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SUMMARY

The tsunamis are not an infrequent phenomenon in the seismic histo-
ry of Greece. People, however, are unaware of their destructive efficiency.
Due to this event a lot of good observations were made and a series of
pictures were taken of the seismic sea wave, which followed the great
shock of July o, 1956 (36°.9 N, 26°.0 E, H = 03:11:38, M = 7 /,).

They have observed three large waves at intervals of from 5 to 15
minutes. From the course of the wave, the time of arrival and the height
it had attained on the Islands Amorgos and Astypalaea, it appears that the
wave had started 36°8 N, 26°.2 E from the steep slopes of the submarine
trench, which is near the southeast coast of Amorgos Island. From the
rather reliable times of the first fall of the water, which were reported from
Kalymnos (03:25), Patmos (03:30) and Grete (Palaeokastron, 03:46), the
average wave speed was estimated at 87 m/sec., 62 m/sec. and 86 m/sec.,
respectively. The estimated speed is in accordance with the depths en-
countered in the traveling of the wave. From the tide gauge observations
on Leros and the long duration of the tsunami at near-by coasts (24 hours
on Astypalaea and Leros), it was concluded that after the principal shock,
probably four other submarine landslildes were set off by the long sequence
of the aftershocks; as the amplitude of the wave on Pholegandros points
out, this occurred at least in the case of the second major shock (36.8° N,
25°2 E, H = 03:24:05, M = 7).

OEQPHTIKH ®YXIKH.— Subharmonics of order one third in the case
of cubic restoring force. Part II, 4y Dem. G. Magiros*. *Avexoi-
vaydn dxd tod % Baocid. Alywirov.

Introduction
In this paper we discuss briefly the subharnonics of order one third

in the case of a cubic restoring force.

The properly transformed equations, that give the components of the
amplitude of the subharmonics, contain, if the amplitude of the external

* AHM. MATEIPOY, Iepi tdv dnoxppovIndV Taravidoenv Taieng Evog npdgs Tpix.
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force takes the values of an interval given in the paper, the ratios of the
coefficients of the damping and the restoring force, and these ratios, un-
der certain condition, can have any values, the coefficients themselves need
not necessarily be small, a case very important in many engineering prob-
lems. We solve here the problem of subharmonics, their existence and sta-
bility, in case of given coefficients of the damping and the cubic restoring
torce, and the amplitude of the sinusoidal external force. An example is
illustrated and the corresponding sketch of the singularities and the inte-
gral curves in the whole plane, which is separated into proper regions, is

given.
§ 1. The equations for the components of the amplitude of subharmonics.
The equation to be solved is:

(1) 0 +kQ + ¢,Q + Q" + 6,Q°=Bsin 3.
By using:

(2) e, byt Bl , Ce=¢Cs ,

the equation is transformed into:

(3) Q+Q=ef(Q,Q)+Bsin3r,
(30) £(Q,0)=—kQ + ¢,0 —c,Q"—c,Q".

In case £=0, the solution of (3) is given by:
. B .
(4) Q=xsint—y cost— 5 sin 3r,

where x and y are coustants, known for given initial conditions.
In case ¢#0 we try to determine the steady state solutions of the

equation (3), i.e. the constant limits: x(g, 1), y(e 1), according to the pre-
g—>0 e—> 0

vious paper, part 1.

For this we have to find the functions Ao(x,y) and Co(x,y), of the
paper [I]. These functions come from the equations (27) aud (28) of the
paper [I], if we put n=3 and x and y instead of u, and u, respectively, when
the result is:

! D. G. MacIros, Subharmonics of any order in case of nonlinear restoring for-
ces, Praktika of Athens Academy 32, 1957, pp. 77.
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1 3 . . B\ 3
A, y)=75 {—kX~cxy+zcsy(x +y +§)_ﬁCsB Xy’
(5) il 3 ) ., B? 3 2 5
Co(x, y)=§ {c,x——ky——zcsx(x T +-3§) + ECBB('—X +y )} ;
and the equations which give the unknown x and y are:

= - s, B? 3 -
kx+c,y~—z csy(x +y +§)+WBxy——0,

(6)
3 B? 3
L Csx(x”' i 5 32‘) + 33 B (—x*+ y°) =0.
In the cace ¢; 20, (6) can be written as:
B: 1

ey =y (x4 ¥+ 5g) + 5 Bxy =0,
(7) B? 1

AX“MY"X(X’+y’+§~2—)+§B(——x”+ y3) =0,
with :

il 4k

i ;\..,.3. Cs , T

We ask for «real solutions» (x,y) of the system (7).

Remartks. From prescribed initial conditions of the equation (3), say Q. and
Q. at 1=0, we have, according to (4),

s 3
(80() QO:——Yv QO=X—-§-B1
when the given initial conditions correspond to the point:
: 3
(BB) X:Qo'l'g’B) Y—-'—Qo,

in the x,y—plane, which is the «starting point».

Starting from the «starting points and following the corresponding
integral curve with the lapse of the time we can terminate to a «final
point», which corresponds to the proper steady solution. The coordinates
of the «final point» are solutions of the system (7). Given the initial condi-
tions and the amplitude B of the external force, the «starting point» in the
X, y—plane is defined; conversly, any point of x, y—plane can be taken as
«starting point» by properly choosing the initial conditions and the ampli-
tude B.

If the «starting point» is celected in coincidence with a «stable final
point», no «transient phaenomena» must exist.

§ I1. Restrictions to the coefficients of the equation (1).

Jif:

B?
(8) el poigee © 1'—x'+ ¥,
the system (7) is written as:
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1
ux + hy — Ay =— 5 B(2xy)
(9) .
)x—uy—sz—gB(—x”ﬁ- ¥

Squaring and adding (9) we find:

(10) N4 AT 2A0 =g 1
eliminating A between (10) and (8) we have.

B¢ B2
(11) f+( B"‘—%)r +(P+u+3,,—AT6):o,

the roots of whxch are:

(11a) 1= [21_~ B+ \/(QA—W—B)— 4(A’+1T+ o . ﬁ:)} :

The reality of r* requires:
(12) = R 2eNB - 214 <10
The roots of: 1=0 are:

(13) B’='2;(1—(Ai\/k”——7u’),

then the condition (12) requires the following condition to be fulfilled:
o) ¥—n )0,

1)y Ed (x—\/k—w) <B=<Z (14 \/x—?g)

By using (7a) and (2) we find the following restrictions for 1;, Ch E,, B:

(s | S El—é 2 k \ 9 e
2 5‘7( ];1—\/( - ~7(—é;))53253.7( e

+y (52 -7(2))

k
The inequality (15a) can be writ-

ten as:

(L=e-vTE) (1 5+ 7k)>0,
' then only the shaded region in Fig.
1 is valid in the &, 1-<—plane.

From (11) or (11a) we can draw
r?, versus B’ and by using (15p) we

can have the arcs of the diagram
which are valid in our problem.
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§ I11. The solutions of the system (9).

The system (9) can be written as:
1

(w+By)x +0—A)y =0,

1 1

73— — Ak + (u—-s—By)YZO :
The vanishing of, say, the Sylvester’s eliminant, which is the condi-
tion for common roots of (16), leads, for non-zero roots, to the cubic:

4 2[ 2] 4p\® 45\ g =
) y-3(g) {a—ar+w|y—2 (%) —2(F)na—ar=o
By knowing the coefficients of (1), we know, from (7a) and (2), A and

u, then the amplitude r from (11a) in its two values. On the circumference
with radius r there are one or three singularities, of which the ordinates y
are the real roots of (17), when for their abscissas we apply the Pythago-

ras theorem. The singularities (x,y) are therefore at most seven, included
the origin, which, in every case, is a singularity.

§ IV. Example :

. - 1
Given: «B:4,k=%’él:1%vés=—§-».
We can find is this special case:
1-8 o W Ry 8 0 -2
I % =3 & & 58 ap=—p
(18) 'lrf:2, 122125, r,=1414, r,=1118,
A, =25H 6 A?=626, A, =115, A:=3,06,
then:
) i
g . A-ghta=%
(19) 15 b

ﬁ) yg_'ﬂ;‘}’z‘l"—]‘gzo-

Each of these cubic equations has three real unequal roots:

(202) v1:.=0,9996, y,=—1,3645, y,=13645,
the first, and

(21) Y2 201082, y..=—1,1084, y,;=1,0431
the second, when the corresponding abscissas are:

(208) X, =0,9996 , x,,=0,3648, x,,=—0,3648,

(21p) Xp: =0,8672, x3,=0,1755, =x,3=—0,3991.
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§ V. The stability of the solutions.

For the study of the stability of the solutions the number & enters.

The number ¢ must be such that:

i
(22) IEI < m )
according to paper [1], § IV, y.
If in (22) the initial time t,=0, by taking arbitrarily e=1, this means

that the max t=T is taken according to:
r
(23) T<g

Take now the partial derivatives with respect to x and y of the
functions A.(x,y) and C.(x,y given by (b). By establishing the restriction
(23), which corresponds to ¢ =1, these partial derivatives can be written ac

follows :
aéz’Ea,:%é,{—é'l‘%XY“%BY}’

(24) ?g“a’zéés{“lgfl +4(x 8y + 35)— 15 Bx
a&sbl:—}—és{l;‘é' —%(3x“+y’+%)—f—6Bx}’
3G, 3

The characteristic roots, which help for finding the type of the singu-
larity, according to § VII of paper [1], is:

a,+ byt \/la, — b+ dab, |

(25) P12 Z%

The computation for the singularities of our example, the coordinates
of which are given by (20a,8) and (21a,8), gives:

0: The origin x = 0 5 =00 1 «stable spirals
I: The point x;,= 0,9996 y,= 0,9996 : > »
II: » » Xp= 0,3648 vy, =—1,3645 : > >
(26) Ihr:  » » Xys=—0,3648 vy,,= 1,3645 : «saddle pornt»
IV: » » Xgg=— O,8675 §a,=""01082 : » »
V: » » Xag= Q1755 Vag=—1,1034 : » »
| VI : » > Xos=—0,8991 ¥y,;= 1,0431 ; > »

The origin corresponds to <harmonic solution», which, as stable, is
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acceptable. The points I, II, III are on the circumference with radius
r,=1,414. The ponts I, IT correspond to acceptable stable subharmonic so-
lutions. The points IV, V, VI, which are on the circumference with radius

r,=1,118, are «intrincically unstable».

§ V1. Non-existence of limiting cycles.

From (24) we have:
A, , 8Co -
(27) T s i k
valid in the whole x,y-plane, and according to the Bendixson’s' criterion
no limit cycles can exist in the whole x,y-plane.
For k=0, some of the singularities may be «centers», then we may

have «closed integral curves».

§ VII. Sketch corvesponding to the above example.
Applying the «method of isoclines» to the differential equation:

. dy _ Colx,y)
(28) dx = Adx,y)’

Fig. 2

! 1. BENDIXSON, Acta Math. 24 (1901), 1-88.
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where the functions A.(x,y) and C.(x,y) are given by (5), we can have a fi-
gure showing the singularities, the integral curves and the separation into
regions corresponding to the above example. In Fig. 2 a sketch of these
things is given.

The solid lines are the boundaries from the saddle points, the dotted
lives are the integral curves. The regions: (a,), (a), (B) and (B, cor-
respond to no solutions of our example. The regions: (e,), (e,), (es) and (e,)

! . e .
correspond to «stable harmonic solutions: Q:—gsm.‘-}r. The region (c)

correspond to «stable solutions: Q =0,9996 sint— 0,9996 cosr-% sin 3 1;

and the region (d) correspond to «stable solution»: Q =0,3648 sin v 4 1,3645
1. - % s

cos t— 5 sin 3v. The amplitude of the subharmonic term in the last two

stable solutions is the same: r,=1,414.
OEPIAHWIS

Elg thv 8pyaciav tadtny culnteitar év ouvromia ©6 (Armpa Tév Gmoxpuovi-
2BV Tahavtdoswy tdlewe &vog mpog Tl elg Thy wepimtwow xuBixic cuvapThcewe
THe ghaoTindic duvdpewe. Of ouvtedeotal 17 Srxpopindic 2Eisdoewe elvar dyt x0T
AVEYRNY LXPEBY TULGVY.

Ai EEwdoee al didovoal T GUVIGTHOXE TEV HTOXPLOVIXGY TEQEXOUY TX T07-
Axoe Tdv cuvTelesTdy THe ElacTixdc Suvdpewe xal THe dvTisTdoswe (damping) xod
T& mnhixa adta 0o Sedopévag quvdixag Sdvavrtar v Eyouv olaaddmoTs TLLKS, XWelg
va elvar dvayxaiov va deyddpey pinpig Tipke ik Todg cuvTEleaTRE, TERITTWSLE WO
onpayTind) elc WM& mpoPfMuxTa TAY ph yeapuwdy Talavtooswyv. Eiploxovtal
gvtabdx af cuvicTdoot T@dY Gmoxppovindy, SpenviTtor TO (ATpa TR Omdpfews xod
edotadelas Twv elg Thy mepinTwow EEwTepndic Suvdpews Hurtovostdolg Tomou Hmo
mA&Tog petaBhnTov elg dedopévoy ikoTnua, Sidopévwy THY cuvTEresTEHY TH EhaoTi-
xHg duvapeweg xal THg dvtioTdoswe. AfdeTar mwopdderypo xpilpnTixoy dg dpappoyh
Tig Yewplag, naddg xal oyedidypappa dvricToryoly elg T6 mapxderypa adTd.

OPTANIKH XHMEIA. —Mehérn mepl Tdv pi) CUPOOILOV GO Ao®V TOV
oTa@UA®V %al Tdv otapidwv did yowparoyoapiag xagrov, ixo Ave.
Nuwvij xai Magiag Nuvvii'. "Avexowvddn 910 10b x. "Epp. "Eppavovil.

* Qa dnpooievdij xartwiéow.



