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ABSTRACT

The optical method of reflected caustics, which up to now was applied
for the evaluation of stress intensity factors in deformed cracked plates under
mode I and II, was extended in this paper for the evaluation of the same factor
in cracked plates subjected to mode III deformation. It was shown that the
method of reflected caustics was capable in detecting and evaluating this factor,
where all other experimental methods, i.e. photoelasticity, holographic interfero-
metry and especially the method of transmitted cauctics are invalid to yield
this quantity. Based on the first-order approximation of the elastic theory around
the crack tip and Sneddon’s formulas the theory of formation of the reflected
caustics was developed and the characteristic geometric properties of this enve-
lope curve were defined. It was shown that this envelope is again a generalized
epicycloid, whose characteristic dimensions are directly related to K;;. Experi-
mental evidence with specimens made of optically isotropic materials (plexiglas)

and elastically loaded corroborated the theoretical results.
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INTRODUCTION

The optical method of reflected caustics [1] and its complement
of transmitted caustics [2] were used for evaluating the orders of sin-
gularities at the crack tips and other elastic cases when the cracked
plates were submitted to an arbitraty in-plane loading creating either
opening mode (mode I) or edge-sliding mode (mode II) of deformation.
This was because with these modes of deformation the lateral ¢, - strain,
developed because of the Poisson’s ratio effect, created a deformation
of the lateral faces of the specimen and deviations of the impinging
light rays at the vicinity of the crack tip when these rays were either
reflected or transmitted through the specimen.

Mode IIT deformations in anti-plane shear were not encountered
up to now because it was thought that, since for this mode the compo-
nents of stresses oyx= 06y= 0, = 1,y = 0, and only the shear stresses
Txy and ty, are different than zero, there was no lateral deformation of
the specimen contributing mainly to the creation of caustics. Since the
variation of refractive index at the vicinity of the crack was not
expected to create significant deviations of the light rays there, and
since the thickness variations of the specimen at the vicinity of the
crack tip are annuled, no caustics were expected for this type of
deformation.

Meanwhile, the method of reflected caustics was extended to the
study of the stress fields in non-cracked plate submitted to bending [3, 4].
Based on the same principle as for the cases of generalized plane stress
problems the method was also extended for the study of the distribution
of curvatures on plates and shells [5]. Finally, the method was extended
to the study of the stress intensity factors in symmetrically cracked
plates under symmetric bending [6].

Since the anti-plane shear mode of deformation of a cracked plate:
constitutes one of the simplest cases of transverse loading of cracked
plates, it is evident that the method of reflected caustics may solve the
problem of evaluating Ky in such cracked plates. On the contrary, the
method of transmitted caustics is incapable of yielding Ky, since the
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light rays impinging at the vicinity of the crack tip are only parallelly
displaced due to refraction phenomena.

In this paper the theoretical background of the method was presented
and experimental evidence with cracked plexiglas plates corroborated
the results of theory.

THE STRESS FIELD AT THE CRACK - TIP FOR MODE-III DEFORMATION

Consider a thin elastic plate containing a single edge crack and
submitted to anti-plane shear so that a mode-1II deformation is created
at the crack tip. A direct evaluation of the stresses around the crack
tip may be derived from Westergaard’s solution, if we are interested for
the components of stresses and displacements at the close vicinity of the
crack tip and we truncate the powers solution of the problem only to
the first and singular term.

If a system of Cartesian coordinates Oxy is related to the crack
with its origin O coinciding with the crack tip and the Ox-axis tangent
to the crack axis at its tip, it has been shown that the only non-zero
stresses existing at the crack tip are the shear components [7]:

KI[[
(2nr)'2

I<III .
Tez = — sin9/2 and 1y, =

(2nr)l/2 cos 4/2 (1)

while the only non-vanishing displacement w is along the Oz-axis
normal to the mid-plane of the specimen and equal to :

Kin
(2mr) /2

w = 4 sin 9/2 . (2)

G

Whereas there is no thickness variation of the plate at the crack
tip because ox= 0y = 0, = 1.y = 0, there is this deflection w, which
makes the impinging rays of a light beam and reflected either from the
front or from the rear face of the specimen to deviate and to create a
caustic, while the transmitted through the thickness rays are only
parallelly displaced to themselves by small amounts according to the
theory of refraction.
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THE EQUATION OF THE REFLECTED CAUSTIC FOR
K, - DEFORMATION

For obtaining a reflected caustic from the laterally deformed lips
of a crack under mode III of deformation a parallel (convergent or
divergent) light beam impinges on the reflecting faces of the two legs
of the crack, which under mode-III deformation become cylindrical
surfaces of opposite direction having a curvature indicated in Fig. 1.
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Fig. 1.

The slope of these cylindrical surfaces increases as x is approaching
the origin of the Cartesian coordinate system Oxy, which coincides with
the crack tip, while the Ox-axis coincides with the crack axis and the
Oz-axis is normal to the middle plane of the specimen having also the
direction of the light rays.

The reflected light rays from both the front and rear faces of the
specimen expressed by the relation z = f(x, y), obey Snell’s reflection
law and when they are received on a reference screen (Sc), placed at a
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distance z, from the specimen, deviate and their deviations are expressed
in parametric form by the simplified relations :

Wa = dax—2(0+ed) 280D W, —huy—26 -+ LEY )

where (Wx, W) are the coordinates of a point E’ of the screen Sc, which
corresponds to a point E(x,y) of the deformed surface Sr (z = f(x,y))
of the specimen. In these relations d is the thickness of the plate and &
is either equal to zero for reflections from the front face or equal to
unity for reflections from the rear face of the plate. In vectorial form
Eqgs (3) may be written as:

(Wx, Wy) = Am(x,y) — 2(zo+ &d) grad f (x, y). (4)

In such types of lateral surfaces with progressively varying slopes,
which are common near stress-singularities, the reflected rays may
concentrate along a singular surface (the caustic), provided the law of
the slope variation of the surface is a convenient one for such phenomena.

In the above relations the coefficient A, represents the magnifica-
tion factor of the optical set-up which is equal to :

by, == Zo + 2z (5)
Zi

where z; is the distance between the focus of the light beam and the
specimen and it is positive for divergent and negative for convergent
light. In the cases studied in this paper where only reflected rays are
considered the quantity z, is always positive. Furthermore, since for
large magnifications of the caustic it is customary to consider optical

set-ups with z, > z; the magnification ratio A, is always positive.
In the case of mode-III deformation the initially flat and plane
surface around the crack tip becomes during deformation cylindrical
and its form is expressed by the deflection w given by Eq. (2). Then the

parametric relations (3) become :

ow (x
ox 0

Wx = Anx — 2(2z9+ €d) , Wy=7»my—2(zo+£d)—-y’—w. (6)
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Differentiating relation (2) with respect to r and ¥ and using the trans-
formation for the coordinate system Oxy we can readily find that :

6w Kux . ﬁ‘ 6w KIII ﬂ
n— and = —

R TR = cos 7
ox (27:1‘)1/2(} 2 dy (2nr)l/2G = 9 (7)

Then, the parametric equations of the caustic are derived from rela-
tions (6) and given by :

Wx = Ant cos &+ 2 (294 ed) —

G
(27 ) ®)

Wy = Ahntrsind — 2(z, +Ed) cos /2

)1/ G
where r are the coordinates (for —n < % < =) of convenient curve on
the specimen whose points (x, y) correspond to points (Wyx, Wy) of the
caustic. This curve is called initial or generatrix curve of the caustic. This
curve can be determined by the fact that, for the caustic to be formed,
the coordinates W,(Wy) must take maximum or minimum values for
W,y = const (W, = const). These conditions are satisfied if the Jacobian

determinant J=MWL) vanishes, then:
o (r, 9)
o 45
or 09 : - Km
n = . 2 o
J S ﬂ —a—y— - rAm T ( +Ed) O
or 04
which yields:
o (Zn+8d) Kn[ 2/3_ 1 = 2/
o ( @x) B0, G ) Lk ®)
where C is an overall constant given by C = [(Z(;;F__(;S;‘)J

In practically all cases the fulfilment of Eq. (9) for a set of pairs
(x, y) on the specimen means the formation of a caustic on the screen
Sc by their corresponding points (W<, Wy ), which are determined from
the parametric equations (8).
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Eq. (9) indicates that the initial curve of the caustic on the speci-
men depends only on the absolute value of the stress intensity factor K
and on the constant C depending on the experimental arrangement and
the mechanical properties of the material. This constant C for mode III
deformations, where reflected caustics are only encountered, is always
positive.

It can immediately be derived from relation (9) that this curve for
reflections from the front or rear faces of the specimen is a circumfer-
ence of a circle surrounding the crack tip 0.

It is evident that Eq. (9) is valid only up to the extent of validity
of truncating to the first and singular term the power expansion of the
complex stress function ®(z) of Muskhelishvili (or the Z(z) function of
Westergaard).

Otherwise, ry should result from Eq. (9) sufficiently small, so that
the initial curve of the caustic lies inside the near vicinity of the
crack tip.

In reality, this initial curve is a circumference cut from the crack
lips. Then, it starts from & = —=x and it terminates at 9 =

Furthermore, Eqs. (8) for the caustic, because of Eq. (9) take
e w
(=)l

Relation (10) yields the following set of parametric equations for

the form:

W = W+ iWy = A 1o | exp (i¥) 4 2e exp

where e is given by e = K /|Kuil.

the caustic:
Wx = Am 1g(cos ¥ + 2sin 9/2)
. —nx LY
Wy = Am 1o (sin & — 2cos 4/2)

IN
a

(11)

It is first worthwhile indicating the simplicity of expressions (11)
for the caustic, which is again a generalized epicycloid curve. On the
basis of the above equations we can draw the form of a typical caustic
for reflections from the front face where ¢=0. The caustic from the
rear face is similar to the caustic from the front face and slightly dis-
placed from it, if d is significant relatively to z,. But for our experi-
ments where z,>>d the two caustics practically coincide,
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Fig. 2 presents the vectorial diagram for tracing the caustic
ABCDEF for mode-IIl1 deformation. For a generic point P of the initial
curve projected on the screen (reference frame O’XY) PQ is the vector
Am 1o (cos ¥, sind) and QR is the vector 2An, 1, (sin$/2, —cos 9/2).

From the parametric relations of the caustic (Egs. (11)) it can be
deduced that this curve does not present any kind of symmetry with

initial curve

F crack

Fig. 2.

respect to the O'X- and O’Y-axes. This was expected from the type of
anti-plane shear loading. Furthermore, it can be readily derived that for
the angle 9 lying between a9 X0 the part ABC of the caustic is tra-
ced, starting from the intersection A of the caustic with the positive
half of the O’X-axis and ending at point C, the intersection of the caus-
tic with the normal AC at A to the O’X-axis. The tale of the caustic,
that is the part CDEF, is formed from angles O in the interval
—n LY LDO.

Points A and F, where the caustic intersects the O'X-axis, have
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coordinates: point A (An1e, 0) and point F (—3Amr,, 0), so that the dis-
tance AF along the O’X-axis is:

(AF) = 4hm1,. (12)

It can be further shown, by taking the limits of the derivatives yielding
the slope of the curve, that the caustic is tangent to O’X-axis at point
A and perpendicular to the same axis at point F.

The extreme points B and E of the caustic along the O’X- and

O’Y- axes correspond to angles O3 =60° and ¥ = — 60° and these maxima
have the coordinates: point B(X,If,ax = —g-km fo, Wi = — %ﬁ— Am r0>
and point E(X&m) = — —;j— Amto, Vmax = — —igg— Mo ro) . Finally, the

O’Y-axis intersects the caustic at point D with coordinates Xp = 0,
Yp = —2.543 A1, and dp = — 43°.

From the above properties of the caustic for mode-I1II deformation
it may be derived that the maximum longitudinal diameter of the caus-
tic is given by :

D™ = 4.5 kury (13)

whereas the maximum transverse distance Ypax i18:

3V3

Ymax == 9

A Tge (14)

On the other hand, the position of the crack tip may by defined
by the coordinates X,, Y, measured from points B and E of the caustic
corresponding to the maximum points of this curve parallel and normal
to the crack axis. These coordinates are given by :

. : 3V3
X():'—I.O}\.mro, \0=——¥—7\er. (15)
In this way not only the instantaneous position of the crack tip

may be accurately defined, but also the corresponding value of the stress

intensity factor may be given by:

G G
Kuy = 0.268 1/Z(D::““)"’/z - szo,bgg—lg(ymax)slz (16)
)\

Z(\ m ZO}\m
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Finally, the angle ¢ subtended between the line FB connecting the
maximum point B of the caustic along the direction of the crack axis
with the tail point F of the caustic and the crack axis is equal to:

[tang| = e
3V3

and lo| = 10°53° 36", (17)

Figure 3 presents the traces on a plane placed at distance z, from

the specimen of the light rays reflected from the front surface of the
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Fig. 3,

specimen, at the close vicinity of the crack tip. Each of these curves
contains rays lying along the same radius from the crack tip. These
curves have been traced by the computer as parametric families of
angles U = const. when the cracked plate is submitted to a mode-III
deformation. It is clear from this figure that all rays bend back as they
contact the envelope surface which constitutes the caustic. Furthermore,
as the parameter ¥ is decreasing from -} x to zero and to —=x the
bending back of the rays, as they approach the caustic, becomes more
and more sharp so that at % = —a the rays return back on the same
straight path,
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EXPERIMENTAL EVIDENCE

In order to check the results derived from the caustic obtained at
the tip of a crack subjected to antiplane shear a test was undertaken
where an edge cracked plexiglas plate was submitted to a couple of for-
ces normal to the lateral faces of the plate as indicated in Fig. 1.

The length of the crack was a=2cm, whereas the dimensions of
the plate were: width, b=12.5 cm, length 1=15 cm and thickness d=1.0 cm.
The experimental arrangement was simple. A coherent light (divergent)
was impinging on the faces of the plate at the vicinity of the crack. The
magnification ratio of the set-up was A, =4, while the distance bet-
ween the specimen and the reference screen was z, = 60 cm (Fig. 1).

The optical constants for the particular plexiglas plate used in the
tests were :

¢, === 55-—=103X10""ecm?/Kg c, = —3.24 X c,.
Fig. 4 presents the caustic obtained when only K- mode is ope-

rative on the plate. The convenient dimensions of the caustic for the

evaluation of K- stress intensity factor were measured to be:

DI = bem.
Based on relation (9) and on the relation,
D:mx = 45 )\-m Ty,

an experimental value K = 9,31 Kp/cms/2 of S.I. F. was found.

This value compared well with its theoretical value K;;;=10 Kp/cma/ﬂ
and gives a relative error of 6,9% only. This error is considered as
acceptable for practical purposes.
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