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for anisotropic bodies was done by Hoffman’s criterion, which is the Hill
criterion, but incorporates also the strength differential effect by adding
the missing linear terms in the quadratic expression of Hill’s criterion [3].
However, this addition resulted in a destruction of the tensorial invariancy
of Hill's criterion, but gained the advantage of describing correctly the
yielding behaviour of real engineering materials.

The old generation of yield criteria has sacrified exactness to the altar
of simplicity and convenience, by profiting from the advantages of the ten-
sor invariancy, and thus abolished the inclusion in these criteria of the impor-
tant universal phenomena of the mechanical behaviour of the materials,
such as the Bauschinger effect and others based on the strength differential
effect.

From these criteria only the Coulomb or internal friction yield and
fracture criterion incorporated the strength differential effect absolutely
necessary to describe the yielding behaviour of brittle materials where this
effect is very important [4].

The new generation of yield criteria was remodelled on Hill’s criterion
and its modification by Hoffman. They are based on energy balance consid-
erations, and they are mainly the 7'sai-Wu tensor failure polynomial (TFP)
[5] and the elliptic paraboloid failure surface [6]. Both are described by quadric
surfaces and present the fundamental property to comply with basic physica!
laws.

The tensor polynomial criterion is formulated by means of a series of
Cartesian components of the stress tensor. It is represented by hypersurfaces
in the six-dimensional stress space, which is impossible to be conveniently
visualized geometrically in the physical stress space. Only plane sections of
this hypersurface were possible to be studied which represent quadric surfaces
in the Cartesian (oy, oy, oy )-parametric space. However, even these sub-
spaces do not yield a direct interrelation between the externally applied load
and the material strength directions, a drawback necessitating meticulous
and delicate experiments for its establishment. On the other hand the TFP-
criterion is an excellent instrument for evaluating the influence of the change
of one failure parameter on the values of the remaining ones. Thus, the ten-
sor polynomial criterion constitutes for the anisotropic bodies what the Mohr
circles yield graphically for the isotropic materials.
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The elliptic paraboloid failure surface (EPFS) was introduced by the
author [7-9] by extending the domain of general failure surface for isotropic
materials presenting the strength differential effect, which is defined by the
strength differential parameter R=oy;/0,p, Where oy, and o, are the
yield stresses in compression and tension respectively. Then, the paraboloid
of revolution failure surface for isotropic materials becomes an elliptic para-
boloid surface for orthotropic materials, where six strength parameters,
three for tension and three for compression along the principal strength axes
of the material define three different strength differential parameters
R3,=063,c /06317 R33=033¢ /639y and Ry =6y, /0y,p. For transversely isotropic
materials where R;,=R,, (the ¢,-axis is assumed as the strong axis of the
transversely isotropic material) the failure surface remains an elliptic para-
boloid surface, but it presents some symmetry with respect to the principal
strength axes, having as plane of symmetry the principal diagonal plane
(64, 8,5), Where o, is the strong axis and 3,, is the bisector of the right angle
(oy, 6,) along the plane of isotropy.

A property, which is maintained in this family of yield criteria, that is
the isotropic, the transversely isotropic, as well as the orthotropic materials,
is that the axis of symmetry of the failure surface is that their axes of symme-
try coincide or are parallel to the hydrostatic axis in the stress space, besides
the fact that all failure surfaces are paraboloids. This comes from the fact
that, independently of the isotropy or anisotropy of the material, the conse-
quences from an arbitrary external loading (¢,=06,=0,) should be independent
of direction and, therefore, the hydtrostatic axis should be an axis of symme-
try of the failure surface [10-12].

In this paper the properties of the elliptic paraboloid failure surface
are studied for the general orthotropic material. It was shown that now the
EPFS ceases to remain symmetric to the principal diagonal plane, but it
is shifted and angularly displaced toward the middle strength ¢, of the or-
thortopic material. The consequences of this angular displacement and shif-
ting of the EPFS were studied and important results were derived.

THE EPFS FOR THE ORTHOTROPIC BODY

Since any failure criterion for isotropic materials may be considered as
a degenerate case of a general condition describing failure modes for aniso-
tropic solids, the fact that the paraboloid of revolution failure surface describes
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excellently the yield behaviour of any isotropic material presenting addi-
tionally the strength differential effect (SDE) (R51.0) constitutes a serious
motif to extend its validity for anisotropic bodies.

The main features which must be conserved in this extension are: i)
that the yield surface must be described by a quadric equation with some
modifications taking into account the contribution of anisotropy and: ii)
the axis of symmetry of the new surface must remain parallel to the hydro-
static axis, because of the invariance of the influence of the external loading
on the anisotropic material.

Assuming that the principal failure strengths in tension and compression
are expressed as oy and o respectively, with i=1, 2, 3, and the o,-axis is
the strongest one, the general form of the elliptic paraboloid valid for the or-
thotropic material is expressed by [12]:
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where the double index convention is accepted and the indices (i+1) and (i +2)
in the second LHS term are to be understood as integers modulo three. More-
over, the following symbolism for simplification is adopted: o,=0,, 033=0,
and o;3=03.

It should be noted here that, since Eq. (1) is valid only when the princi-
pal stress directions from the externally applied load coincide with the prin-
cipal strength directions of the material, care should be taken, to assure
this coincidence. Otherwise, for a random orientation of the o,, o5, o;-prin-
cipal stress axes, relatively to the principal strength directions, there is
another elliptic paraboloid with the same properties as the previous one,
whose failure strengths o, and o; should be conveniently calculated from the
angular displacements of the two systems. In the following we shall assume
a general orthotropic material loaded conveniently so that its principal
strength directions coincide with the principal loading directions.

We refer now Eq. (1) to a frame Oxyz related to the (s,, o,, 6,)-principal
stress direction frame by the following relations:
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Equations (2) indicate at once that the Oz-axis coincides with the
hydrostatic axis, subtending equal angles with the principal directions (cosa,=
cosa,= cosa, = 1 /v/3). Moreover, the Ox-axis lies on the (o, oy)-principal
plane and the Oy-axis lies on the principal diagonal plane (o3, 3,,), Where
3,5 is the bisector of the 616 o,-angle. The Oxyz-system is a tri-orthogonal
right-hand system. It may be readily derived that the angles subtended by
the Oy-and Oz-axes with the cg-axis are equal to 35.26° and 54.76° respec-
tively. Figure 1 presents the mapping of the EPFSin the three-dimensional
stress space (o, oy, 63), as well as in the Oxyz-frame.

Equation (1) referred to the Oxyz-frame is expressed by:
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The presence of both linear terms with respect to the Ox- and Oy-axes indi-
cates that the EPFS for the orthotropic materials has its axis of symmetry
eccentrically positioned relatively to the principal diagonal plane lying on
the side of the intermediate principal stress, o,.

The intersection of the EPFS with the deviatoric plane, z=0, shown
in Fig. 2, can be readily derived from relation (3) by putting into the general
form of the expression for the paraboloid z=0. Then we have:
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Fig. 1. The elliptic paraboloid failure surface (EPFS) for the general orthotropic material
as it appears in the three dimensional (o}, o,, og)-space and its connection with the Oxyz-
and O"x"y"z"-Cartesian frames whose 0z- and O’'z"-axes are coincident or parallel to

the hydrostatic axis.
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The coefficients C, G, F defining the position and form of the parabo-
loid are given by [10]:

C=(ab-h?), G=(hf-bg) and F=(hg-af) (7)
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1%ig. 2. The intersection of the EPFS by the deviatoric plane z=2""=0 and the position of
the ellipse of intersection relatively to the Os,s,sy-deviatoric system.
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Then, the polar distance r,=(00’’) between the origin O of the initial
frame Oxyz and the point O of piercing the deviatoric plane, the axis of
symmetry of the EPFS, normalized to the maximum failure stress in tension
opg, 18 given by:

T, _ (G*FY)7
Or3 G 8

With the quantities C G E I’ and d evaluated from the particular val-
ues of a, b, h, g and f for each material, it is a routine work to define the shape
and position of the EPFS belonging to some orthotropic material.

We define first the coordinates of the point O’’, where the axis of
symmetry of the EPFS for the orthotropic material is piercing the deviatoric
plane z=0, which contains the Ox- anf Oy-axes. These coordinates x,, yo,
according to the theory of the paraboloids, are given by:

G F
Xp= -T*md Yo = < (9)
where G, G and F are given in the appendix, as well as in ref. [13]. In the
appendix are also given the explicit expressions for the coordinates x, and y,
of the center O’ of the ellipse representing the intersection of the EPFS and
the w-plane. The angle ¢, subtended by the polar radius OO’ and the Ox-axis
in Fig. 2 is given by:
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For the transversely isotropic materials it can be readily found that G=0
and therefore the coordinate x, is always zero. This means that the EPFS

20
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for transtropic materials is always symmetric to the principal diagonal plane
(63, O49)-

The position of point O’ of the center of the ellipse which coincides also
with the point where the axis of symmetry of the EPFS is piercing the devi-
atoric m-plane depends on the values of F- and C- quantities. A full discussion
of the position of the center O’ is given in ref. [13].

THE INTERSECTION OF EPFS BY THE n- PLANE

The intersection of the EPFS by the deviatoric plane is derived from
relation (4) by putting z=0 and is given by:

ax?+4-2hxy +by?+2gx +2fy +¢=0 (11)

This curve is representing an ellipse under certain conditions discussed in
detail in ref. [13], which generally are met for typical fiber composites satis-
fying the stability condition [12]. In relation (11) the constants a, b, ¢,
h, g, f are given by relations (5).

The equation of the EPFS in thenew O’'x’'y’’z’’-frame, whise O"'x"'-
and O''y"’-axes coincide with the principal axes of the intersection of
EPFS and the =-plane, is expressed by:

ax"?+4+ by 2412 =(1-fy,gxo) (12)
where the coefficients a, b, T are given by:

2 a=(a+b) +{(a-b)*+4h?]" (13)
2b=(a +b)-{(a-b) +24h2]"2 (14)
r=I'/2 (15)

It can be readily shown, after some straightforward calculations, that
the equation for the elliptic intersection of the EPFS by the deviatoric
n-plane is expressed by:
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where the quantities a;, a, are given by:
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where g and f are the coefficients given in relations (5) and the quantities
3, & m are expressed by:
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Moreover the angle &, subtended by the O"’x""-axis (or O”y”’-axis)
and the Ox-axis (or Oy-axis) is given by:

v 30130¢3(011001—0ra0¢2)

00= —1- tan-l [
2

(19)
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Similar ellipses, but of different sizes, are produced by intersections
of the elliptic paraboloid by planes z"=c parallel to the deviatoric plane.
The sizes of these ellipses are diminishing as we approach the vertex of the
paraboloid.

It is worthwhile pointing out that, depending on the relative values of
the individual strengths oy, o, it is possible for certain orthotropic mate-
rials that the EPFS has its apex either on the tension-tension-tension octant
of the stress space, or on the compression-compression-compression octant.
The first group of materials is called compression strong (C-strong) materials,
whereas the second group is called tension strong (T-strong) materials.

Compression strong materials are almost all orthotropic materials,
but there are a few exceptions like the paper sheets and the oriented poly-
propylene, which are T-strong materials. For a complete discussion of the
conditions under which one material may be T-or C-strong see ref. [9], where
an extensive study for transversely isotropic materials was undertaken.
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As soon as the expression for the elliptic paraboloid is established in
the O"x"y"z"-frame, it is easy to define the distance d, of the vertex of the
elliptic paraboloid from the deviatoric plane. This can be found by putting
x"=y""=0 in Eq. (12). Then, we derive that:

4" — v'3 (1-fyo-gxo)
U 1 1 il 1 1 1
EDEDETN -
011 Ogy Opa  Oga Or3 Ocs

On the other hand, the distance d, between the origin O (Fig. 1) of the
initial Oxyz-system and the point where the hydrostatic axis, Oz, is piercing
the surface of the elliptic paraboloid is expressed by [12]:
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THE INTERSECTION OF EPFS BY THE (c3 o,) — PLANE

The equation expressing the intersection of the EPFS by the (o3, o)-
principal stress plane is readily derived by putting into Eq. (1) the value 5,=0.
Then we have:

H,0* +H,50% +2H 050, +-h 0, +hyz0,=1 (22)
where:
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e (-2 ) ()
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Relation (22) represents an ellipse if and only if certain conditions are
satisfied which are generally met for strong fiber composites [12].

The center of the ellipse of the intersection of the EPFS and the
os,6-plane has the coordinates:
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1 (haaHsi_huHh), 1 (haaﬂsl“huHaa)
2 ( HﬂHsa"H’si) 2 (HuHaa“‘H’ai)

(‘701,0'03) =

(24)

The system of Cartesian coordinates (Ma, ,), to which this ellipse is central,
represented by (o - o,) in Fig. 3, is angularly displaced relatively to the (o3,
o,)-system by an angle 6,, subtended between either o, and o, or 5, and o,
and it is given by:

91-_—: —1" tan? [——2—};3—1——J
2 H33 Hii

(25)

(Oriented PC)
Q
ﬁ—c :
0,
0p3265.20, 024270 MPa
R 0= 40.20, 0, =48.60 MPa
07,235.20 0, =65.20MPa
01"?»36.92 MPa Ay =30.25°
a,468.88 MPa 9, =9533°

Fig. 3. The intersection of the EPFS by the (o3, oy)-principal stress plane for an oriented
polycarbonate with different strengths along its principal axes.

Figure 3 presents the intersection of the EPFS for an orthotropic ma-
terial by the (o5, o,) principal stress plane.

The equation of the ellipse expressed in the new coordinate system o,
o, 18 given by:
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detA,
detA, (26)
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where the coefficients a and b are expressed by:

a
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and the determinants A, and A, are given by:
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detA, = —detA,— % [H,h?%, +H,zh?%, +h b (H, +H,,—H,,)]
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The lengths of the principal semi-axes of the ellipse, a;u and agy,
are given by:

[ detA, ]Vs [ detA,
alM= f— 3 = —_—

= oyt = | —=
adetA, |~ bdetA,

(29)

The intersection of the EPFS corresponding to an oriented polycarbonate

material by the (o3, o,)-principal stress plane is presented in Fig. 3. The

characteristic failure strengths of the material along the principal directions

are given by:

073=65.20, 603=42.70; 65,=140.20, 65,=48.60; 64,=35.20, 65,=45.20MPa.
The coordinates of the center of the ellipse are:

a,u=-3.03MPa, azsy=10.63MPa

The polar radius r,=(OM)=11.05MPa, while the center M of the ellip-
se is lying in the second quadrant of thes,, o,-plane. The principal semi-
axes of the elliptic intersection are given by:

a,y=39.45MPa and agy=>57.98MPa
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while the angle 0, subtended between o, and o,-axes, is given by
0,=1590. Finally the angle 2,, subtended by the polar radius r,=(OM) and
the o,-axis, is A,=106.490.

The angle 2, subtended by the r,-polar radius and the o,-axis in Fig,
3 is expressed by:

7\1=tan'1{ by, (Hyy—Hg5)—H,y(hy, +2H;;) } -
hy(Hyy—H,)—H;3(2H , + hys) (3%
Finally, the angle 0, indicated in Fig. 3 is expressed by:
tan20,= O146¢10T20¢ T 012002013003 — 07400407303
61962 (674001 —0730¢3) (31)

Angle 9, for the oriented polycarbonate was found to be 6,=159°.

The two other intersections of the EPFS by the principal stress planes
(o9, 63) and (o4, o,) may be found by replacing in relation (22) the coefficients
and the principal stresses with indices 1 and 3 by the indices 2 and 3 and,
on the other hand, by 1 and 2 and using the respective values for the coeffi-
cients Hy;, Hj; and hy.

However, since oy, and o, are the intermediate failure strengths the
differences between oy, og; and oy, 6gy and, on the other hand, opy, og,
and oy, o¢y are always smaller than the respective differences between oy,
6c3 and oy, gy Then, the elliptic intersection in the (o3, o,)-principal stress
plane presents the strongest anisotropy and, therefore, it constitutes the most
important intersection concerning the phenomena of anisotropy of the material.
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APPENDIX

The expressions for the quantities C, G and F are give by:
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The coordinates x,, y, of the center O of the intersection of the EPFS
and the deviatoric w-plane are expressed by:
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Tpomov p& Gy=0y, GptleTar dmd TV ywviav Topic Tol og-&Eovog xal Tob peilovog
&Eovoc Thg EMeLmTixdig Topiig Tol mapaBoroetdols Hmd Tol dmoxAivovrog émimédov,
dedopévonr 8tu dupbdrepa Ta TapaBohostdi, Tol dpbotpdmov xal 7ol dvrisTolyov
gyrapolng lootpbmon péoov, Surtnpolv Todg &Eovag cupuetplag Twv TarpaAAAovg
7pdg TOvV BdpocTaTindy &Eova Tol YMpov T&Y xvplwy TdoEwY 6, =63=03.
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Al Topal 7ol mwapaBorozidols Tob dpbotpdmov GAuxol &md T wdpix Emimeda
&Y TAoswY (0163), (0s03) xal (036;) nabdg xal &md 76 &moxAlvov Emimedov
drodeinvietal Gt efvar wdw ENdelders T&v dmolwy # Oéoig, 6 wpooavaTohowds nal

[ 4 ’ ~ Y2 S 14 e ! : ] e ~ ~ A

al Srxatdoeic TGy xvplwy dESvey T Sptlovral 310 AmAGY oyeTinds TOTWY.

*Amodeivietot éx TéY Epappoydy 81t Sk petafoliis THe Evdiapéoon dvroyiic
700 plotpbmon Yol petakd T@v dxpatwy dplwv Tév dvroxdy dmd Tag doheveoté-

4 \ b ! ¢ ~ 9. ~ ~ N/ < 1 ~ ¢
pug péypr Tag loyupotépag, ai Béoeig T@v ENetmTindy Topdy, idla dmd TGV xwplwy
¢mnédoy T8y Tdoswy, 3&v petaxwolvral onuavixés and T avrictolyovs Béoet
dix 70 loodlvapoy Eyxapoing iobrpomoyv UMby, yeyovds mob émitpémel ThHY YpTiowy
Qv amAovoTépry TiTwY Tob Eyxapcotwg lootpdmon péoov Sk mepinTdoelg dploTpé-

e ~ ~ € ! € 9y V) 3 \ I 14 A ~ 3
Ty Vb, T6Y 6molwy 7 &vdiduecog dvtoyl mAnordlel Exarépav TV dxpatwy
Gvioyév 1ol péoov.

“Ohar ol edpebeiont cuvlfxat, ol loydovoat S To ENdetmrind mwopaPohoetdF
S T dpBbTpoma xal T Eyxapoing iodrpoma péoa yeotwedovy Sk TV xaAvTépay

ouomolno TEY HAK®Y adTdy elc TRE RATAGREVAS.
PNOLL



