period, calculated separately for the real and imagi-
nary parts, for each one of the sites A, B and Cis also depicted in Fig. IT1.13. It
is evident that the angle 0, has, at all the measuring sites and for all the periods,
approximately the same value Or ~ 125° + 50, implying a stable direction
striking ~Nb550W. This is also supported from the fact that this direction is
close to one of the principal axes of the intrinsic coordinate system of the 2D-
regional geoelectric structure independently determined by the tensor decom-
position analysis. The argument that this direction exhibits a regional chara-
cteristic of the geoelectric structure is strengthened by the fact that the dire-
ction of the local channelling drastically changes from site to site (see Figs
1I1.13 and I1.24).

By comparing the theoretical Mohr circle diagrams described in the pre-
vious section with the experimental ones, we found that the following three
models are appropriate to simulate the features of the experimental Mohr circles
(see Figs I11.14-16): (i) 3D-(local)/2D-(regional) with strong shear distortion
(le] = 1), (ii) 3D-(local)/1D-(regional) with strong shear distortion (Je |~ 1)
and (iii) 3D-(local)/2D-(regional) with high anisotropy characterizing the
deep structure. In order to select the most appropriate model, we calculate, for
each one of these models, the fundamental rotationally invariant parameters of
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Fig. TI1.14. Theoretical Mohr circles for 9D - (regional) /3D-(local) with strong shear distortion
(le] > 1): (a) without twist; (b) with twist. Their morphology simulates the experimental
Mohr circles (c), (d) and (e) from areas A, B and C respectively.
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Fig. II1.15. (a) Theoretical Mohr circle for 1D-(regional) /3D-(local). Its morphology simulates the expe-
rimental Mohr circles (b), (c) and (d) from areas A, B and C respectively.
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Fig. II1.16. Theoretical Mohr circles for 2D-(regional with high anisotropy) /3D-(local) with
local distortion: (a) shear only; (b) twist only; (c) shear and twist. Their morphology simu-
lates the experimental Mohr circles (d), (¢) and (f) from areas A, B and C respectively.
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the corresponding Mohr circle, i.e., the radius, R, and the skew angle, v, versus
the period (separately for the real and imaginary parts). The theoretical model
curves R;= Ri(T) and v; = vi(T) [i =1..3] are compared with the experi-
mental curves R = R(T) and y = y(T), for the sites A, B and C, in Figs III.
17-19. This comparison reveals that the model which best approximates, at all
the measuring sites, the features and the parameter values of the experimental
Mohr circles is the 3D-(local)/2D-(regional) with strong shear distortion
(lej—1). This can be considered as an independent confirmation of the model
resulted from the impedance tensor decomposition methodology.

IV. MAGNETIC PROSPECTION. TIPPER AND INDUCTION ARROWS ANALYSIS

Since we concluded that the regional structure is two-dimensional and
we have determined its intrinsic coordinate system, it only remains to distin-
guish between the dip and strike-directions of the 2D-structure. In order
to determine the strike-direction, we elaborate the vertical magnetic field
measurements.

It is assumed that H, -component is linearly related to Hx and Hy-~compo-
nents thus the following relation (in the frequency domain) holds [Jones et al.,
1978], [ Labson et al., 1985]:

H;(0) = Tx(w)Hx(w) + Ty(w)Hy(w)

where T = (Tx, Ty) is the transfer function of the vertical magnetic field
relative to its horizontal components, termed as tipper. Its magnitude is given
by:

ITH= VTP + [Tyf?

and is a rotationally invariant parameter. This is a measure of the deviation
of the structure from the ideal 1D-symmetry. In cases where other scalar pa-
rameters have indicated that the structure is two-dimensional, the tipper ma-
gnitude will be larger, if the discontinuity of the conductivity across the strike-
direction 1s also larger; furthermore the tipper magnitude increases when the
distance from the discontinuity (compared to the skin-depth) becomes smaller.

The determination of the strike-direction of the 2D-structure arises from
the fact that the vertical component of the magnetic field is restored in the
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case of the E-polarization mode but not in that of H-polarization mode (i.e.,
it is restored when the horizontal magnetic field lies along the dip-direction).
The dip-direction of the structure corresponds to the angle which satisfies

the condition:

[HL(0%)| = max [|Hy(0)]]

Analytical calculations give for the angle tipper-dip:

g, o {2[Re(TX)Re(Ty) + Im(TTm(Ty)]|

2 2
|Tx[? — | Ty] J
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Fig. IV.1. Tipper magnitude and tipper phase versus the period for the site (B-C) of Toanni-
na region.
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Fig. IV.3. Tipper magnitude and tipper phase versus the period for the Lykotrichi region.

On the basis of the transfer function T, the induction arrows are defined
as follows:

P(w) = Re[Tx(w)]% + Re[Ty(w)]§

Qo) = Im[Tx(w)] % + Im[Ty(w)]¥

The magnitude and the directions of the induction arrows are given by the
relations:
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B = V[Re(TP + [Re(Ty), B = tant oo
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The direction of the induction arrows is perpendicular to the vertical disconti-
nuity of the conductivity and points away from the conductive region; further-
more, the magnitude of the induction arrows is a measure of the space gradient
of the conductivity.

{A Real induct. arrow magnitude o lm:giﬂ. induct. arrow magnitude—l
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Fig. IV.5. Real and imaginary induction arrow magnitudes and real and imaginary indu-
ction arrow directions (dip-directions) for the site (B-C) of Ioannina area.
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1V.1. Experimental analysis of magnetic prospection. Tipper vector and
induction arrows

In Figs IV.1 and IV.2 the tipper magnitude, the tipper phase and the
tipper-strike angle versus the period are depicted for the site (B-C) of loannina
region. In Figs IV.3 and IV.4, the same functions are depicted for Lykotrichi
area. EMI’s coil magnetometers have been used in order to detect the magnetic
field variations. An inspection of these results shows that in the low frequency
range, the strike-direction points ~N50°W. The same result is obtained from
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Fig. IV.6. Real and imaginary induction arrow magnitudes and real and imaginary indu-
ction arrow directions (dip-directions) for the Lykotrichi area.
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the study of the induction arrows (Figs IV.5 and IV.6); the study of the
induction arrows was repeated by using magnetometers which measure the
variation of the total magnetic field (Torsion Photoelectric Magnetometer) at
site (B-C) of lToannina region (see Fig. IV.7).

4 Real induct. ;rruw; magnitude o Imagin. induct. ir_ll)vv_nl_ignitude
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T e
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Fig. IV.7. Real and imaginary induction arrow magnitudes and real and imaginary indu-:

ction arrow directions (dip-directions) for the site (B-C) of Ioannina area. The detection

has been made, as mentioned in the text, using magnetometers which measure the varia-
tion of the total field (Torsion Photoelectric Magnetometer).
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V. INVERSION OF THE MT-DATA

Although the model found for Ioannina area is 2D-(regional)/3D-(local)
we proceeded to an 1D-Occam’s inversion of the MT-data from the site (B-C),
and from Protopappas area (i.e., ~15Km north-west from Ioannina area). The
inspection of the 1D-inversion results (Figs V.1, V.2) indicates the probable
existence of a very conductive body, with resistivity of the order of a few Qm,
located at a depth of the order of a few Km and embedded in a more resistive
medium with resistivity of the order of a few thousands Qm. This probably
coincides with the results obtained by the magnetic prospection which show the
beginning of an anomaly at higher frequencies. As the information concerning
the conductive body is very important, especially for the explanation of the
wselectivity effect» [Varotsos et al., 1996a, 1996b], a detailed study with a
magnetotelluric grid survey of different sites is currently carried out around
Ioannina area, the data of which are analysed using 2D-inversion techniques
and forward modeling.

VI. SUMMARY AND CONCLUDING REMARKS

The geoelectric structure of the SES-sensitive area of Ioannina has been
studied by means of the MT-method. The study was divided into two basic
consecutive stages. The first consists of the conventional MT-analysis which
considers the electromagnetic response of the subsurface as unified; in this
frame the interpretation of the MT-data [collected at four neighbouring areas
A, B, C and (B-C)], after checking the rotational MT-diagrams and the skew
and ellipticity indices, resulted to a two-dimensional regional conductivity
structure, but with the calculated strike angle 6, differing considerably from
site to site, thus indicating a more complex structure. Eggers’ eigenstate
formulation was implemented to the measured impedance tensors from all
the sites. The main conclusion of this analysis was that the eigenvectors of the
electric field (and of the corresponding magnetic field) are mutually linearly
polarized, but they are not perpendicular, thus indicating that the geoelectric
structure is not purely two-dimensional.

The experimental facts that (i) the strike-angle differs considerably from
site to site and (ii) at each measuring site there is a big difference between the
two modes oxy and pyx, led us to assume the existence of a 1D or 2D-regional
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structure with the presence of local near-surface 3D-scatterers. Therefore, the
MT-study proceeded to the second basic stage at which the measured impedance
tensor was decomposed. This was initially made using Bahr’s procedure which
considers the model of a regional 2D-structure overlaid by 3D-inhomogenei-
ties; the values of the scalar parameters determined by such a procedure, indi-
cated that such a model is appropriate to fit the MT-data from all the sites.
Furthermore, Bahr’s analysis demonstrated that the local 3D-inhomogeneities
produce strong local channelling of the regionally induced currents. This was
confirmed experimentally from the measured electric field polarization dia-
grams which exhibit strong linear electric field polarization with a direction
varying drastically from site to site.

The impedance tensor was also decomposed by Groom and Bailey’s pro-
cedure, which decomposes also the distortion tensor to discrete types of di-
stortion, i.e., twist, shear and splitting distortion. This analysis at all the
sites led to the following conclusions: (i) the model that best fits the data
is 2D-(regional) /3D-(local), in agreement with that derived from Bahr’s ana-
lysis. (ii) The principal axis system of the underlying regional 2D-structure
was resolved and found to deviate from the measuring coordinate system (x —
NS, y— EW) by approximately 400 -+ 15° counterclockwise. The apparent
resistivities, that correspond to the regional principal directions, have a ratio
of the order of 10. Note that this decomposition of the impedance tensor does
not allow an accurate determination of the actual 2D-basement apparent re-
sistivities because the static shifts are not fully removed. (jii) The small-scale
near-surface 3D-inhomogeneities cause a moderate twist distortion (t = -0.6)
and a strong shear distortion of the regionally induced electric field (le| - 1)
[notice that the set of the decomposition parameters is not unique]. The
latter is compatible with the strong local channelling inferred by Bahr’s ana-
lysis and the experimental diagrams of the electric field which depict strong
linear polarization; furthermore, the experimental polarization directions of
the electric field are in full agreement with the local strike (channelling) dire-
ctions derived from the implementation of Groom et al’s analysis to the MT-
data at each site: 6,4 x~ 810, B » 620 and 0,C ~ 900.

The ambiguity concerning the strike-direction of the 2D-structure and the
the non-uniqueness of the decomposition parameter set, resulting from Groom
and Bailey’s analysis, led us to incorporate to the MT-study the magne-
totelluric representation of Mohr circles. The relevant diagrams for all the si-
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tes exhibit the same striking peculiarity: the Mohr circles, resulted separately
from the real and imaginary parts, pass through the origin (Z,y, Z'). This
fact provided an independent determination of the linear polarization dire-
ction of the electric field (local strike) at each one of the measuring sites:
~N80oE for site A, ~N60°E for site B and ~N90°E for site C. These values are
in full agreement with those calculated from the experimental polarization
diagrams and those derived from the impedance tensor decomposition.

In this paper another «conjugate» form of the Mohr circles was introduced,
i.e., the plot of the element Zi, (0) versus the element Z (6). These plots were
constructed for all the measuring sites (A, B and C) and revealed the same
striking peculiarity i.e., they also pass through the origin (Zjx, Zix). This led
to the determination of a rotational angle, 0, which was found to have the
same value at all the sites: Oy ~ 1250 + 50, It is justified to assume that the
implying direction (~N55°W) can be the strike-direction of the underlying 2D-
regional geoelectric structure. This value seems to be compatible with the di-
rection (~N40°W) of one of the principal axes determined by the impedance
tensor decomposition and the strike-direction (~N50°W) derived from the
magnetic prospection by studying the tipper and the induction arrows.

Furthermore, after introducing the parameter set derived by Groom et
al’s decomposition into the magnetotelluric representation of Mohr circles,
three models which successfully simulate the morphology of the experimen-
tally constructed Mohr circles, were resulted. These are: (a) 2D-(regional) /3D-
(local) with strong shear distortion (Je| — 1), (b) 1D-(regional) /3D-(local) with
strong shear distortion (|e| > 1) and (c) 2D-(regional) /3D-(local) with the high
anisotropy to be referred to the deep structure. By plotting the rotational inva-
riant parameters i.e., the radius R, and the skew angle v, of the theoretical and
experimental Mohr circles respectively, from all the measuring sites (A, B
and C), versus the period, it is concluded that the model which best simulates
the properties of the experimentally determined magnetotelluric Mohr circles
is the 2D-(regional) /3D-(local) with strong shear distortion (|e|— 1). Although
this solution is not unique, this model is the same with the model resulted
from Groom et al’s analysis.

Finally, the 1D-Occam inversion of the MT-data from the site (B-C) and
from the Protopappas area (~15Km north-west from IOA-station) was carried
out. It indicates the probable existence of a very conductive body (of the order
of a few Qm) at a depth of the order of a few Km, embedded in a more resi-
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stive medium (with resistivity of the order of a few thousands Qm); a detailed
MT-grid survey is currently carried out around Ioannina region and a 2D-
inversion (and forward modeling) of the MT-data is performed in order to
resolve further the existence of the conductive body.

This research was supported by the EC projects EVSV-CTh4-0439 and
EPET 388 (coordinator P. Varotsos).
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