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ABSTRACGT

A very efficient and simple to use technique for the solution of nonlinear initial-
value problems associated with nonlinear ordinary differential equations of any order and
variable coefficients, is presented. Convergence and uniqueness of solutions obtained by
the successive approximations scheme of the proposed technique, are thoroughly establi-
shed. Error upper bound estimates of the obtained solutions are also assessed leading to
significant conclusions regarding the improvement of convergence for large time solutions.
The iteration scheme can be also successfully extended to nonlinear boundary-value pro-
blems.

The proposed technique is demonstrated by an illustrative example of a nonlinear
initial-value problem for which available results exist.

STATEMENT OF THE PROBLEM
Consider the general form of a nonlinear initial-value problem asso-
ciated with the nonmlinear ordinary differential equation of n'" order (n=
L8 )
G(x, ¥, ¥'5 - Y®)=0, xel (1)
subject to the initial conditions
Y(Xo)=6s, ¥ (Xo)=Cs, ., Y"V) (Xo)=Ca , Xeel (2)

where y(x) defined on a real x interval I (including x,) must possess n contin-
uous derivatives, i.e. y(x)eC® on I; the nonlinearities of eq .(1) may be coupling
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terms and / or powers of the function y(x) and its derivatives y®V=dly /dx'
(=1, 2i..., n-1).

The subsequent development assumes that eq. (1), after moving all
nonlinear terms to its right-hand side, can be written in the form

L(y)=f, xel (3)
where L=D"+4a,(x)D*!+ ...+ ay(x)D° with D¥y=y® (k=1, 2,...,n) and

Doy=y; aj(x) (i=1, 2,...,n) are continuous functions on I (they might also
be constant or zero); f={(x, y, y',...,y™?) is assumed as a real continuous
function along with its first-partial derivatives in the (n--1)-dimensioral

rectangle
R: Ix'xolgaa |Y(k'1)—0k Isbky k=1: 2,...,n (X, Xo¢el) (4)

in which y®=y and a, by are positive numbers. Clearly, the point (x,, ¢,
Cgye++,Cp) lies in R.

In the next section a brief description of the proposed method is given
for the solution of the initial-value problem defined by eqs (3) and (2) under
the assumptions stated above.

Description of the method

Setting the right-hand side of eq. (3) equal to zero (i.e. f=0), we obtain

the following homogeneous (or reduced) linear differential equation

Ly)=0 ,  xel (5)

In the sequel it is assumed that the solution of the linear homogeneous
eq. (5) subject to the initial conditions (2) is known (or at least can be readily
obtained). Eq. (5) due to eq. (3) can be written under the form

YOR=—% a(x)y™ (x (=1, 2,...,n) ®)
Regarding the last equation one can observe that the conditions of the exist-

ence and uniqueness proof! are satisfied in the neighbourhood of any ini-

tial conditions (2). Indeed, denoting the right-hand side of eq. (6) by? we
remark that it is continuous with respect to all arguments and there exist

first-partial derivatives af /ay®=-ap(x) (j=0, 1,...,n-1) bounded in abso-
lute value, since a,.j(x) are continuous on the finite interval I. Let y, be the
solution of the linear initial-value problem associated with egs (5) and (2). In-
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serting y, in the right-hand side of the nonhomogeneous differential eq. (3),
we obtain the following linear differential equation

L(Y)=f(x: Yo, Y'O,-"ayo(n-i)), xel (7)

If y, is a particular integral of the last equation, its general integral y=y, +y,
constitutes a first approximate solution y=y,,, of the nonlinear initial-value
problem defined by eqs (3) and (2) or (1) and (2). Inserting now y, in the
right-hand side of eq. (3) we obtain the following nonhomogeneous differential
equation

L(y)=1(x, ya), Y@y sY)®?Y) , xel (8)

subject to the initial conditions (2).

After determining the particular integral y), corresponding to eq. (8)
we obtain the second approximate solution y,=yo-+y), Repeating k
times the foregoing procedure we obtain the approximate solution of order
k, i.e yu=Yo +Yx-1)p- As will be shown below proceeding in this manner
we succeed to improve gradually the approximate solution.
It should be noted that in view of the assumptions made for the functions
a;(x) and f, the initial-value problem associated with each of eqs (7), (8),...,
k(=1, 2,...,n) along with conditions (2), has a unique solution for the reasons
stated above for the initial-value problem of eqs (6) and (2). Thus, it remains
to prove whether: a)each member of the sequence of approximate solutions
Yo, Yy Vo) Y)Yk Satisfies conditions (4), and b) the proposed approx-
imate method converges and if so whether it produces the correct solution.

The difference of two successive approximate solutions

Yy Yek-1)=Yk-0p-Y (k-2)p 9)

being independent of the solution y, of the homogeneous differential equation
is a function of the difference of the corresponding particular integrals. Thus,
the question of convergence of the approximate solution y, depends on the
convergence of the corresponding particular integral y.1)p. With the aid
of an upper bound estimate for the error of the approximate solution signif-
icant conclusions can be drawn regarding the improvement of convergence
if large x solutions are required.

Finally, it is worth noticing that when the solution of the linear homo-
geneous eq. (5) is not known (or cannot be easily obtained) the proposed te-
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chnique does not fail. Indeed, in such a case one has to move to the right-
hand side of eq. (3) those linear terms of L(y) which allow the new equation

E(y)=0 to be readily solved. The proposed method is still valid if the
original equation (1) or (3) is replaced by the equation

y(n)(x)=g(x’ ) Y’;---,Y(n'”), xel (10)

The analysis which follows is an extension to that presented in ref.
[2] referring to nonlinear initial-value problems associated with second order

differential equations.

Convergence and uniqueness
Differential eq. (3) can be reduced to the following system of first-order

differential equations

Y=Yy (h:=V)
Y 2=Ys

(11)

n
y’ﬂ + lziai(x)Yn+1-l=f(x; Y1, Y2:""Yn)

which is defined for (x, y)=(X, yi, ¥s---,¥n)¢eR and varying x on L. Thus,
eqs (3) and (2) are equivalent to the system of eqs (11) and (2) along with the
assumptions made for eq. (3). The initial-value problem defined now by eqs
(11) and (2) can also be written in a vector-matrix form as follows

dy [dx+A(x)y=F(x, y) } (12)

¥(x0)=C

where y, F and C are n-dimensional vectors and A(x) is a square matrix of
order n, whose expressions are given by

—Yi— - 0 a —ci | o -
0 4 0
¥ 0 c
: 2 0 0 -4 0
y= ) F ) C ) A(x): ................
. (Vg (V2 0 -1
_Yn _f(x, yl b cn_ 8y Qpgec.... a, a
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Note that the vector-functions y and F(x,y) as well as the matrix function
A(x) are continuous, since their respective components are continuous func-
tions of x on L

Moreover, F(x,y) due to the assumptions made for f(x,y) has bounded first-
partial derivatives with respect to yj,...,yn in

R: Ix-xolga, lYk'Ok Igbk (k=1: 2,...,11) (14)

For measuring the magnitudes of a vector y and a matrix A the following
norms for convenience are chosen

Nyl = |y |
yi =, yi
(15)
n
NAN =2 | ay |
i,j=1

The distance of two vectors y and;; is the norm of the difference vector y-§,
ie.

- n -~
lly-yll = 151 lyi-yil (16)

In view of the assumptions mentioned above the vector function F(x,y)
is bounded, that is

I| F(x,y|| <M (for some M>0) 17)
on R which is a subset of n-space consisting of all vectors y satisfying

|| y-Cll<b  (for some b>0) 18)
such that for

| x-x,|<a (for some a>0) (19)

every y remains in R; clearly C is a point also in R.

Since F(x,y) is a continuous vector-function with bounded first-partial
derivatives in each y(i=1, 2,...,n) it can be proved by using the mean-value
theorem (for functions of several variables) that F(x,y) is a Lipschitz vector
function?, i.e.

| Fix,y)-F(xy) II<Kly-yll (20)

for (x,y) and (x,?) in R and some constant K>0.
It can be readily shown that a solution y of eqs (12) must also satisfy
the integral equation

16
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X
y(x)=Yyo(x) + f Y(x)Y(E)F(E,y(8))dE (21)
Xo

where yo(x)=CY(x) is the solution corresponding to the homogeneous equa-
tion (12) such that Y(x,)=C, whereas Y(x) is the n-by-n fundamental matrix
which satisfies the matrix differential equation
such that Y(xo)=/J }
J is the identity matrix.

The determinant of the matrix Y(x) satisfies the following identity of

Jacobi (generalized Liouville’s theorem)

X
Y(x) | ="exp (— § tr A®)dE) (23)
Xo
As is known? a necessary and sufficient condition that a matrix solution Y
of eqs (22) be a fundamental matrix is that |Y(x)|540 for varying x on L.

X
Note that exp(—-fA(&)dé) is a solution of equation y’ -+ A(x)y=0

Xo

X
only if A(x) and fA(&)dé’; commute, which occurs when A(x) is either
Xo
constant or diagonal. In such a case we have Y(x)=e™* and yo(x)=
Gz e,
Following the approximate method outlined above and introduction
of the solution yo(x) into the integral of eq. (21) yields the first approximate

solution

V=300 + [ YV HOFE,ENE (24)
and by Scbion. & is daliaved Gk

Yo=Yot [ YRV UOREa(E)dE (25)

Xo
for n=1,2,...

It will be shown below that every «point» (x,y,(x)) (n=1,2,...) including
(x,¥0(x))-lies in R(i.e. satisfies relation (18) for [x-xo/<le, where 0<e<a.
Before doing this we observe that since A(x) is a continuous matrix-function
on a finite interval I of x, then v N such that
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Y (x)Y-1(E)I<N (N>0) (26)

for every fixed xel and varying & on 1. Thus, for {=x, due to the second of

relations (22) inequality (26) yields

1Y(x) |I<N (27)

For the point (x,yo(x)) due to the second of relations (15) and relations (21)

and (27) we have

lyo-ClI=liC(Y-J) lI<ICH(Y]l-n)<(N-n)||Cl| (28)
On the other hand for the point (x,y,(x)) using equations (25) we can

write the inequality

X
llys-C [I<llyo-Cll + f Y)Y Il F(E,y0(8))l1dE

Xo

or due to relations (17), (19), (26) and (28)

|ly1-Cl|<(N-n)]|Cl| +NM|x-Xo|=[(N-n) || G || +NMaJe<b (29)
where

g=min [a, b/ ((N-n)||C[| +NMa)] (30)
From inequality (29) it follows also that

II¥o-Cll<(N-n)||Cl|<Db (28')
Similarly, for the point (x,yn(x)) we have

Ilya-ClI<Ilyo-Cl| + NM|x-x0|<b (31)

Hence condition (18) is satisfied for every point (x, yu(x)) (n=1, 2,..)
including (X, yo(x)) and thus all approximate vectors y, belongto R for
varying x on the interval (xo-g, X, +€), where ¢ is given in relation (30).
The sequence of vectors y, is said to be convergent if it is convergent
with respect to the distance function of each member vector y,(k=1,2,...)
from the vector y which constitutes the correct solution of eqs (12). Such a
distance according to relation (16) is equal to
IYeyll=lye-yl +Hy'ey'l  (k=1,2,...,n) (32)
Writing eq. (25) for n=1 by virtue of relations (17) and (26) we have

X

[[yeyoll < f (1Y) Y(E[[IIF(E,¥0(8) ) [dE<MN|x-xXo| (33)
%o

Eq. (25) for n=2 yields

X
Ilya-yoll< f 1Y (=) Y1) I[F(E,¥1(8))-F(&,¥y0(5))I1dE
Xy
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or due to inequalities (20), (26) and (33)

= 2 » 2
lyeyollnorn o M [NE(x-xo)] (34)
and by induction using relation (19) it follows
. M [NKE-x)P _ M (NKa)*
Iys—Yaull<—— - - =¥ ~ (35)

Hence for n— oo the vector-function y, tends uniformly to a limit vector-

function y for varying x on I. This vector-function is continuous as a uniform

limit of continuous vectors and satisfies inequality

llya-Cli<b  (b>0) (36)

for x varying in the interval (xo-c, Xo =€), where ¢ is given in relation (30).
Due to the continuity of the vector-function F(x,y) it is also deduced

NmF(E,y.(8)=F(y()) (37)

n-»o
The foregoing solution obtained by the above scheme of successive approx-
imations is unique. Supposing that besides y there is also another solution
;f, such a solution must satisfy the integral equation (21) and hence we can
write

X

-y I [ IYE)Y-4@IIIFE yE) -F € TENdE
xO

or due to inequality (20)

%
Iy-FU<K [ 1| Y)Y HE)I.lIy-yildg (38)

Xo
Since s'f-as well as y-is conlinuous on a finite interval I of x due to the conti-
nuity of its components, we can assume

p=max]||y-y|| for xel (39)
and thus inequality (38) becomes
w X
lly-yll<pK f[lY(x)Y'l(E)llda : (40)
Xo :

Introducing this expression into the integral of inequality (38), we obtain

“ 3
IIY'YIISLLK’} Y)Y @I [ 1Y (x)Y-4(s) || ds)dg

Xo Xo
or
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X

Ily-31 <37 (K[ 1Y()Y-4@)ag (&)
Xo

Introducing the last expression into the integral of inequality (38) we obtain
X

ly- 311 <57 (K [ IYEY4E)Iidey (42)
Xo

Thus by iteration it follows
x

Iy Y 1F <5 (K [ IYEY-4E)ldge (43)
Xo

Letting n—> o it is deduced that

Iy -3l <0 (44)

and hence y=y.

Error estimate and convergence improvement®
An upper bound for the error in approximating the correct vector solu-
tion y by the n'® approximation y, is given by

o'e] M © ®
S NK(x-x,)]? M m
1Y - Vall < El¥meyull<s & = DREX) M -5 (NKe
m! K m!
m=n m=0-1 m=n+1
or
o®
M <% (NKa)m M (KNa)“+1' (KNa)™
ly-¥all< z al < K @i p —r=
m =n-+1 m =0
M (K N a)o+t eNKa
~ K @+l (45)

From the last inequality we observe that for a given number of iter-
ations, an increase of the parameter a-defining the half-range of variation of
x-implies an exponential increase in the error upper bound. This means that
a very good approximate solution obtained by the above procedure is ex-
pected for the initial stages of variation of x. On the other hand if the interval
2a of variation of x is kept constant the increase in the number of iterations
reduces the magnitude of error; clearly, the greater the number of iterations
is the more significant the reduction of error becomes. From the last obser-
vations one can draw two important conclusions:

a. For the initial stages of the independent variable a couple of succes-
sive approximations usually leads to sufficiently reliable results within the
scope of engineering accuracy. This is very important for nonlinear boundary-
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value problems of postbuckling response, where the initial postbuckling path
is of practical importance. This is clearly shown in refs [4-8] in which the pro-
posed technique has been saccessfully employed by the author for solving
postbuckling response problems associated with highly nonlinear systems
of differential equations, b. If the dynamic response of a system is needed for
large values of the independent variable (i.e for long periods of time), one has:
1) to divide the given interval of the independent variable into an appro-
priate number of subintervals (depending on the desired accuracy) and 2)
to employ the first or second approximation for each subinterval with initial
conditions the end conditions of the preceding subinterval. In this way starting
from the given initial conditions we can cover the entire interval of the inde-
pendent variable.

Since the maximum error occurs at the end of the entire interval the
accuracy of the foregoing solution is checked by comparing it with a new
solution (at that point) which is obtained by reducing the length of subinter-
vals (or equivalently by increasing the number of subintervals). The number
of the same significant figures corresponding to these two solutions indi-
cates that up to this number of significant figures the obtained solution is
correct. A better solution can be achieved by further reducing the length
of subintervals until the obtained solution reaches the desired accuracy.

Illustrative example
Let us consider the nonlinear differential equation with variable (time-
dependent) coefficients?

3
©-+a| 0 DY+ —vE)-e =0 »
subject to the initial conditions
v(0)=e, y(0)=0 -

where the nondimensionalized time £ varies in the interval (0,7), while Q and

e are given dimensionless parameters.
This nonlinear initial-value problem has been presented by Hoff* and

refers to the dynamic mid-span deflection of an initially curved, simply sup-
ported, column subjected at its movable support to a constant (compressive)
velocity. Note that the magnitude of the nonlinear term of eq. (46) increases
very rapidly with increasing time. Hoff has succeeded to solve this problem
only after using a lengthy, cumbersome and time-consuming procedure.
Following this procedure he obtained by means of Bessel functions an analytic
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solution valid for a very small interval of time (0<£<1); then by employing
modified Bessel functions he succeeded to obtain a solution valid, however,
for 1<£<2.1. Beyond this value a series solution of low convergence became
inevitable.

According to the approximate method proposed herein by moving the
nonlinear term of eq. (46) to its right -hand side, we obtain

y© +o a-<v@ - | =— e 4

Since the solution of the linear homogeneous equation corresponding to eq.
(48) due to the variable coefficient of y(£) is not available it is more conve-
nient to transfer all terms of this equation to its right hand side; hence eq.
(46) is written as follows

¥y (B)=0(y()=0 e—(i— —i)Y(i v*(8) (49)

subject to conditions

y(0)=e, y(0)=0 (50)
Eq. (49) is equivalent to the following integral equation

£
VE=Yo ) + [ (E-5)o(s,y(s)ds (51)

where yo(£) is the solution of the homogeneous equation (resulting by setting
¢=0)

Yo(E)=0 (52)
which after integration due to conditions (50) yields

yO=e.
Introducing yo(£) into the integral of eq. (51) we obtain the first approximate

solution
3
(&) =yo(®) + f (E—8)e(s,y0(s)) ds (53)
By iteration we can readily obtain
g
YaB)=Yo(&) + [ (E=)o (8,yn(s))ds (54)

The second approximation

o Qe L 3
B+ i (g8 +H g B (g gl 69

gives very accurate results for £ varying in the interval (0,1.7). For larger va-
lues of £ we must divide the original interval into subintervals and employ
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for each subinterval the first or the socond approximate solution taking as
initial conditions the final (end) conditions of the preceding subinterval.
Dividing, for instance, the original interval (£o,£,) into n subintervals

Bo<E<Ey,e e, Ei<EZE11y0n, Ena <E<Ey (56)

we can write for the subinterval (&;, §;4,) the following equation

3

Val®)=Yo(&-&) + [ (E-5)p(s,7:(5))ds, (Ei<E<Eir) (57)
&

Introducing for convenience the new variable

=85 , (58)

eq. (57) becomes

Va()=Yo(x) + [ (+—5)9(s,yn(s))ds (59)

The first or second approximation (n=1 or n=2) of the last formula gives
very reliable results if the length of each subinterval is relatively small. By
means of eq. (59) starting from the given initial conditions we can progressi-
vely evaluate the initial and final conditions of each subinterval and thus
covering the entire original interval.

We can compare the proposed solution with the Hoff’s solution for the
specific case where Q=2.25 and e=0.25. By taking the length of each sub-
interval equal to 0.10 (=§&;-Eo=E,-&;=...=&;-E,.,) we have obtained a
solution to four significant figures of accuracy for 0<<{<C5. Such a solution
coincides in the first four significant figures with the numerical solution of
Runge Kutta. Comparisons of these three solutions are shown in a graphical
form in Fig. 1 from which it is obvious thet Hoff’s solution starts to become
inaccurate for £>4.5. From Table 1, one can also compare numerical solutions
obtained by the proposed technique and the Runge Kutta’s scheme. Clearly,
the latter is time consuming for multiparametric discussions compared to
the this technique which uses the same formula (corresponding to the first
or second approximation) for each subinterval.
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Fig. 1. Nondimensional lateral displacement amplitude y(§) as function of nondimen-
sional time & in very Rapid loading.
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Table 1

Numerical solutions of eqs (46) and (47) for Q=2.25 and e=0.25
z Runge Kutta’s scheme Proposed Technique
0 0.25 0.25

0.5 0.2614907 0.2614907
1 0.3399305 0.3399304
15 0.5620209 0.5620208

2 1.077164 1.077164
25 2.160111 2.16012

3.0 2.538290 3.538292
3.5 3.321439 3.321428
4.0 2.728861 2.72856

4.5 3.767951 3.767968
5.0 4.514586 4.514562
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*Axohodfwe mpoteiveTar, peTd ATd xATAAMNAES TPOGapRoYES, T Epapuroy)
e peBbdov ot pd ypapud mEOPApuATR &EYKEY TLLEY, T& dmole, Srwg xal oThHY
npovyovpévn mepinTwoy, cuvdéovtar put cuviBeig wl) yoappinds Siapopixes EEiodioetg
olacdimore TdEews ol pd petaPAnrod cuvtedestés. ‘H mpdty oyerind) dpyusia
dvaxowddnre o 1985 (BA. IMpaxtikd A’ *Ebvixol Zuvvedplov Mnyavixiis 1986,
oeh. 1-10). Ztd onueio adtd O mpémer va Sievxpwiclet 8ri, vrifera dmd T mpo-
BAMjuaTa cuvoplaxdy Tuwév mod dmartoly wlav A 10 woAd dbo émavedhers, oTa
mpoPAfpaTa dpyedv Tdv v edotdbeir wwiosws mpéme va Epsuvnlet of peydie:
yeovix Srxotipara (Stability in the large). Tobto elvar iSairtepa émiBeBAnuévo
Abyo THg dvdeyopévns mapovatas otdmwy Extév (strange attractors), Baoxa yo-
paxTnpLoTINd T@Y dmotewv elvar 7 edatoBnota olg doyinds ouvhijnes xal éviote 1) &mpoc-
dbxntn Spdam Tovg, Gotepr &md onpavtind ypovixd SidoTyue drbAvtyg Hesuiag.
"Etou Abyw 7ol mAnfous t@v AapBavopévev Aoswy (o8 wi) ypopmuixd mpolAfuete
Goyw@v Tyév) 0% mpémer navels v elvar ToAD mpocexTindg 67OV xabopropd éxel-
v V¢ Mosws ToL dvtiaToryel 670 Quotkd TpbBAnua. Mix dsbtepy épsuvnTixg Eo-

yaola (07 &ptBu. 2 o7 BiBhoypagia), cuvdeopévy pt cuvifeig i) yoapuinds &5i-
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odoeg devtépag TdEewe pé petaBintods (yxpovixd EEvptnuévous) cuvredestés,
dvagpépetar of Suvapixd edotabis cdornua. H émavednmried adty) pébodog cuv-
odebetar pt dnédeifn Tic ovyrloewe xal i povadikdmnrog THe Adeswsg, GG xal
pt Extlpnon &ve odypatos Tob cIApato THG TpooeyyoTikie Abcswe.

Elg miv mapoloa Zpyastx yiverar éméxtaon tHe mponyovpévye dnpociel-
oewg 68 P Ypoppuixd oAt oY@V TV Tob cuvdéovTat pd dmotasdNmoTe
taEewg ouvnbeis Suxpopinds &Eicwoeig pé petaPintods cuvredeotés. ‘H mporer-
vopévy pélodog Gs mpdg pdv Tic AapPavéueves mpooeyyiotinés Aboeig umopst va
dvrayOel otic pebédouvg g Texvirijs TGV Surtapaydy, &vd O¢ mpeds T Pasiwn
¢ oOMYm dmotedel odotddy Tpomomolnon 1i¢ Emavadnmrinic weBbédov Picard.

Mg Bdon v éxtipnom ol cpdhuatos THg mposeyyLoTIRRE AdoEws SraTuTed-
vetor plo dmoteheopatiny Sadixacia Pehtidosws Thg ouyxAioews, kaTdAANAY YL
Suvapixd cuoThpate Tév omolwy f edotdleia wvoswe elvar dvayxaio v dpsuvndet
ot peyddo ypovixa Swxotiuata, &v 8let xal Tév &vdeyopévey edoTabiv Gplaxdv
woxAwv 3 Emppodv Srotimwy EAxtdv. Zdppwva u Ty Texvind) adTh dmodatpeitat
70 Emheybusvo doyixd ypovixd SukoTnue elg dmodoTiuxTa, yid x&le Eva Thv
omotwv Epappbdletar # mpwn %) 1 dedtepn mpoctyyion Moews, wé dpyixds Tiwds
wlg Tiuds wod dvrisTouxolv oTd Téhog 7ol  mpoynyouuévou OrodiaeTAuaToG.

Téhog, maparifetar kpiBunrind napddeiypa, 6 bmolo Emiderar téoo ué
né8o80 Hoff, oo xal pé 7o 4ne tdfews &oBunTind oyijua Tod Runge Kutta pé
Bhima 0.02. And 16 mapddeiypo adtd SwumioTdvetar T8 TheovéxTnua Tie mpoTel-
vopévng uebbédov idbrepa ot moALTrpaUETOXE CUGTHUXTA.



