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MHXANIKH.— Composite Structures in Commercial Aircraft: From Research and
Development to Field Experience, by Corresponding member of the Acad-
emy of Athens James C. Seferis, and Shangying Zeng, Alan G. Miller,
Donald S. Krebs and Carlos Blohm*.

INTRODUCTION

Composite materials are opening a new era in modern aviation. They
have been in service in basically every new aircraft developed in the last
decade, and will be in large scale usage in the future. This may be attributed
to many advantages over traditional load bearing engineering materials in-
cluding higher performance to weight ratios, increased fatigue life and in-
creased corrosion resistance [1, 2]. The outstanding performance to weight ratio
leads to lighter aircraft structures; consequently, additional payloads are pos-
sible with possible reduction in operational costs. On the other hand, consid-
erable less corrosion and fatigue problems lead to larger service life times and
maintenance intervals, and fewer inspection requirements. Therefore, lower
maintenance costs in principle should be obtained. Composite structures are
generally constructed by layers of unidirectional fibers or fabric (prepreg)
held together by polymer matrices through prepregging and autoclave curing
processes as schematically shown in Figure 1. Prepregging and autoclaving
are in principle low cost operations, and together with the high parts inte-
gration compensate for the relatively high raw material costs, and thus may
lead to a lower part costs [1].

However, the advantages mentioned above can only be fully exploited
as long as there are no failures or damages to the composite structures during
their life-time performance. In practice, although corrosion and fatigue have
been practically eliminated with the use of composite structures, more ex-
pensive repairs have been realized in dealing with larger damages due to For-
eign Object Damage (FOD), lightning striking, etc[1]. A recent survey of al-
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most 1500 aircraft on damage to composite elevators on Boeing 737, 757, and
767 aircraft revealed only 40 problem reports, as schematically summarized
in Figure 2, with the specific type of damage reported shown in Figure 3 [3].
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Figure 1. Laminated Structures Made of Prepreg via Vacuum Bag/Autoclave Techniques.

For the airplane operators, the key issues are safety, economics and ro-
bustness of repairs. Due to extremely high spare part prices, they are forced
to perform composite structural repairs whenever it is possible to avoid scrap-
ping the expensive parts [1]. Unfortunately, the economic benefit realized by
the airplane manufacturers from improvements with composites may present
the airplane operators with difficult repair options. The repair of composite
structures may need to follow a totally different approach than the traditional
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production philosophy of the original parts. Therefore, it is necessary to un-
derstand the requirements of the airlines regarding repair to these composite
structures and integrate them with material and manufacturing processing
issues. The purpose of this paper is to examine composites in an integrated
manner that encompasses research and development issues in relating manu-
facturing to usage and performance in the airplane environment. Finally, a
team approach that needs to involve the material suppliers, airplane manu-
facturers, airline customers, and academia is proposed as a means of developing
this integration not only for composite materials, but also as a requirement
for cost effective technology developments in the future.

BACKGROUND AND CURRENT STATUS

The ultimate goal of composite repair is to restore or improve the integ-
rity and performance of damaged structures [1,4]. It is widely believed that re-
liable composite repairs can be made which will restore at least of 809, of the
parent laminate static strength and will retain this strength for at least one de-
sign life-time [5]. Thus, any damage less than 15 percent is considered repaira-
ble[6]. However, in order to repair composite structures, the airlines run into
the difficulty of selecting the repair methods, materials, and design for specific
components, which may have different damage sizes, shapes, working functions,
and environments. The following summarizes some of the problems airplane
operators are experiencing in repairing composite structures.

In current practice, three methods are available to repair composite
structures: external bolted patches, bonded patches, and flush aerodynamic
plug repairs [7]. The most promising technique for composite repair has been
the flush aerodynamic repair as shown in Figure 4, which consists of a ply by
ply replacement of the damaged materials with the same materials as used
during their manufacturing. The autoclave curing process is not suitable for
composite repair in the field, as the autoclaves, freezer, oven, and other major
facilities required are not considered to be within the capabilities of the air-
lines [8]. Moreover, this cure process may degrade the performance of undamaged
region due to additional thermal treatment of the parts during repair [6].
Most importantly, composite structures in usage absorb moisture. The pres-
ence of moisture can cause delamination within the composite structure
during the high temperature repair process, especially for honeycomb sand-
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Figure 4. Flush Aerodynamic Scarf Repair for Composite Structures.

wich structures. Figure 5 plots the honeycomb internal pressure during cure,
generated from classic steam tables and experimental adhesive flatwise ten-
sile strengths as a function of temperature. The intersection of the two curves
indicates the initial point of bond failure between the honeycomb core and
the laminate skin. Obviously, the honeycomb sandwich structure should not
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Figure 5. Calculated Honeycomb Panel Internal Pressure due to Water and Measured
Adhesive Flatwise Tensile Strength as a Function of Temperature.
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be repaired at elevated temperature unless it is pre-dried. Therefore, a vac-
uum bag technique with low temperature repair systems is generally selected
for composite repair in the field. Specifically, vacuum and heat are applied
to the repair region with the aid of a vacuum pump and a heat blanket con-
nected to a controller.

Material selection for efficient repairs in the field has also been a critical
issue for the airlines[2]. In current practices, each composite part must be re-
paired using the original material specified by the airplane manufacturer.
With a multi-vendor fleet, which is common among the world’s airlines, there
is a need for airlines to have as many as 65 different materials available for
repairs [2]. For thermoset based composites, each material has a limited shelf
life (6-12 months) and must be stored in a freezer. Waste can be high due to
the difficulty in obtaining small amounts of materials from the manufacturers
in a timely manner. Repair kits are available, but are only effective if the part
to be repaired is in a depot or the aircraft is on a maintenance cycle. Besides,
the high cure temperature and long cure time are also not acceptable for the
airlines. Long shelf life, low temperature cure, and short cure time of the re-
pair materials have been proposed by airlines to reduce repair cost, and must
be studied in the future in relation to production technique and original ma-
terial usage.

In the past, most composite research and development efforts have fo-
cused a great deal on the original design, material selection, analysis, and manu-
facture of composite structures [8]. Limited attention has been focused on the
repair of these structures as well as issues related to usage. The lack of know-
ledge in the fundamental aspects of composite repair results in the difficulty
in addressing the repair issue in a rational manner for airlines. As the future
will be more customer value added, methodologies associated with composite
repairs have to be created by the research and development community in a
teaming effort.

Realizing this trend, we have been carrying evaluations on how compos-
ite materials based on different polymer systems interact so that they can
be used in the repair environment. A comprehensive set of tests, based on
traditional polymer testing procedures, were utilized to examine the inter-
action or compatibility of materials in terms of processing, property and mo-
lecular structure. Specifically, attention has been focused on the interaction
between adhesives and prepreg materials typically found in repair processes,
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and how different combinations of materials will exhibit «composite» proper
ties. For instance, the glass transition temperature has been considered as the
most important variable (property) that is associated with material inter-
action. By generating the correlation between glass transition temperatures
and compositions, a positive or negative deviation from the rule of mixture
can be observed, as shown in Figure 6. As the degree of this deviation is associ-
ated with the degree of interaction or compatibility between dissimilar mate-
rials, it can be used for both quantitative and qualitative evaluation of resin
compatibility. Thus, a valuable tool for determining which material systems
are compatible can be developed, and used for specific composite repair ap-
plications.
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Figure 6. Glass Transition Temperature Measured by MDSC of Prepreg/Adhesive Resin
Mixtures Used in Manufacturing and Repair.
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CONCLUSIONS

In the future, the driving force for technology incorporation in commercial
aircraft will not take place solely on its own merits[1]. New technologies such
as advanced composite structures will need to be seen as a net benefit to the
customer (i.e. airlines and eventually the flying public) [3]. This will include tra-
ditional factors such as cost of fuel saved, payload capacity, and costs of com-
posite repairs that are comparable to metal repairs. However, considerations
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will also include factors such as maintenance base facilities, required personnel
skill levels, and the overall airplane operating system infrastructures. There-
fore, repairability and maintenance will become major issues in the future.
The material suppliers, airplane manufacturers, and academia must begin to
increase their appreciation of the difficulties associated with repair and main-
tenance, and concentrate more resources upon understanding both technology
and difficulties of working together. More importantly, a team effort involv-
ing suppliers, manufacturers, academia, and customers has to be implemented.

Indeed, by analogy to the well established «double trinity» methodology
by which basic science principles of polymeric composites through heteroge-
neous, anisotropic, and viscoelastic scaling concepts provide the foundation for
economic integration of manufacturing, design and performance, a «double tri-
nity» for leadership development has emerged and summarized in Figure7 [9].
Although this new «double trinity» cannot be fully quantified, it can serve as
a road map for our future. Specifically, by using «teaming concepts» for com-
posite repair with analogy to the scaling concepts, a methodology is evolving
for future development of education and training. Specifically, teams that are
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Figure 8. Analogy between Technical Scaling Concepts and People Teaming Concepts.
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heterogeneous (e.g., engineers vs. economists), global (e.g. U.S., Europe, Asia),
and whose members are viewing the functions both in competitive and col-
laborative terms (e.g., Boeing vs. Deutsche Airbus) will be necessary in
future developments (Figure 8). Additionally, to quickly resolve problems
that invariably come up, this integrated team with capabilities from different
disciplines must be able to work together long enough to develop the internal
knowledge and cross-functional skills. Only through this approach, the in-
corporated essential aspects of customer needs, enhanced design and manu-
facturing simplifications, basic understanding of fundamentals and improved
quality characteristics can be achieved through people going through major
changes in their learning processes.
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