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E®HPMOSMENA MA®OHMATIKA.— On the separatrices of dynamical
systems, by Demetrios G. Magiros*. *Avexowwardn Um0 tod “Axadn-
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INTROBUCTION

Separatrices are special trajectories or motions of dynamical
systems, and play an important role in the study of problems of the
systems of current interest, especially when quantitative aspects enter
the problems. But there is no general and systematic discussion on the
use of the properties and on the determination of the separatrices on
nonlinear dynamical systems, this determination being by itself an
important problem.

In this paper we will see remarks and results concerning the prop-
erties of separatrices and their use for the study of physical problems.

The definition of separatrices given in topology is supplemented as
needed in physical problems, some theorems on separatrices are stated,
a list of useful properties of separatrices is given, and by selected
examples we see the usefulness of the separatrices in the study of phy-
sical problems.

1. DEFINITION OF SEPARATRICES

We give the definition of separatrices both from a topological and
a dynamical point of view.

We can say that a space W is filled by a collection S of solution
curves of a dynamical system, if each solution curve of S lies in W, and
each point in W is on exactly one solution curve of S.

The whole space W of the validity of a differential system may be
decomposed into subspaces of which the corresponding collection of the
solution curves has common properties which characterize each space.

These subspaces are called «canonical regions» of the space W, and
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the paths of the solution curves of the system, which bound these cano-
nical regions, are called «separatrices» of the system [7, 10].

In this topological definition of separatrices the solution curves are
considered only as paths, that is as locus of point sets. In the reality,
the solution curves of the dynamical systems are time-parametrized
curves, that is paths on which the law of the motion of the system is
known, when the topological definition of the separatrices, although it
helps the investigation in some aspects, is unrealistic.

The time must be included in the concept of separatrices of physi-
cal problems. This can be succeeded by accepting the separatrices as
«special “limiting> trajectories through spe-
cial equilibrium states» Supplemented by this property,
the topological definition of separatrices satisfies physical requirements
and acquires a «physical validity».

By examples which will follow we clarify concepts related to sepa-
ratrices and emphasize the usefulness of their properties in the investi-
gation of physical problems.

2. THEOREMS RELATED TO SEPARATRICES

The separatrices are intimately related to the singular points of the
system. It is the nature of the trajectories at the neighborhood of a sin-
gular point which guarantees the existence of separatrices through the
singular point. We give, without analysis or proof, statements of theo-
rems concerning singular points and corresponding separatrices, and the
formulation of these theorems is given as needed in applications.

Theorem 1. Given a «noncritical linear dyna-
mical system» in its normal form, if m is the number of the
solution curves through a point of the space W of its validity, we may
have the following cases:

a) For m = 1, the point is «regular», but for any other value of m
the point is «singular» ;

b) For m = 0 the singular point is a «center» ;
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c¢) For m a finite even integer, the singular point is a «saddle»
point, and all the solution curves through this point are «branches of
a separatrix» ;

d) For m = w0, the singular point is either a «node» or a «spiral»
point, and among the infinitely many solution curves through the point
some of them may be separatrices.

‘The above singular points are <«elementary singular points» and
characterize the linear noncritical systems.

Theorem 2. In «noncritical nonlinear systems»
it is the order of magnitude of the nonlinearities of the system which
decides on the nature of the singular point and of the corresponding
separatrices, and we have the following cases:

a) If the order of magnitude of the nonlinearities is appropriately
small, the singular point is «elementary» and the situation of separatri-
ces is as in Theorem A.

b) If the smallness of the magnitude of the nonlinearities can not
be restricted appropriately, the singular point is «nonelementary» and

the situation of separatrices is a complicated matter.

Theorem 3. We distinguish two cases:

a) In «critical linear systems» the singular point
may be elementary or nonelementary, and the separatrices will be in a
complicated situation, especially if the system has many singular
points.

b) In «critical nonlinear systems», orin «non-
linear systems without linear part» the phase port-
rait near the nonelementary singular point is very complicated. A small
neighborhood around such a point may be devided by separatrices into
sectors with this point as the apex. These sectors may be of «nodal»
(parabolic), or «elliptic», or «saddle» (hyperbolic) type.

We remark that there are cases very complicated, and only a few
results are known today for highly nonelementary singular points and
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the corresponding separatrices. The following theorem is due to
Bendixson [3].

Theorem 4. If asystem is the x, y-phase plane is given by
y’ = x~=[ay 4+ bx + B(x,y)] (12.1)

where B(x,y) is a polynomial of degree at least two, and a=£0, we
have the following four cases:

a) If «>0 and m = even integer, then there is only one branch of
integral curves tending to the origin on the left side of y-axis, x<0,
while integral curves on the other side, x>0, constitute a nodal distri-

bution ; that is, there is a coalescence of «saddle-nodal» points.
In this case there exists a separatrix through the origin.

b) If a<0 and m = even integer, this case can be transformed to
the previous case, and we have a coalescence of «nodal-saddle» points
(node at x<0, and saddle at x>0).

A separatrix exists through the origin in this case.

c. If a>0 and m = odd integer, the origin is a nodal point, when
a separatrix may exist.

d. If <0 and m = odd integer, the origin is a saddle point and
a separatrix exists.

The analysis of the above statements is based on the definition of
the separatrices, on the concepts of the «a-limiting» and «w-limiting»
properties of the separatrices, and on other concepts.

3. SOME PROPERTIES OF SEPARATRICES

Combining the definition of separatrices and results coming from
the theorems, one can find properties of separatrices, which are very
useful in applications. In the following we list some of these properties.

— The separatrices may be points, lines, surfaces, depending on the
dimensions and the structure of the dynamical system.

— There is no separatrix through a center.

— A separatrix through a singular point may be either a «a-limit-
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ing» or a «w-limiting» trajectory, when, starting from a point of the
separatrix, the time to reach the terminating point is «infinite».

— Separatrices starting from a singular point may terminate to the
same singular point, when they are «closed» separatrices, and they have
a finite length. «Non-closed» or «open» separatrices do not start and
terminate at the same singular point. They start from a singular point
and they may terminate either to another singular point or to infinity.
Some of these open separatrices may have finite length.

— Separatrices through a node have at this point a definite tan-
gent, and separatrices terminating to a spiral point move around it spi-
rally and they do not have a definite tangent at this point.

— An «isolated closed path» of a dynamical system, in case all its
points are regular, is a «limit-cycle» of the system, when it corresponds
to a periodic phonomenon with a fixed period. But, if this closed path
is through a singular point, the periodicity disappears and the closed
path is not a limit cycle, but it is a «closed separatrix». The limit
cycle is a separatrix according to the topological definition; but it
is not a separatrice according to the supplemented definition of

separatrices.

— The separatrices have important physical significance. We indi-
cate some of them.

They may determine the whole region of the validity of a dynami-
cal system and separate it from the «empty regions» which are without
real solutions of the System.

They may be boundary curves of the regions in each of which the
solutions are characterized by different stability situations, when the
separatrices are in a «neutral stability situation». This property is of

paramount importance in contemporary nonlinear control problems.

They may have some other physical meaning.

4. DETERMINATION OF SEPARATRICES

For the determination of the separatrices we see two cases. In
case we know the general solution of the mathematical model of the

physical problem, the determination of separatrices is identical to the
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determination of special particular solutions through appropriate singu-
lar points of the system.

In case the general solution is not known, approximate methods,
either geometrical, or numerical, or analytical, map help the investiga-
tion towards the determination of the separatrices.

Remark. We remark that the concept of «index» of singular
points, of trajectories in general and of separatrices in particular, intro-
duced by Poincaré, plays an important role for investigation of their
nature [5, 13].

5. EXAMPLES

In each of the following examples appropriate remarks are given

related to properties of separatrices.

Example 1. The separatrices in this example determine exactly
the boundary of the canonical regions, which are regions of the validity

of the system where real trajectories exist, and empty regions.

The dynamical system [4(a)] :

x?=1—x? y=1—y? (1.1)

has four singular points, the points (+ 1, + 1), which are points of
intersection of the lines x =—+1, y =+ 1.

The system (1. 1) corresponds in the x, y- phase plane to the DE:

1 —y?
= . 1.2
y — (1.2)
For the reality of the solutions of (1.2), the (1 —x? and (1—y?
must have the same sign, and this restriction helps to determine the real
regions of the validity of (1.2). By separating the variables and inte-
grating, one can find the general solution of (1. 2):

arcsiny T arcsinx =c; |z <1, |YI<1} (1. 3)

arc coshy + arccoshy =c; |x|>1, |y|>1
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¢ is the arbitrary constant. Figure 1 shows the phase-portrait of (1.3).
The separatrices are the lines x =+ 1 and y= 41, which sepa-
rate the whole x, y-plane into nine regions five of which have families

of real solutions and four are empty regions.

No real
solution
4

No real __ Noreal
solution solution

No real

solution

Fig. L.

Example 2. In this example we see that the separatrices, with
the help of some other curves (which are not separatrices), determine the
boundaries of the canonical regions, and that the common property of
each family of trajectories of the regions is a special stability situation.

The dynamical system:

x=x(x—1), x(0)=x,, t>0 (2.1)

. ; ; 1|
has as singular points the points x =0 and x = r The general solu-

tion of (2.1) is:
x (t) = 0 2. 2)

€Xg — (SXO—‘ l)e‘

of which the portrait is shown in Figure 2.
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The separatrices in the t, x-plane are the lines x =0, x = —,

t = 0. These separatrices, with the help

of the line: x|
€Xq t

t=10gm (2.3) €

v

separate the half t, x - plane, t >0, into

four regions of which I, II, III are real
regions of the validity of (2.1), and IV

b

is the empty region.

Example 3. There exist dynamical systems without singular
points, then without separatrices, of which the canonical regions are
separated by curves of nature different than the separatrices. In this
example these separating curves are «asymptotes».

The dynamical system :
x=2, y=y'—I (3.1)

is without singular points, then without separatrices. This system cor-
responds to the DE :

1
y =5 (2=1) (3.2)
of which the general solution is:
1+ cex
= 3
¥ = e (3.3)

The phase-portrait of (3.3) is shown in Figure 3.

The lines y =+ 1 separate the x, y-plane into three canonical
regions, and these lines are casymptotes» of the families of the solutions
of the regions. We remark that in the previous example, Figure 2, the
separatrix x =0 is an asymptote for the trajectories of the regions
I and II.
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Fig. 3.

Example 4. Here we distinguish the concept of a separatrix
from the concept of an envelope of a family of solution curves. Both
have the property to separate the region of the validity of the system
into canonical regions, but the separatrices are special members of the
families of the solutions, while the envelopes have not, in general, this
property but they are special singular solutions of the system, tangent
to all members of the families of the solutions.

We give appropriate examples.

a. The motion of a projectile in a vacuo.

1. We imagine all trajectories described by projectiles fired from
the same point O with the same initial velocity ¥, on a x, y - plane, each
trajectory corresponding to a different direction of firing ¢, Figure 4.
All these trajectories belong to a family of parabolas given by [6]:

g (1+m?x

o (4. 1)

y = mx —

where m =tan @ is the parameter, and g serves as a retardation.

For the envelope of the family (4. 1), we eliminate the parameter m
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between (4.1) and its derivative with respect to m, when the result:

2 2

ve gx
il g? 2v?

e VRN

Fig. 4.

(4.2)

a parabola, is the envelope. This envelope separates the points which
can be reached from those which can not be reached, and it is not a
number of the family (4.1), Figure 4.

The family (4. 1) has no separatrix.

2. There are other physical problems of the same nature, e. g., the
«caustics» in optics are envelopes of light rays reflected by a mirror.

Let us see another example.

b. Consider the DE :

2 = X
y — (4. 3)
which is equivalent to:
X

y =4 —— 4.4
Vi (4. 4)

valid in the strip |x|<C1. Its general solution is:
f=x*+(y+c)P—1=0. (4. D)

That is, a family of circumferences with centers on the y-axis
and tangent to the lines x =+ 1.

For every «regular» point of the strip two circumferences pass, but
this is not the case for the points of the lines x =0, x =-+1, which
are «singular lines». The lines x =+ 1 are boundaries of the strip and
they are tangents to every member of the family (4. 5), and these lines
ITAA 1979
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are «singular solutions» of (4. 4), envelopes of the family (4. ). There is
no separatrix in the family (4. 5).

We remark that in some systems, as in the Example 11, Figure 12,
envelope and separatrix exist and are identical.

Example 5. This example shows that the boundary of the stabi-
lity regions of a dynamical system may be not a separatrix. The system :

x=—y, y=f(x,y) (5.1)
with
—x +2x%%, if: x%?<1

Hxy) = —x, if: %2> 1

(5. 2)
has the origin as the singular point, which is in the region x%y?*<1,
when the appropriate equation in the x, y- plane is:

—x + 2x3y?
——-y )

[

(5. 3)

The eigenvalues of (5.3) are both real and negative, then the origin
is a «node», a «regular attractor», when starting from any point of the

A

B3 4

P

Fig. 5.

region x2?y2<1 and following the corresponding trajectory we will ter-
minate to the origin. The order of the magnitude of the nonlinearity of
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(5.3) agrees with this result. The phase-portrait of the solutions of (5. 3)
is shown in Figure 5. The curve x2y?=1, which consists of four branches,
determines the region of attractiveness of the origin. Outside of this
region the stability situation is different. The curve x2y®=1, which is
the boundary of different stability situations of the regions, is not a

separatrix of the system.

Example 6. By this example we see changes in the nature of
the separatrices by putting restrictions to the constants of the system [9].

Take the system:
x = x (a®—x?) + bx (6. 1)

which has the normal form :
x=y, v=x(a2—x2%-+by, abz0. (6. 2)
The singular points are O (0,0), A;(a,0), Ay(—a,o).
For the nature of the origin we find the characteristic equation
of (6.2):
A2—bh—a?2 =0
when the eigenvalues are:

by, = i—,(biVb + 4a?) (6. 3)

and since these eigenvalues are real and of opposite sign, the origin
is a saddle point.

For the nature of the points A; and A,, we use the transformations
x=%-+a, y=7, when (6. 2) is reduced to a perturbed system of which
the origin corresponds to A; and A,, and the characteristic equation of
the perturbed system is A2—bk 4 20* =0, and the eigenvalues are:

- % (b + VBT —=38a?). (6. 4)

We have two cases.

a. If b?<8a? A and A, are complex numbers with real part of sign
of b, when A; and A, are spirals, stable for b<0 unstable for b>0.
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Figure 6(a) has been drawn for A;, A, stable spirals. For unstable spi-
rals one merely reverses the arrows in this Figure.

The separatrices in this case connect saddle and spiral points and
have infinite length.

b. If b®>8a? A; and A, are real and of the same sign as b, when
Ay, A, are nodes, stable for b<0, unstable for b>0. Figure 6(b) shows
the case of stable nodes A;, Ay, and for unstable nodes we reverse the
arrows in this Figure. Two of the separatrices are of finite length and
two of infinite length.

y 1
= g

/
(

(
©

(a) b)

Fig. 6.

Example 7. Here we have a physical problem of biology or
economics in which the separatrices are calculated as special particular
solutions of the general solution of the model of the problem. In addition
we see a property of separatrices which is very important in interpreting
theoretical results.

There are many assemblies around us of which the elements
influence each other through competition and cooperation.

The «problem of population growth» isa problem of
this nature.

We discuss this problem as a biological problem, but, by appro-
priate changes in the meaning of the variables and the constants
involved, the problem can become a problem in other fields, as, e.g.,
in economics.
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We consider two coexisting species of population numbers x and y
at time t, both hunters, that is one species kills members of the other
species. By using appropriate assumptions, the correspondent mathema-
tical model is the nonlinear differential system [8]:

X = ax — CXy, y = by — dxy (7. 1)

x and y are positive integers, but they can be considered as positive
continuous functions of time. The coefficients «, b, ¢, d have a physical

meaning and here are taken as positive integers.

~

The equilibrium points of (7.1) are the origin and the point

b a S
A<?, ?>, and we can check that the origin is a «node», and A

a «saddle» point.

The system (7. 1) corresponds in the x, y - phase plane to the DE:

oo —dx y
=% a—ocy i
of which the general solution is:
yEo e~ = k. x?. e 3 (7.3)

The constant k in (7.3), which corresponds to the point A, is:

- (2) (@)

Inserting (7.4) into (7.3) one gets the equation of the separatrix
through A. For a specific case, let us take a =4, b=3, ¢c=2, d=1
when the point A and the constant k are: A(3,2), k=.218, and the
equation of the separatrix through A is:

2= = = 218", (1. 5)

An investigation of (7.5) leads to the Figure 7, in which the four
branches of the separatrix are the courves through the point A, and
these branches separate the first quadrant into the four regions I, II,
III, and IV.
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Starting from any point of any of these regions, we see that, as
t—>- o, one of the species tends to vanish asymptotically, while the other
species tends to become infinite. In addition, we see that the species y
eventually dissapears if the corresponding (x, y)- point is in the region

k=.218 =.218

Fig. 7.

I or IV, and we see the opposite situation if the (x,y)- point is in the
regions II and III. These results indicate a new property of separatrices,
and show how important it is to know the location of the separatrices
in the x, y - plane.

The origin 0 is a repulsor in the regions III and VI, and in III the
species x—> 0, while in IV y— 0.

Of course, due to the over-simplification of the model (7.1) of the
problem, the above results are somehow unrealistic. For better results,
the model of the problem must be modified by taking into account other
influences for the growth of the species, e.g., the food supply, etc.

We remark that the previous discussion, modified by suitable
changes to the problem and appropriate specification on the competitive
species and the limiting resources, might be useful for an investigation
of a problem of nature different than the above. E. G., one can have a

problem in the field of economics if the variables denote the size or
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extent of commercial enterprizes for a common source and for a com-

mon market.

Example 8 By this example we see how the separatrices can
be calculated in case of coexistence of many singular points, and also
that the spearactrices, either closed or open, may be of finite length.

If the system is expressed by the DE [11]
X+3x—4x34+x5=0 (8.1)

by using x =y, this equation can be reduced to
’ 1 2 2 (5
y'= o x (1) (2 3)} (8.2)

valid in the (x, y)- phase plane. The singular points are the origin and
the points (41, 0) and (4 V3, 0), and we can check that the origin and
(+ V3, 0) are «centres», while (41, 0) are «saddle» points.

The general solution of (8. 1) in the (x,y) - phase plane is:

y? = c—3x2+2x4—%x6. (8.3)

The value of the arbitrary constant ¢ of (8.3) corresponding to the

saddle points (41, 0) is ¢ = —g—, when the separatrix through the points
(=1, 0) is:

i— —;;— (4 —9x2+ 6x*—x5) (8.4)

of which the graph is shown in Figure 8.

94

Fig. 8.
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The separatrix (8.4) has four branches all of which have a finite
lenght. The branches around the points (4 V3, 0) are «closed», and that
around the origin are «open».

From this and the previous example we see a procedure for the
determination of separatrices through saddle points of the system, of

which the existence guarantees the existence of the separatrices.

Example 9. In these examples we see systems which have
infinitely many «open» separatrices with finite or infinite lengths.

a. X + o?sin x = 0. (9. 1)

This is the pendulum equation and it is equivalent to the system:
>;=y, y = —o’sin x, (9. 2)

o is the proper frequency. The singular points are infinitely may and

they are the points x = nm, n = integer, of the x -axis.

For even n the singular points are centers, and for odd n saddle
points. There are infinitely many canonical regions and infinitely many
separatrices running from a saddle point to the nearest saddle point.
Figure 9 gives the corresponding phase-portrait. The separatrices are
open and have finite length.

M
Fig. 9.
b. x + kx x| + o?sinx = 0. (9. 3)

The singular points are x = nx, n = integer, on the x-axis. For
even n are spirals, and for odd n are saddle points. The infinitely many
separatrices are of infinite length and run from a saddle point to the
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nearest spiral points, or they run from infinity to saddle points. Figure 10
shows the corresponding phase-portrait.

Fig. 10

Example 10. In this example we see an nonelementary singu-
lar poit of complicated nature.

We take the system in polar coordinates
. 2 o 9
r=r(l—r), # = sin®| - (10.1)
Its singular points are O(r =0, § =0), O;(r=1, 3 = 0).
The DE in the phase-plane, corresponding to (10.1) is:

dr - r(l—r) (10.2)

dd in? <1_‘))
S\

which can be integrated, and the family of the solutions r=r(9)+ ¢ is

shown in Figure 11.

Fig. 11,
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The separatrix is the circumference with center O and radius
0O0O; = 1. The origin is a repulsor or a negative attractor (unstable). The
point O; is a nonelementary singular point of complicated nature. The
line OO; and the separatrix divide the neighborhood of O; into four
sectors of which I and II are of <«hyperbolic» (saddle) type, and III and

IV of «parabolic» (nodal) type where O, is a positive attractor.

Example 11. The phase-portrait at the neighborhood of a
nonelementary singular point may be complicated, but the separatrices
through this point may be very simple; in addition «separatrices» and
«envelopes» may be identical.

This is shown by the present example [4(b)].

The system:
x =x(2y%—x%, y=—y(@—y9 (11.1)
corresponds to the DE:
, _ _ y@=t—yh ~
¥ = — Lty (11.2)

The origin is the only singular point and, since the system is

without linear part, this point is nonelementary.

The right hand member of (11.2) is a function of the ratio (y/x),
when by using the transformation vy = x - u(x) one can separate the va-
riables and integrate. The general solution of (11.2) can be found to be

x3 4 y3— 2cxy = 0, (11. 3)

c is the arbitrary constant. (11.3) is a one parameter family of curves
known as «Folia of Descartes». The equation (11.3) is satisfied at the
origin for any value of ¢, then all curves of (11.3) are through the
origin. Figure 12 shows the graph of (11.3). The axes of coordinates
are the separatrices. 'T'he first and third quadrants are elliptic sectors,
the second and fourth are negative nodal sectors. In this example,
although the origin is highly nonelementary, the separatrices are very
simple lines, the axes of coordinates. Figure 12 shows the phase-portrait
of (11. 3).
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Fig. 12. (Folia of Descartes).

We remark that

The derivative of (11.3) with respect to the arbitrary constant c
gives x =0, y =0, then the axes of coordinates of the above system
are «envelopes» of the families of the solutions of the system and are

identical with the separatrices of the system.

Example 12. In this example the nonelementary singular point
is of «nodal-saddle» type, and we have three separatrices.
The system :

x = —x5 y=y3—yxt (12. 1)

corresponds to:
o %‘;—ya (12. 2)

The origin is the only singular point which is nonelementary.

The phase portrait, shown in Figure 13, can be found approxima-
tely by, say, geometrical methods.

There are four sectors I, II, III, IV and three separatrices which
are the y-axis and the curve OO; and OO,. The 180° sector I has
negative nodal trajectories.

The origin is a positive attractor in the sector II. The sectors III
and IV are of saddle type.
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A,
A\

piig
A
s

Fig. 13.

Example 13. By this example we give a highly nonelementary
singular point, where the separatrices is difficult to be calculated. If
the system in its phase-plane is given by [5]:

x?— xy — xy?
*y_y__,f_lz _ (13. 1)

y = x
X2_y2__x2y2 X

the origin is the nonelementary singular point. Figure 14 shows the
graph of the solutions of (13.1) at the neighborhood of the origin found

Fig. 14.

by approximate methods. We have six sectors with apex the origin, of
which three are of hyperbolic type and three of parabolic type. T'wo
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hyperbolic sectors contain the line y=x in the first and third quadrants,
and the third hyperbolic sector contains the line y=—x in the fourth
quadrant. The six branches of the separatrix are the curves 01, 02, 03,
04, 05, 06 shown in Figure 14.

Example 14. At the neighborhood of the saddle points of the
previous examples, either elementary or nonelementary saddle points,
the behavior of the trajectories were characterized by the property that

these trajectories do not intersect the correspondent separatrices.

Fig. 15.

There are systems with saddle points at the neighborhood of which
the behavior of the trajectories is very complicated. The three-body pro-

blem and some problems of dynamics show this complexity, Figure 15
1, 2, 12].



286 ITPAKTIKA THE AKAAHMIAZ AG®HNQN

HEPTAHHWYIS

Al Sraywototixal xaumirar (AK) t@v dSuvaundy ovotnudrwv mtailovy omov-
datov pdhov elc v Fosuvav uowdv moofAnudrtwv TEéxovrog Evdiagpéovtog.
“Ouwg d&v vmdoyovy onuegov eidixa dmuootevpata dvagegdueva elg TOV YEVIXOV
mpoodioptopdv v AK, Smwg xal elg Tv yofiowv tdv Wdotijtov twv &g tv Epeu-
vav guowxdv meofAnudrov mocotxold timov, 6 Of mooodogonds twv elval
ag’ favtov fva omovdatov medfAnua.

Eig m)v magoloav #oyaciav didovral magatnoioelg xal eVQLOXOVTAL GUUITE-
odopota oxetixd ué TV Umagly xal tov meosdiogiopov tdv AK, dnmg xal ue
myv gofiowy @V Wdothrov tov elg v fosuvav xal founvelav @uordv mEo-
BAnudrov.

‘O tomohoyndg Gotopdg t@v AK ovumhnodverar xataldidog dote va yivy
yonfowog gig v Fgevvay moaxTix@®v meoPAnndrav, datvrdvovrar VYewpnpata
oxetnd ue tog AK yooig avdlvowy # anddeiEy, didovrar magatmenoes dia tdv
6moiov vmoBondeitar 6 mooadiogiouds tdv AK, toviCovrar ddtmreg tdv AK
yonotuol di Ty EQEvvav.

Awt tdv mogadetyndtov xatagatvetar 1 xonowmdtng @V dotitov @V
AK glc Eaopoyas wnvoiwg. *Ex t@v drotiitov adtdv tovifovrar dvo xvolwg :

(@) : af AK elval dvvatéy, wévar twv #) xal pe v Bondeiav xai dhlwv
xaumvh®v, v meosdiogifovy ta ywoia Smov ta duvapwa cvotiuate Exovy Aloelg
TooymaTIKdg Gmo T ywola Gmov dev vmdoyovv xdv Avoels,

(B) : ai AK daymoilovv 10 ywolov moosdiogopod 1@V cvotnudrov elg yo-
ota, Gmov ai Aloeig #yxovv dwapdogovg xatactdoels evoradeiag Exaoctov ywolov,
6méte ai AK evotoxovrar vmo «ovdetéoav» xatdotacty svotavelac.

‘H idi6tne abty tdv AK eivor neyding onuaciag sig moofAinata ebota-
Yelac tic vewtéoag dewolag «ui) yoaumxdv cvotnudrov EAéyyou».

‘H napoloa goyacia V& cvuninewdi xatarldiiwg modd ovvrona.
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