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MA®HMATIKA.— Closed - form solutions for the general three-
dimensional problem of the theory of elasticity, by P. S.
T heocaris*. > Avexowvddn vmo t0d “Axadnuaixod x. I1. Ocoydon.

AB S T R AT

A large number of three-dimensional boundary-value problems are investi-
gated by considering the numerical solutions of certain systems of singular
integral equations. It is of particular importance to know the families of the
abovereferred equations, which possess a closed-form solution.

Several tables are constructed according to the problem, which is concerned
(i.e. static, dynamic, thermoelastic boundary-value problems of the classical
elasticity). Each one of these Tables contains the analytical solutions of a great
number of boundary-value problems of the Ii, Hi, i< or 1v¥ type, defined
over canonical regions (i.e. half-space, a layer, a sphere, a round cylinder, an
ellipsoid, a paraboloid, a hyperboloid etc.).

On the other hand, along with the analytical solutions of the general 3-D
inclusion problem we can investigate certain 3-D crack problems of a special
geometry (spherical cracks, cylindrical cracks etc.).

An extended bibliography, which covers the field of the analytical solu-
tions of certain categories of 3-D boundary-value problems of elasticity and
thermoelasticity, is included at the end of the paper.

1. INTRODUETION

Several investigations in the field of three-dimensional theory of
elasticity started in the last fifteen years with the works of a number
of scientists concerning the branch of Mechanics of a solid deformable
body: Aleksandrov and Solovév [1]; Grinchenko [2]; Kupradze et al. [3];
Guz’ and Golovchan [4] ; Kosmodamianskii and Shaldyrvan [5]; Lur’e [6] ;
Podil’chuk [7]; Ulitko [8]; and others. In all important books of the
theory of elasticity the methods of solution of three-dimensional
boundary-value problems are restricted to bodies of special shape
(a half-space, a sphere, some cases of axially symmetrical bodies etc.).
Furthermore, a great attention has been given to static problems, less
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attention to oscillation problems, and still less to problems of general
dynamics. Such a situation might be well expected because of the fact
that, during the entire preceding period, the historical background of
the theory of elasticity was inadequate for developing a rigorous and
sufficiently complete theory of 3-D boundary-value problems. The
situation 1is currently changing. The theory of three- dimensional
problems may now be worked out by a variety of methods. Among them
we shall mention the following possibilities:

i) The modern theory of generalized solutions of differential equa-
tions (the method of Hilbert spaces, variational methods, etc.) which is
characterized by a great generality, involving the case of variable coef-
ficients and boundary manifolds of the general type [9, 10].

ii) The method of singular integrals and integral equations, which
allows us to investigate in detail cases of particular interest for the
theory and application, retaining the efficiency of the methods of the
classical mechanics of continua. The works of Kupradze et al. [3],
Vaindiner and Moskvitin [11], Parton and Perlin [12] are devoted to the
construction of a system of singular integral equations, which solves the
3 -D boundary-value problems of the theory of elasticity.

iii) The Fourier-transform method which yields analytically exact
solutions of the three-dimensional problems of the theory of elasticity
for canonical regions (see Table III) (half-space, a layer, a sphere,
a round cylinder, an ellipsoid, a paraboloid, a hyperboloid etc.). This
method was preferentially applied to isotropic linearly-elastic media.
A large amount of work, based on this approach, has presented by the
Soviet scientists: Abramyan [13], Galerkin [14], Galin [15], Gromov [16],
Uflyand [17], Savin [18], Podil’chuk [19], Rvachev [20], Ulitko [21],
Shapiro [22], Guz’ [23], Lur’e [24], Obolashvili [25], Solkyanik - Krassa [26]
and others, who have investigated many 3-D static, dynamic and
thermoelastic boundary-value problems of the theory of elasticity in
several curvilinear orthogonal systems of coordinates, allowing the sepa-
ration of variables in the 3-D Laplace equation (problem of statics)
or the Helmholz equation (problem of dynamics).

iv) The theory of the generalized analytic functions (p-analytic
and p, q-analytic) was successfully applied to the solution of axisym-
metrical 3-D problems of the theory of elasticity (Polozhii [27]). A simi-
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lar method was developed by Aleksandrov [29] for the investigation of
certain axisymmetrical or non-axisymmetrical boundary-value problems
of the theory of elasticity and thermoelasticity of isotropic and trans-
versally isotropic bodies. The solutions of these problems are expressed
in the form of linear operators of analytic functions of a complex
variable (T'able III) (see also the work by Vol’pert and Solov’ev on the
same subject [28]).

An extensive analysis of individual efforts for the development of
the above-referred methods was presented in the review-papers of
Abramyan and Aleksandrov [13], Vorovich and Prokopov [30], Guz’ and
co-workers [31], Kil’chevskii [32], Miyamoto [33], Neiber and Hahn [34],
Prokopov [35], Rvachev and Protsenko [36], Sternberg [37], Guz’ [38],
Ustinov and Shlevev [39], Theocaris and Kazantzakis [40], and others.

v) A number of theoretical methods, related to a certain degree
with the methods of perturbations, expansions with respect to a para-
meter, successive approximations, etc. have been included in the mono-
graphs of Vorovich, et al. [41], Van Dyke [42], A. and O. Guz’ [43 - 46],
Ivlev and Ershov [47], I1’yushin [48], Kauderer [49], Cowle [50], Kanto-
rovich and Krylov [51], Lomakin [52], Savin [53], Naiffe [54], Khusu
et al. [85], Tsurpal [56], and others.

On the other hand, along with analytic solutions, various numerical
techniques (finite differences, finite elements, variational differences,
discrete orthogonalization and others) have been developed to become
efficient tools in solving axisymmetrical problems of the theory of elas-
ticity, particularly during the last decade. On the other hand, it should
be noticed that for the case of 3-D regions with a complex surface geo-
metry (especially when the form of the surface changes rapidly) the
effectiveness of the numerical methods is considerably lowered. The
difficulties arising in this case are systematically examined dy
Marchuk [57].

In another wording, in the present work we try to give a complete
spectrum of the closed-form analytical solutions of the systems of the
singular integral equations defined over Lyapunov surfaces of special
shape (i.e. spherical surface, ellipsoid of revolution, cylindrical, semi-
infinite nonround cylinder, whose direction is an epitrochoid, etc.) [1]
(see Tables T to III).
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It was worth mentioning that ever since its introduction by Laplace
in the eighteenth century, the integral equation has lagged behind the
differential equation as a tool of the applied mathematician for studying
physical phenomena. In many areas of engineering and physical sciences,
however, a formulation of mathematical problems in terms of integral
equations is more direct and more easily visualized than the correspond-
ing formulation in terms of differential equations.

For the treatment of boundary-value problems, for instance, the
solutions were mainly based upon differential equations which, combined
together with the appropriate boundary conditions, yielded the solution
of the particular physical problem. However, in many cases these
boundary-value problems may be representeél compactly in the form of
integral equations, which include the boundary conditions.

But these are not the only reasons for studying the closed-form
solvability of the aforementioned integral equations. There are many
situations which depend upon hereditary influences, i.e. where the
future of the system depends upon former states and, therefore, cannot
be represented in terms of differential equations.

This case appears in the study of diffusion and transport pheno-
mena (see Morse and Feshbach [58]) and in problems of growth (see
Nemish [59]). These situations usually lead to integral equatioms, or
more generally, to integro-differential equations.

From the above considerations one can see that integral equations
should be playing a greater role in solving physical problems than they
presently do. The cause of this disparity is mainly due to the fact that
mathematicians, dealing with integral equations, have been primarily
interested in existence proofs, rather than in practical solutions. Con-
sequently, general methods of solving these equations have not been
developed except in the simplest linear cases.

Much of nature’s physical processes, however, are nonlinear in
character. The contemporary theories of mechanics, elasticity and hydro-
dynamics, for example, are all areas abundant of such systems, but
attempts to linearize such systems have been successful only in the
more restrictive situations. While great advances are being made today
in the design and development of high-speed computing devices, in



430 TTPAKTIKA THE AKAAHMIAS A@HNQN

particular, the electronic digital computers, the development of general
computer oriented methods for solving non-linear problems is still in its
rudimentary stages.

2, THREE-DIMENSIONAIL BOUNDARY-VALUE PROBLEMS
FOR ORTHOGONAL REGIONS

For convenience in the subsequent exposition the Lyapunov sur-
face S is defined in such a manner that for any unit vector n:

n(x,y,z)=mn(x,y,z)i+n(x,y,z)j+ns(x,y,2)k, (1)

with M(x,y,z) €S,

the contitions of orthogonality are satisfied, (i.e. nin; = OV (j5~i) and
n;n; =1). Surface S will be arbitrarily called orthogonal. Consequently,
the boundary surfaces of the bodies under consideration coincide with
the coordinate surfaces of the corresponding curvilinear system of
coordinates.

Let D' be a domain bounded by such a surface S. The singular
integral equation, which solves the (Ii) boundary-value problem has
the form [40]:

2u(X) = [ K(X-Y)q(¥)d,S-0Q(X), (2)
YEXeDbt

[RX-¥)a(¥) a,8 = Q(X), )
VEED

where D™ is the complement of D™ US to E, (Three-Dimensional Eucli-
dean space), and:

a(Y) = [T(dy, n) u(¥)]" ()
Moreover,

0X) = [T, W KX-V]1(¥)d,5—[KE-V)HE) X, ()

pt
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where K (X -Y) denotes Kelvin’s tensor [40], f(Y) the known density of
the external forces normally distributed on S, H(X) the continuous
function of the total forces defined for every X&DT, T'(dy, n) the
stress tensor defined in [40], X the point of application of the force,
which equals to twice the unity, XeD" and YES is the field point.

Let S* be an arbitrary smooth surface enclosing S and having no
common point with it. Let us consider now a countable set of points
{Yk}:;l belonging to the surface S* densely distributed everywhere.
According to the developments of Kupradze, [60 to 70|, Basheleishvili,
[71 to 80] and Burchuladze, [81 to 90] the following cubature formulas

are valid:
w= i, = = fx(x-Y) 3 8. P (¥) 4,8 — = Q(X), (6)
k=1 4

where n is an arbitrary natural number,

S = [ (Zam e () a(¥)as = 3 a™ o), @
¥ n=1 =
with m=1,2, ... and s =[(m+2)/3]. These relations allow the

evaluation of the Fourier coefficients.
I.et us consider now the vector:

m

2u, (X) = fK(X-Y) ¥ S.q°(¥) dS—H (X), ()

5 n=1
where N is an arbitrary natural number. It can be readily seen that this
vector represents an approximation of the exact solution in the sense
of uniform convergence as N —> o in an arbitrary closed domain, lying
in DY. That is because of the fact:

]inllu(X)—uN(X)l =0. (9)

In considering the boundary-value problems (II%) (111%) and (IVY)
we construct the components of Table I.

On the other hand, in the following we deal with domains bounded
by several surfaces and we form problems, which are called mixed
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boundary-value problems. As an example let us suppose that it is
required to find in the domain D the regular vector u(X), which solves
the system:

AP u(X)+H(X) =0, XeD', (10)

and satisfies the boundary conditions:

ut(Z) = %), ZeS., k=01,...,r,
[t (0., n(Z))]"+6(Z) ut (Z) = (Z), z€S:, (11)
k=r+1,.... m with 0Lr<m,

where o(z) is a non-negative definite matrix of class C%?(S).
Let us now consider a domain Dy lying strictly inside Dx,

k=1,...,m, Sif denotes the boundary of Dy, r(S,S*) >0, while
{Xk}f:l is a countable set of points, dense everywhere on S*. We

introduce the matrix:

QX-Y) ={Q", Q%, o9}, (12)
defined as:

K(X-Y), YEUS:, XEE,,
QX-Y) = aE . (13)
[t(a)'»n)+c(Y)]K(X—Y)) YEUSk, XEE:;

k=r+41

o]
k=1"

Then, the set of vectors [Q" (X*-Y)] i=1,28 Yes= U &,
k=0
is linearly independent and complete in the space L,(S). Therefore,

by introducing the notation :
YY) = Q(lk)(xf(k+2)/3] -Y), YeS, ot 98, ... (14)

where I = k—3((k—1)/3] it is not difficult to see (Nemish et al. [91])
that the orthonormalization function of the vector ¢ (¥) on S has the
form :

3 o, KW (@69 Ly Ye | s,

(YY) = J:‘ k=0 i (15)
S fi; [0y, n)+o (Y KW (XGPUy), Ye S,
=
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where fi,; are the coefficients of orthonormalization of the functions v
on S. We introduce the notation [92, 93]:

p(X)Eu(X)—_;—fK(X-Y)H(Y) Y, (16)
D+

where p(X) is the solution of the problem:

A(@)v(X) =0, XebD%, (17)
+
p(Z) = Q™ (Z), (18)
and finally we deriwe:
{1 (5., n(Z) + o(Z)] a(2)}" = e (Z). (19)

Then, following the developments of Podil’chuk [92] it can be concluded
that the solution vector of the mixed boundary-value problem, which is
stated by Egs. (10) and (11), is described by the relations :

u(X) = limu™M(X), XeDht, (20)
N—=>w0
where :
1M(X) =5 S Qufy ;KW (X8 -x>+% f K(X-Y)H(Y)dY (21)
k=1 j=1
D+

holds uniformly.

Furthermore, the methods for obtaining approximate solutions for
the mixed boundary-value problem of Eq. (11) may be extended to
boundary-contact problems in inhomogeneous media. ‘Then, the vector
equation, which solves the corresponding boundary-value problem, may
be written in the following form:

fHEE, X5 V) u(Y)d,s = 0(XE), k=1,2.. (22
S

where :
[T (8y,0) K" (X&H-¥)], —K?(X§-Y)

HEXG, X ¥) = et e T (23)
[T (ay,H)K (X(l)'Y)]’ — i (X(l)'Y)

744 1982
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and the vectors :
u(Y) = (ut, (T u)*);

® =(0; F); F denotes a given vector, (24)

while the finite domains bounded by S;, S, are denoted by I); and D,
respectivelly and it was further assumed that the countable sets of
points {Xﬁ)}g;l, {Xé)}:o:l are dense everywhere on the surfaces S;, S,.
In order to obtain a closed-form solution of the integral equation (22)

the vector u(Y) may be expanded in Fourier series:

u(Y) =~ 3 Apu(Y), (25)
where :
Am = f u® (Y) u (Y) dS, (26)

are the Fourier coefficients, which can be calculated as:

An=SA"@@,), m=129,... 27)

i=1

The quantities A™ are determined by:

loymi!, for t= m—i—b’
6
L, m—1 i lm,miz, for t= m;_‘l ’
by’ + b, w1 1P+ lon P®, for t = mTH,
Amt ___% (28)
lm,m—3 i+ oy, m—3 i2‘I‘lm,m—l i3+lm,m i4, for t= mg—2 y
lm’m—“- il + lm,m—a i2+ lm,m——s i3+lm'm_1 i4-|~ lm’m i5’ = _n’ig_—_l 5

lm.m—s P lm,m—4 12+ lm,m—3 i*4 lm,m -2 14+ lm.m——l 15+lm,m 16; fi= T,
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where /,x are the orthonormalization coefficients and i, k=1, ..., 6,

are the coordinate unit-vectors in a six-dimensional space. Obviously,
for the exact solution of the problem we have:

u(X) = lim u™ (X), (29)
where :
- (lN) X gN) X ’ gN) X . X +’
uN(X)::{ (UP®), v"X), Ui'X), XeD -
(U,(X), Us(X), Ug(X)), XeDT,
and
™ (X) = %IH(X, X;Y)3 Acu(¥) 4,8 — X, (31)

S

As a special case of the abovementioned solutions (31) we consider
the boundary-value problem of an infinite domain with the constants
Ao, 1o, carrying m elastic inclusions of different materials having no
common points. Here, we denote with E; the 3-D space, Dy is the
domain of the k-th inclusion, k=1,2, ..., m, Sy the boundary of the
k- th inclusion, Dt = Ui, Dy, D =E;/D".

The boundary conditions are described by the following system of
equations (or in another wording it is required to find a regular vector
satisfying these conditions):

u, Au+( +u,) graddivu = F¥(X), VX € Dx, (32)
wo Au+(Ao+ ) graddivu = F9(X), VXeD, (33)

and finally:
VY € S : u=(Y) — ut(Y) = f<(Y),

(34)
(Th%)~ — (TRu)t = F(X), (k=1,...,m

where the quantities f* F¥ on the right-hand side of Egs. (32) to (34)
are given.

According to the developments of Ustinov and Shleven [39] or
Chernopiskii [94, 95], or Shapiro [96], Sheinin [97], the general repre-
sentation formulas are of the form:

AX €Dy 20(X) = [K(X-Y) (Tu) dyS— [(THK*(Y-X)) u=(¥) drS+ Rk(gg;
Sk Sk
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while for VX € E;—Dy we have:

JRE®X -¥) (Tu)"dy S — [ (TEKE (¥ X)) u= (¥) dy S + R (X)
Sk Sic

The quantity Ry (X) can be determined as:

R (X) = — [ K¥(X-Y) 0% (¥) dY + [ (T*K* (Y- X)) % (¥) d, S —
Dx Sk

—ka(x-Y)deys; k=1,2 ..., m.
Sk

Furthermore, for every X& D™, it is valid that:

2u(X) = — K (X-Y) (Tu)"dyS + [ (TK (¥ -X)) u(Y) d,S — oy (X),
GSi GSi

i=1 i=1

while for VRS D :
i=1

JR@E-¥) (10)7d,S — [ TR (Y- X) w(¥) S + s (X),
Us; Us;

=1 i=1
with :

Muis (X) = [ K (X-Y) 00 (Y)Y,
rE

We introduce now the matrices [98 to 110]:

Q (X Y) _— {”(TkKk(Y_X), —Kk(X-Y) ”3)(Ga
(k) ? 0;
HXEE;; k=1,..., m;
Yes; i#k; i=1...,m; ]

Q(o) (x, Y) = ”(TOKO(Y"X)t —KO(X'Y) ”3)(6;

YEUSi, VX€E3.

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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We now have the system of equations:

[0 (XL V) (¥)a,8 = (X)), k=1,2...,m;  (43)
§Si
J 0 (% 08 (%) 4,8 = M (), (44)
US:

i=1

and finally:

J 0 (X7, ¥) 5 (¥) dyS = Ty (X]) . (45)

m

USi

i=1

The left-hand sides of these equations involve vector quantities,
while the right-hand sides involve given quantities (3 (Y) = (u—, (T%u)7)).
From the direct solution of the linear system of equations (43) to (45)
the vector quantity @(Y) follows as:

a(Y) = lim %a,,u(ﬂ)(Y), (46)

N—>®0 n=l1

from which the scalar component u— may be determined. By substituting
u~ in Egs. (38), (39) and (40) and denoting the result by u™(X) we have
that the solution vector of the boundary-value problem has the form:

u(X) = lim u¥(X). (47)

N—=>»0

Furthermore, the general thermoelastic problem is evidently treated
analogously with oscillation problems without any appreciable modifica-
tions. However, in order to emphasize some specific features concerning
the 3—D thermoelastic boundary-value problems (which are systemati-
cally described in Table I1I) we shall consider the second basic problem.

According to the developments of Shvets and Eleiko [111, 112] it is
necessary to construct in DT a regular solution of the differential
equation :

B(ds,0) UX)+H(X)=0, (48)
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where :
B(0x, o) = || Bij(9x , ®) [[axs, (49)

with :
62
Bi; (0x, ®) = 8;j(nA + 0w?) + (A ) ) (50)

O, Ox;
1

when 1, j=1,2,3 and:

B (dx, w) = —vyd /0dxi, (51)
when 1=1,2, 3;

Bsj = iond [ 0x; , (52)

when j=1,2,3; and finally:

By (0x, ) = A+iw/k. (53)
Here, according to the developments of Carslaw [113] and Landau and
Lifshitz [114] it is valid that:

Ks 5, (54)

o| =

where k denotes the heat-conduction coefficient, § is the specific heat

per unit volume and:
n=yTy/k, (55)

where y=(2u-+31)a, a is the coefficient of linear heat expansion, A, p
the I.amé constants, o is the density of the medium and o is the angular

velocity.
Let us now solve the second basic problem, the boundary conditions
of which are expressed by the relations:

(PU)Y = o, (56)

[0us/on]" = g, (57)

where the matrix differential operator:

P (0x, (X)) = ||Py; (9x, n(X))|sxs, (58)
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is determined by:

P (0x, n(X)) = T (95, n (X)), i,j=1,2,3 | o9
Pi(9y, n(X)) = —yn; (X) i=1,2,3
Furthermore, U = (U;) denotes a four-component vector:
Ui = y; i=1,28
y &y , 60
and: U4 = @(X) } ( )

where O(X) is the temperature distribution function and ¢ = (¢y, P2, 93, ¢4)
denotes a four-component known function.

Let us introduce the matrix differential operator of dimension
4x4 [114]:

Tu | Tre | Ts | —vmy
T | Te  Tu | — YD
R(Ox, 1, ) = [|Ri (O, 0, Vllaxs = || Ty | Typ | Tys | —ymg|l»  (61)
o 4 e
U Y 8 e
1 n

where the symbol |]T';(0x, n)||sxs stands for the components of the
classical stress operator, Magnaradze [115-117]. On the other hand, the
fundamental solutions of the homogeneous equation B (9, o) U(X)=0
are denoted by G;, while the matrix G (X, o) is called «the fundamental
thermoelastic matrix» and practically corresponds to Kelvin’s matrix K
(Eq. 13) [118 to 125]:

G(X)w)E|,G1|G21G3)G4”' (62)

Let now U(X) be a solution of the abovementioned second problem
of thermoelasticity. Then, according to the developments of Napet-
varidze [126 to 131], Natroshvili [132 to 135], Mikhlin [136 to 142], the
following equations are valid :



440 [IPAKTIKA THEX AKAAHMIAT A@HNQN

U (X) = —f[R(a,, n) G(Y-X, 0)] Ut (Y)d,S+F(X), VXeD", (63)
S

and :

[[R(dy,0)G(¥-X, 0)) UT (¥)d,S = F(X), VKED,  (64)
S

where :

F(X) = fG(X-Y, u))cp(Y)dyS—FfG(X-Y, o) H (Y)dY, (65)
S »t

with H (Y) denoting the total force vector. By properly enumerating the

0

elements of the set {RG(;)(Y—Xk, m)}k___l, 1i=1,2,3,4, as follows:

W (Y) = R(3y, n) Gy (Y- X1, ), (66)

el

lk=k—4[ } k=1,88, ... (67)

we can orthonormalize the system {w“" (Y)}::o=l on S, in order to obtain
the set:

(<]

(U@L, (060 = Shw®) =1,2,..), ©9)

where hy,¢ are the coefficients of orthonormalization (Rukhadze [143 to
148]). Furthermore, the unknown vector U(Y) may be represented in
Fourier series in the complex conjugate system {I_JJ;)(Y)} of Eq. (68):

U(Y) ~ $Pn Uiy (¥), (69)

s=1
where :

P = [UL™ UT(Y)4,S, (k=12 ...) (70)
S

These coefficients can be evaluated from the functional equation (64)
(Kvinikadze, [149 to 151]):

[ s IR0y, n) G (¥-X, 0)] U* (V)}i*d,S = F(Xy),
§ k=1 (71)

1=1;238; ...
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where i, k = 1,2, 3, 4, are the axial unit vectors in the four-dimensional
space. It is easy to verify that, Nemish [152 to 160] :

[ 3 3 b WOITOE) = Sy (), (12)

Sk =1 i=l1

from which it follows that :

P. = 3 S"F (X), (73)
i=1
where:
S = Miyuims 4 Myei— s §B4 g1 g P b, 3, (74)
with Au,x=0 for k>m and m=1,2,...; s= [(m+3)/4].
Then, the solution of the boundary-value problem is given by:
WWM=——ﬂRymmW7hH2&wMWMH F&) (15)
XeDt,
while the exact solution U(X) of the second thermoelastic problem is
given by:
UX) = limu™(X). (76)
N=—>X

Generally speaking, it is commonly thought that the Fourier
method connected with the separation of variables is effective only for
some specific domains. Actually, the idea of applying the generalized
Fourier method in solving 3—D boundary-value problems is close to the
so-called method of Fischer-Rietz equations (see Miranda [161]) and
therefore can be always expressed effectively, if sufficiently general
assumptions are accepted for the domain and other data of the problem.

The first exposition of this method is due to Kupradze and
Alexidze [162], while the method was subsequently extended to the
solution of elliptic mixed problems by Burchuladze [163 to 165] and to
the solution of boundary contact problems by Rukhadze [166].

Furthermore, the extension of the method to parabolic equations
is due to Domanski et al. [167], Domanjski, Piscovek and Rvek [168],
while the extension to equations of hydrodynamics and electrodynamics
is due to Polischuk [169], Pham The Lai [170] etc.
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3. THREE - DIMENSIONAL BOUNDARY VALUE PROBLEMS
FOR NONORTHOGONAL BOUNDARY SURFACES

By the terminology non-orthogonal boundary surfaces we under-
stand surfaces at which, for the unit vectors e of the curvilinear ortho-
gonal system of coordinates i, j, kK used, the known conditions of ortho-
gonality are not satisfied [1 to 5] :

ni-njqéO(iaéj), mn, 1. (77)

Let us consider now a 3—D boundary-value problem for a 3—D
deformable body bounded by a non-orthogonal, close-to-canonical sur-
face S. It can be postulated that the surface S is close to a round cylin-
drical surface and therefore its equation can be described by:

r=ro+eg(9, z). (78)

Here for convenience the round cylindrical r, 9, z- coordinates are con-
sidered, while the analytical function g (¥, z) and the small parameter ¢
characterize the form of the non-orthogonal surface S and the value
of its deviation from the corresponding canonical surface r = r,
(ro = constant >0, || <<1).

We consider now, a stress and deformation state of the body D, by
following the boundary conditions which are defined over its surface S:

=u?, (79)
20,0 =1, (80)

where n, are the directional cosines of the unit vector k of the nor-
mal n to S.

In view of the complexity of the non-orthogonal surface S,
described by Eq. (78), the variables in the boundary conditions (79) and
(80) are not separable and therefore the problem cannot be solved
directly. Then, by assuming that the preassigned displacements or stres-
ses permit the expansion of the solution sought in a Taylor series in the
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vinicity of the area r = r,, the components of the stress- and deforma-
tion-state can be expressed in the form:
@ Log
{GtS) us}s —.zf‘:' . arl {Ets '] us }r=t . (81)

0

In the final analysis the boundary conditions can be represented as:

n
2 Li(S) ugn—s)

8=

e, = U0, (82)
and:
3

n
(s) (n—s)
Z 32D 0’.]." 2

i=1 s=0

=gl (83)
0 ]

here L D{” are differential operators which depend on the g (9, z)-

function and in the case of non-orthogonal, close to round cylindrical

surfaces, have the form:

1 an

(n 5
Li)=~r—ng 31'—", Déo (84)

and :

n__ — af g (n-s) ——
D3 _—f‘a_ZZ(YS,I—I_TOYS_Z) Li ) Y_jzov (85)

where y, (8,z) are the coefficients of the expansions of the directional
cosines n. in series in terms of e.

4, APPLICATRHONS

A general method for the numerical solution of the systems of 2—D
singular integral equations, which are included in Tables I, II, is also
presented in [171] by Theocaris and collaborators. The method is based
on Fredholm integral equations of the first kind, which are obtained
from Kupradze’s functional equations. Contrary to the general con-
siderations about the regular integral equations, the method presented
in [171] seems very promissing. In fact, rather stable and accurate
results are obtained in all the examples considered. Especially in the
case of the sphere, where an analytical solution is known, the solution
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presents a difference of only 0.5 percent. On the other hand, the pro-
posed in ref. [171] method, when compared to the already known methods,

has some advantages [172]:

(i) It is simpler and easier in programming.

(ii) It is much faster than the classical ones described in refs. [173 to
175] and especially Lachat’s method [176].

(iii)) A high-polynomial approximation of the unknown function is
obtained, so that the method performs very well with problems,
where a high gradient of stresses or displacements is encountered.

More precisely, in 3—D elasticity problems the singular integral
equation method was applied mainly to static problems using Somig-
liana’s identity and subdividing the surface to plane triangular elements
[173], into which the unknown distribution is assumed as either constant
[174], or having a linear variation [176]. An essential improvement of
the boundary integral equation methods, mainly used by Cruse [174], is
obtained by introducing the isoparametric elements by Lachat [176]. In
this case the unknown distribution can have a quadratic or cubic
variation.

The technique, which is proposed by Cruse [174], is based on Sto-
kes’ theorem and allows an analytical integration of the fundamental
solutions I' and T',I'° into each element:

1

P = ee—
Iy (%, ¥) 2u (A +4-2p)

[(""]"U) s r,k+ 2()"'[_“)511;] (%) ) (86)
where :

PR RO (87)

and r ; means differentiation with respect to the field variable y;-

An analogous expression is valid for the tensor component T, I?:

(n) 5 0 (i (X,Y)) A ( i >
T FL=TF =4 e ;
] k 2“‘ an + }\+2u cos (nyj) r k+

ik, r ) d
e 2 0 e 2
+ cos (ny,) ( " >’j— Ok 5 — < . > ;

(88)
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where k;, k, are properly defined as:

ki = o?/(A+2u), (89)
and
ks = 0?fu. (90)

Here r again expresses the distance between the field point Y (y,, v,, v,)
and the load point X (x;, x5, X3).

However, such an analytic integration is only applicable in the
case where the unknown distribution is supposed to be constant, or to
vary linearly into each element. In all other cases a numerical integration
is needed. In order to overpass some of these difficulties, complicated
schemes are proposed by Lachat [176], which allow the elements to be
subdivided, in a special manner, to sub-elements, while in each sub-
element a product Gaussian formula is used. The number of necessary
integration points is then chosen in each individual problem in such a
way that some inequalities and conditions are fulfilled. Even with this
special scheme, which is very difficult in programming, the convergence
of the cubature formula is always slow, because of the singularities of
the integrands. In addition, the most of the execution time, for such a
solution is spent integrating for the formulation of the linear system,
than solving it. Therefore, the need of a higher-polynomial approxima-
tion of the unknown distribution is obvious.

Furthermore, for the solution of some steady-state dynamic prob-
lems, the above-referred methods have to overpass the difficulties
created by the oscillatory character of the fundamental solutions of
steady-state problems. Thus, Stokes’ theorem is not anymore applicable
and therefore Cruse’s method, described in refs. [173 to 175], falls down.
On the other hand, in Lachat’s method [176], a numerical integration of
oscillatory integrands is needed. But, Gaussian quadrature formulas do
not handle very well neither oscillatory integrands, non singular ones.
As a consequence, an increase of the number of the integration points is
resulted, a fact which enlarges strongly the amount of the computer cost.

There are also problems, where a higher-polynomial approximation
of the unknown distribution is necessary. Such situations arise when a
concentrated force or a couple is applied on the surface S of the body,
when the body has re-entrant corners, cracks or other geometrical
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discontinuities and, more generally, when a high gradient of stresses or
displacements is encountered. These reasons justify why in such cases
the higher-polynomial approximation of the unknown function can
increase the accuracy very sensibly.

Generally speaking, by properly using the Somigliana identity we
obtain the following functional equation:

[T, v) i) as = [TT (X, Y) ¢ (X)ds, (1)
S S

which describes either the first, or the second fundamental problem of

elasticity, depending on whether the function {(X), or @(X), is considered

as known along the boundary.

If the reference points Y are taken along a definite surface Sy,
surrounding S, the functional equation (91) is transformed into a Fred-
holm regular integral equation. If this surface S, is taken sufficiently
far from the boundary, the integrals appearing in this equation may be
evaluated by using the classical cubature formulas.

A standard method to solve an integral equation is to discretize
the integrals by using convenient integration rules and to apply the

resulting equation to a number of appropriate collocation points

Thus,

the integral equation (91) may be reduced in a simple way to the

{Yp}ﬁ,:lESu, y, being the point with coordinates y_, vy, v, .

system of linear equations:

l
kz AkF(Xk) Yp) f (Xk) = Bp’ ]‘
c=1
By =fT("’F(X,Yp)rv(X)dS, : (92)
S |
p =&, 2., ., 10} ]

with unknowns the values of the distribution f(X) at the integration
points X, (X1, Xy2, Xys), A being the weights of the integration rule.
The right-hand side, B,, of equation (92) may be evaluated either ana-
lytically, if it is possible, or by using any appropriate integration rule.

In order to examine the validity of the proposed method, the
above-described procedure has been applied for the solution of some
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static and dynamic steady-state problems concerning a prolate spheroid
[171]. As material of the spheroid was considered a material which has
the following I.amé’s constants:

A = 5600 MPa, pn = 26000MPa (93)

and a density:
o= 2700 kgm—3. (94)

The collocation points are selected at positions which correspond to the
integration-points positions, on the surface of self-similar spheroids S,.
It is worthwhile noting that the above described choice of collocation
points improves the stability of the linear system. This can be explained
by the fact that the diagonal terms of the linear system become in this
way greater, due to the presence of the singularity 1/r in the kernel of
the integral equation and to the correspondence between integration and
collocation points. Several boundary-value problems concerning a sphe-
roidal surface, which is deformed by a constant or a cosinusoidal strain,
applied on its surface along a given direction, are systematically
investigated in ref. [171].

CONCLUSIONS

A review of certain static and dynamic problems of three-dimen-
sional elasticity is presented. The general method is based on the ana-
lytical solutions of certain singular integral equations, which are directly
obtained from Kupradze’s functional equations.

Analytic solutions have been obtained for the solution of a large
number of axisymmetric and non-axisymmetric boundary-value problems
of the 3—D theory of elasticity and thermoelasticity.

On the other hand, the methods of solution already presented here
can be extended to include 3 —D crack problems [177 to 181].

In the future, the following directions of research seems to be of
potential interest:

a. Extension of the analytical methods, which are valid for the
solution of the 3—1D problems concerning smooth surfaces, in order to

include crack problems.
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b. Proof of the convergence of the numerical methods, which are
presented in this paper.

c. Experimental investigations of the deformation of cracked
3—D bodies.

Acknowledgement: The author is indebted to his assistant
Dr. J. Kazantzakis for his help in the preparation of the paper.
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Eig moonyovpévny dvaxolvoowy elg v Axadnuiav, xatd myv cvvedolav
tijg 24 “lavovagiov 1980, 8d6dncav cuvomtixol mivaxeg meguéyovree T cuoTHuaTa
didiaordrwy dopdopmv 6loxingwrindy EEiodoewy, & Smola dmAvovy Td dvo-
téow dvageedévra ovvoglaxa meoPhfinata did Tdg meQuTTMOELS GTATIX®Y, duvaii-
@V, otatx®v - Yeguoshactixdv xal Suvapxdv - deguoshactix®y moofAnudrav

i ovupéroov ¥ dovupéroov Ehactixdtnroc.
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"Hom, yevvdrar 1o gowtnua tiig dmlicewg Hm0 xhetothy poggiv TV Gvo-
téow mootadéviav ovotnudrov didiactdrav WBiopdopuv shoxknowtixdv Esdoswy.

‘H yvioig 1ol dotdtuod xai tiig mowihiag tdv mooPAnudrwy, & 6mota dbvav-
T va deyxdolv xdetotnv Aoy elvar dxome Evdiagpéoovoa didtt :

(i) ’Emroéner myv puerémy tijg edotadelag tiic dmAloeme 1@V ToWdLactd-
TV cuvooLax®v moofAnudtmv dud tiig yeMoewg moooeyyloTix®dY redsdmv.

(ii) "Ex t@v xhewotdv Mioewv ovluydv ouvogiaxdy mooPAnudrov, ai éroiat
dgogoly v émpdvelav todiactdrov dyxkeloparoc meonvntel edxdhwg xhewot)
Mot dua 10 @viictoigov medfAnua  tiig todiactdrov owyuic. “H pedodohoyia
adt) dvantiooetal Sid modtnv qogdv eiz Ty magolouy Gvaxoivwoy xoi @ao-
uoCetan eig ovyxenouéva mpofANuata owyudy.

(iii) ITagéyxer ovotnuatxdv goyaleiov S tov Eheyyov tilc doddtnrog xai
tiis axoPelag Tdv véwv moooeyyiotixdv aotduntindy pedddmv mov givar mdoavov
va eotadolv pedlovrirde.

(iv) Emroéner xatrd teémov ddpiotov, tOV dtapeoionov tév toldtactdrmy
moofAnudrov el «elixoha moofAijuata» xal eilg «dvonoka moofAiuata» xoi Tolov-
T0TEONTWG TEOOTATEVEL TOV VvéOV 2QevvnTlY Gmd TV dmbropov Evaoydéinoiv tov ueé
duoyeoéotata moofMinara tiic Todiastdrov ElastixdTnrog.

A v Hlomoinoy TV GveTéom OROTMV KATACTOMVETUL GELQC TOLMV TV~
®ov, €x TV 6molwy 1) medtn *atnyopia meothauBdvel TO YEVIrOY oTaTinOv ) duva-
U0V cuvoQLoxdy medPAnua mov Avetar pE xhetoTiv poognv O’ Epaouoyiic T@V
yevixevuévov oelo®v Fourier. “H dsvréoa xarnyopia mvdxwv meothapfdver tag
xhewotag Adoeig tdv Wiov moofnudrov mov Geifovral émi tiig mgpaveiag TG
opaigas. ‘H 8¢ tolty xatnyoolo mvdrov meohauPdver dotouéva xAosoixd cuvo-
otaxa meoPMjuata tiig deouochaoctixdtnrogc mov déyovrar xhewotdg Aloeig.

‘H tafwvéunoig t@v ovvogtandv meofAnudrov tiig Todiastdrov "Elactins-
rog mov déyxovratl xAeotv Aowy dmitoémel G’ EvOg UEV VO AOLTOGTHOWUE GLYXE-
®noLUEVag tag dtapooovg avadlvtinag uedddovg mob dvavrar va Egaguocdoiv,
G’ €réoov d¢ mapéyel v duvardmmra thg EE dvrewwévov Extuoswg tol Pa-
Yuot dvoyeoelag Sia v Emilvowy mohvmAdnov meofAfuatog, fotw xal dv dev
déyetal Moty xhetotiic poo@iic.

Téhog 81° Enentdocmwg 1OV ®haootx@v pedGdwv mov loyvovv da v Exilvoy
100 mpofAjuatog tob todtactdtov 8yxhelouatog wnatéorn duvatov va Emitevydd
#hewotn) Motg elg 10 medPfAnua tiig opaloeiic pmyuils 8vtog dmelgov xal lootEo-

oV UEoov.
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’Ex magaililov, mapéygovrar oy PifAloyoagind otolyeia elg ta omola
dlvartal v Gvateétn 6 ueketntiig Otav T yeetacdi). “Exactov tdv dvotéow
mooPfinudrov érxavakapfdvetar dud didpooa €(dn gooticewv (oteéyig, xduytg,
gpelnuopog %.Ah.m.). "Emushéov, didetar ) xheiom) Adoig tob mooPfAjnarog tijg agpoat-
owiic pwyuiic O avamtitewg Tig dyvdotov cuvaptioeng elg oepdg dottoywvioy
Tohvavipwy.

"AMn duvatdtng, mooxUmtovon &% Tiig XOVOEWS THY AVWTEQW TVAXOY,
elvar 1 dutinwoig tis Moewg tdv moofAnudrmv wov dgv Eyovv dxdun osvym i,
du g Epaouoyilc mapeppeody nedddwv moog éxelvag mod Eumegiéyovrar eig Tovg
alvarog.

Téhoc, % moorewvouévny PBifioyoagia nakinrer tog mhelotag T@v dmuootet-
cE@V OV Gpooolv #Aelotdg Mosig Totdiactdtov cuvoptaxdv moofinudrwy, #mi-
Avopévaov Sua tiig ueddédov tdv idtoudopmv Sidtaotdrwv 6AoxAnowtixdv éEwcdocwy
uéyxol ol 10 1981, Kata ovvémeiav elvar yonoipog dua tov oeuvniiv mov Goyo-

Aetrar ue v megroxy admyv g Towdiastdrov "ERastixdtnroc.

REFERENCES

1. A. Ya. Aleksandrov and Yu. I. Solov’ev, Three- Dimensional
Problems of the Theory of Elasticity [in Russian], Nauka, Moskow
(1979).

2, V. T. Grinchenko, Equilibrium and Fully Established Vibrations of
Elastic Bodies of Finite Dimensions [in Russian], Naukova Dumka,
Kiev (1978).

3. V. D. Kupradze -T. G. Gegelia- M. 0. Basheleishvili and
T. V. Burchuladze, Three-Dimensional Problems of the Mathe-
matical Theory of Elasticity and Thermoelasticity [in Russian],
Nauka, Moskow (1976).

4. A. N. Guz’ and V. T. Golovchan, Diffraction of Elastic Waves in
Multiply Connected Bodies [in Russian], Naukova Dumka, Kiev (1972).

5. A. S. Kosmodamianskii and V. A. Shaldyrvan, Thick Multiply
Connected Plates [in Russian], Naukova Dumka, Kiev (1978).

6. A I. Lur’e, Three- Dimensional Problems of the Theory of Elasticity

[in Russian], Gostekhizdat, Moscow (1955).
Yu. N. Podil’chuk, Three-Dimensional Problems of the Theory of
Elasticity [in Russian], Naukova Dumka, Kiev (1979).



10.

11.

12.

14.

16.

78

18.

19.

20.

21.

ZYNEAPIA THE 10 IOYNIOY 1982 459

A. F. Ulitko, The Method of Vector Eigenfunctions in Three - Dimen-
sional Problems of the Theory of Elasticity, Prikl. Mekh., 3, No 9,
1-11 (1967).

D. L. Abramyan and A. Ya. Aleksandrov, Axially Symmetrical
Problems of Elasticity [in Russian], Proc. 2nd Cong. Theor. Appl.
Mech. - Mechanics of Rigid Bodies, No 3, Moscow (1966).

M. A. Aleksidze - N. M. Arveladze - N. L. Lekishvili and
K. V. Pertaya, On the Solution of Boundary Value Problems
by Non - Orthogonal Series [in Russian], Soobshch. AN GSSR, 49,
281 - 286 (1968).

A. I. Vaindiner and V. V. Moskvitin, Singular integral equa-
tions of three - dimensional problems of the theory of elasticity;
(regularization, cubic functions, differential properties, and approxi-
mate methods of solution) Dokl. Akad. Nauk SSSR, 228, No. 6,
1310 - 1313 (1976).

V. Z. Parton and P. I. Perlin, Integral Equations of the Theory
of Elasticity [in Russian], Nauka, Moscow (1977).

B. L. Abramyan and A, Ya Aleksandrov, Axisymmetrical Pro-
blems of the Theory of Elasticity (in: Proc. of the Second All-Union
Conference on Theoretical and Applied Mechanics - The Mechanics of
Solids [in Russian]), 155, 3, Nauka Moscow (1966).

B. G. Galerkin, On the Investigation of Stresses and Strains in an
Elastic Isotropic Body [in Russian], DAN SSSR, Ser. A., 14, 353 - 358
(1930).

L. A. Galin, Contact problems of elasticity (in Russian), Nauka Moscow-
Leningrad (1953).

V. G. Gromov, The method of perturbations in a boundary-value problem
of thermoviscoelasticity, Prikl. Mat. Mekh., 36, No 3, 5C6 - 513 (1978).

Ya. S. Uflyand, Integral Transformations in Problem of Elasticity,
(in Russian), Moscow - Leningrad (1963).

G. N, Savin and Yu. N. Nemish, The method of perturbation of
elastic properties in the mechanics of solid deformable bodies, Dokl.
Akad. Nauk. SSSR, 216, No 1, 53 -55 (1974).

Yu. N. Podil’chuk, Approximation method for solution of boundary-
value problems of the theory of elasticity for figures close to an
ellipsoid of revolution, Prikl. Mekh., 6, No 9, 23 - 30 (1970).

V. L. Rvachev, Methods of the Algebra of Logic in Mathematical
Physics (in Russian), Naukova Dumka, Kiev (1974).

A. F. Ulitko, The Method of Eigenvector Functions in Three- Dimen-
sional Problems of the Theory of Elasticity (in Russian), Naukova
Dumka, Kiev (1979).



460

22,

23.

24.

26.

217.

29.

30.

31.

32,

33.

34.

36.

"

[TPAKTIKA THE AKAAHMIAZ AGHNQN

S. Shapiro, Axisymmetric deformations of a ellipsoid of revolution,
Dokl. Akad. Nauk. SSSR, 58, No 7, 1309 - 1312 (1947).

N. Guz’, Solution of two-dimensional and three-dimensional problems
of the mechanics of continuous media for multiply connected regions,
Kontsentr. Napryazh., No 2, 54 - 58 (1968).

I. Lu're, Three- Dimensional Problems of the Theory of Elasticity
(in Russian), Nauka, Moscow (1977).

I. Obolashvili, The Effective Solution of Some Spatial Problems
of the Theory of Elasticity (in Roumanian), Rev. Roumaine Math.
Pures Appl., 11, No 8, 965 - 972 (1966).

. V. Solkyanik-Krassa, The Torsion of Shafts of Variable Cross

Section (in Russian), Gostekhizdat, Leningrad - Moscow (1949).

N. Polozhii, The Theory and Application of p-Analytic and (p,q) -
Analytic Functions, (in Russian), Naukova Dumka, Kiev (1973).

I. Volpert, Elliptic Systems on the Sphere and Two - Dimensional
Singular Integral Equations (in Russian) Math, Coll., 59, 195-214
(1962).

Ya. Aleksandrov and Yu. I. Solov’ev, Three- Dimensional
Problems of the Theory of Elasticity (in Russian), Nauka, Moscow,
(1979).

I. Vorovich and V. K. Prokopov, Some questions of the Three-

Dimensional Theory of Elasticity (in Russian), 3rd Congr. Theor.
Appl. Math., iss. 1, Moscow (1968).

N. Guz’ - I.S. Chernyshenko and K. I. Shnerenko, Sphe-
rical Bottoms Weakened by Openigs (in Russian), Naukova, Dumka,
Kiev (1970).

A. Kil'chevskii, Analysis of Various Methods for Reducinh Three-
Dimensional Problems of the Theory of Elasticity to Two-Dimensional
and Investigation of the Statement of Boundary-Value Problems of
the Theory of Shells, (in: «The Theory of Plates and Shells» Proc.
of the Second All-Union Conference on Plates and Shells (in Sussian)),
Kiev (1962), pp. 58 -69.

. Miyamoto, Review on the Three-Dimensional Theory of Elasticity,

J. Jap. Soc. Mech. Eng., 60, No 460, 477 - 490 (1957).

. Neiber and G. Kahn, Problems of Stress Concentration in Science

and Technology, Mechanics (in Russian), No 3 (1967), pp. 109 -131.

. K. Prokopov, Review of Work on Homogeneous Solutions in the

Theory of Elasticity and Their Application, in: Proceedings of
Leningrad Polytechnic Institute (in Russian), No 279 (1967), pp. 31-46.

L. Rvachev and V. S. Protsenko, Contact Problems of the
Theory of Elasticity for Non-Classical Regions (in Russian), Naukova
Dumka, Kiev (1977).



317.

38.

39.

40.

41,

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52,

53.

E.

A,

Y u.

M.

A.

A.

ZYNEAPIA THX 10 IOYNIOY 1982 461

Sternberg, On Some Recent Developments in the Linear Theory of
Elasticity, Struct. Mech., 48 - 72 (1960).

N. Guz’, Pro Odin Metod Rozv’yazuvannaya Trivirnikh Liniinikh
Zadach Mekhaniki Sutsil’'nogo Seredovishcha Dlya Nekanonichnikh
Oblastei, Dokl. Akad. Nauk. USSR, Ser. A, No 4 (1970), pp. 852-355.
A. Ustinov and M. A. Shlevev, Trends in the Development
of the Asymptotic Method in the Theory of Slabs and Shells, (in:
Calculation of Shells and Plates [in Russian]), Rostov-on-Don (1976),
pp. 3 -27.

. S. Theocaris and I. G. Kazantzakis, The Spectra of Some

Integral Operators for Solving Three-Dimensional Boundary Value
Problems, Proceedings of the Academy of Athens, 55, 49- 71 (1980).

I. Vorovich - V. M. Aleksandrov and V. A. Babeshko,

Nonclassical Mixed Problems in the Theory of Elasticity (in Russian),
Nauka, Moscow (1974).

Van Dyke, Perturbation Methods in Fluid Mechanics, Academic
Press (1964).

N. Guz’, The Diffraction of Waves at Finite Bodies of Revolution,

Prikl. Mekh., 9, No 7, 10-18 (1973).

The Propagation and Diffraction of Waves in Bodies With Nonround

Cylindrical Boundaries, Prikl. Mekh., 9, 8-11 (1973).

N. Guz’ - LS. Chiernyshemnikio = Val. N. Clwekhov - Vik,
N. Chekhov and K. I. Shnerenko, Cylindrical Shells Wea-
kened by Openings (in Russian), Naukova Dumka, Kiev (1974).

. M. Guz’, Approximation Method for Determining the Density of Strains

in Curvilinear Apertures in Shells, Prikl. Mekh., 8, No 6, 605 -612
(1962).
D. Ivlev and L. V. Ershov, The Method of Perturbations in the
Theory of an Elasticoplastic Body (in Russian), Nauka Moskow (1978).
A. Il’yushin, Plasticity (in Russian), I. Gostekhizdat, Moscow -
Leningrad (1948).

. Kauderer, Nonlinear Mechanics (Russian translation), Inostr. Lit.,

Moscow (1961).

. Cowle, Perturbation Methods in Applied Mathematics (Russian trans-

lation), Mir, Moscow (1972).

V. Kantorovich and V. I. Krylov, Approximation Methods of
Higher Analysis (in Russian), Fizmatgiz, Moscow (1962).

A. Lomakin, «Deformation of Microinhomogeneous Elastic Bodies,
Prikl. Mat. Mekh., 29, No 5, 18 - 25, (1965).

. N. Savin, Distribution of Stresses Around Openings (in Russian),

Naukova Dumka, Kiev (1968).



462

54.

55.

56.

58.

59,

60.

61.

62,

63.

64.

68.

69.

INPAKTIKA THX AKAAHMIATZ AGHNQN

A. H. Naiffe, Perturbation Methods, John Wiley & Sons, New York

Al .

¥ .

(1973).

Khusu - Yu. R, Vitenberg and V. A. Pal’'mov, Rough-
ness of Surfaces: Theoretical Probability Approach (in Russian),
Nauka, Moscow (1975).

Tsurpal, Calculation of the Elements of Construction From Non-
linearly Elastic Materials (in Russian), Tekhnika, Kiev (1976).
Marchuk, The Method of Computational Mathematics (in Rus-
sian), Nauka, Moscow (1977).

Morse and H. Feshbach, Methods of Theoretical Physics,
Vol. 2, Mc Graw - Hill, New York (1958).

N. Nemish, Approximation Method for Solution of Three - Dimen-

sional Problems of the Theory of the Elasticity of a Curvilinear
Orthogonal Body for Noncanonical Regions, Prikl. Mekh., 14, No 7,
10 - 17 (1978).

Kupradze, Sommerfeld Principle of Radiation (in Russian), DAN
SSSR, No 2, 1-7 (1934).

The Method of Integral Equations in the Theory of Diffraction (in
Russian), Mat. Sb., 41, No 4, 562 - 581 (1935).

Uniqueness Theorems in Boundary-Value Problems of Elasticity (in
Russian), Trudy Thbil. Univ., 2, 256 - 272 (1936).

Zur Frage der Ausbreitung elektromagnetischer Wellen in einem
inhomogenen ebenen Medium Comp. Math. 6, 228- 233 (1939).

To the Solution of the Dirichlet Problem for Multiply Connected
Domains (in Russian) Soobshch. AN GSSR 1, No 8, 569 -571 (1940).
Some New Theorems of the Oscillation Equation and Their Applica-
tions in Boundary-Value Problems (in Russian), Trudy Tbil. Univ.
26 (A), 1-11 (1945).

Boundary Value Problems of the Oscillation Theory and Integral
Equations (in Russian), Moscow (1950).

To the Solution of the Three-Dimensional Boundary Value Problem
of Elasticity (in Russian), Coll. Mekh. sploshnoi stedi i rodstv.
problemi anal. dedicated to the 80th anniversary of acad. N. I. Mu-
skhelishvili, Moscow (1972).

On the Approximate Solution of Problems of Mathematical Physics
(in Russian), UMN 22, No 2, 59- 107 (1967).

On a Certain Method for the Approximate Solution of Boundary
Problems of Mathematical Physics (in Russian). Zh. vichisl. mat.
i mat. phiz. 4, No 6, 1118 (1964), see also: Metody teorii potencjalu
w teorii sprezystosci, Warsaw, 1966.



10.

Tl

72.

73.

4.

75.

76.

8.

82

83.

84.

V. b;
M. O
p—)
—_—
T Vi

SYNEAPIA THE 10 IOYNIOY 1982 463

Kupradze and M. O. Basheleishvili, New Integral Equa-
tions of the Anisotropic Theory of Elasticity (in Russian), Soobshch.
AN GSSR, 15, No 6, 407 - 414 (1954).

Basheleishvili, The Effective Solution of Basic Static Pro-

blems of an Anisotropic Elastic Body for an Ellipse and for an
Infinite Plane with an Elliptic Hole (in Russian). Trudy Tbil. Mat.

Inst. AN GSSR 28, 3-20 (1962).

Solution of the Basic Spatial Boundary Value Problems of an Iso-
tropic Elastic Body Bounded by Several Surfaces (in Russian), Trudy
Vichisl. Tsentra AN GSSR 4, 131 - 139 (1963).

Solution of Plane Boundary Value Problems of Statics for an Aniso-
tropic Elastic Body (in Russian), Ibid. 3, 93 -139 (1963).

Analogue of Dini’s Formula in the Theory of Elasticity (in Russian),
Ibid. 4, 121- 129 (1964).

A Method of Investigation of Some Plane Boundary-Value Problems
of an Anisotropic Elastic Body for Multiply Connected Domains
(in Russian), Ibid. &, 1963, 141- 166. See also: A method of solution
of the third and the fourth static problems for an anisotropic elastic
body (in Russian). Soobshch. AN GSSR 34, No 2, 283-290 (1964).
Solution of the Basic Plane Boundary Value Problems for Piecewise -
Nonhomogeneous Amnisotropic Elastic Media by the Method of Fred-
holm’s Integral Equations (in Russian). Trudy Gruz. Politekh. Inst.
No 2 (100), 8-11 (1965).

Basic Plane Boundary-Value Problems for Nonhomogeneous Aniso-
tropic Elastic Bodies (in Russian), Trudy Tbil. Univ. 117, 279 - 293
(1966).

Solution of the Basic Boundary-Value Problems of Statics for the
Orthotropic Elastic Half - Space (in Russian), 1bid. 129, 47 - 55 (1968).
Solution of Plane Boundary Value Problems of Statics of the Couple-
Stress Theory (in Russian), Soobshch. AN GSSR 56, No 1, 41-44 (1969).
On One Case of Generalization of the Liapunov - Tauber Theorem in
the Theory of Elasticity (in Russian), Ibid. 61, No 3, 553 - 556 (1971).
Burchuladze, Application of Singular Integral Equations to
Solution of Some Boundary Value Problems (in Russian), Ibid. 28,
21 - 40 (1962).

Green’s Tensors and Some of Their Applications (in Russian), Trudy
Gruz. Politekh. Inst. No 8 (93), 87- 119 (1962).

On Some Mixed Problems for Multiply Connected Domains (in Rus-
sian), Trudy Tbil. Univ. 110, 79 - 88 (1965).

On Approximate Solution of Boundary-Value Problems for one Class
of Elliptic Systems (in Russian), Differentsialnie uravneniya, 1, No 9,
1231 - 1245 (1965).



464

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

ITPAKTIKA THX AKAAHMIAY AGHNQON

T. V. Burchuladze, A Method of Solution of Some Boundary Value
Problems for Multiply Connected Domains (in Russian), Soobshch.
AN GSSR 41, No 1, 11-18 (1966).

———, Mixed Boundary-Value Problems in the Multiply Connected Domain
(in Russian), Int. Cong. Math., Appl. Math. and Math. Phys. Theses
of papers, Moscow (1966).

——, Mixed Boundary-Value Problems for one Class of Elliptic Systems
in Multiply Connected Domains (in Russian), Trudy Tbil. Mat. Inst.
AN GSSR 32, 54-93 (1967).

——, A Method of Approximate Solution of Boundary Value Problems
(in Russian). Ibid. 32, 54 - 93 (1967).

——, Approximate Solutions of Boundary Value Problems With Mixed
Boundary Conditions (in Russian), Ibid. 35, No 2, 5- 31 (1969).

—, Boundary Value Problems of Elasticity for Multiply Connected
Domains (in Russian), Trudy Tbil. Univ. 129, 57- 78 (1968).

Yu. N. Nemish and D. F. Lyalyuk, The Convergence of the
Method of Perturbation and the Exactness of Satisfaction of Boundary
Conditions at Noncanonical Surfaces, Prikl Mekh., 14, No 4, 41-49
(1978).

Yu N. Podil’chuk, Three- Dimensional Problems of the Theory of
Elasticity (in Russian), Naukova Dumka, Kiev (1979).

T. A. Cruse and R. B. Wilson, Advanced Applications of Boundary
Integral Equation Methods, Nuclear Engng and Design, 46, 223 - 234
(1978).

D. 1 Chernopiskii, Special Characteristics of the Calculation of
Deformed Cylinders in Modified Bessel Functions, Prikl. Mekh., 14,
No 6, 45-51 (1978).

——, Special Characteristics of the Calculation of Deformed Cylinders in
Modified Bessel Functions, Prikl. Mekh., 10, No 7, 3-22 (1974).

G. S. Shapiro, Axisymmetric Deformations of an Ellipsoid of Revolu-
tion, Dokl. Akad. Nauk. SSSR, 58, No 7, 1309 - 1312 (1974).

V. I. Sheinin, Distribution of Stresses in the Neighborhood of Eund-
faces Taking Account of Unevenesses of the Contour, Osm. Fundam.
Kekh. Gruntov, No 4, 21-23 (1965).

T. G. Gegelia, On the Differential Properties of Solutions of Multi-
dimensional Singular Integral Equations (in Russian), Int. Cong.
Math. (ICM), Part. Diff. Eqs., Papers, Moscow (1966).

—, On Three- Dimensional Boundary - Value Problems of Elasticity for
Unbounded Domains (in Russian). Symposium of Continuum Mecha-
nics and Related Problems of Analysis, Papers, Tbilisi (1971).



100.

101.

102.

103.

106.

107.

108.

109.

110.

1817

112.

113.

114.

MG,

144 1982

ZYNEAPIA THZE 10 IOYNIOY 1982 465

Gegelia, Some Special Classes of Functions and Their Properties
(in Russian). Trudy Tbil. Mat. Inst. AN GSSR 32, Collected works
on equations of mathematical physics 1, 94- 139 (1967).

Some Questions of the Theory of Multidimensional Singular Integral
Equations of the Potential Theory and of Their Applications in Ela-
sticity (in Russian), Doctor’s thesis, Thil. Math. Inst. of Sci. Acad.
of Georgian SSR (1963).

On the Regularization of Singular Integral Operators (in Russian),
1bid. 29, 229 - 287 (1963).

On Some Basic Spatial Boundary-Value Problems of Elasticity (in
Russian), Ibid. 28, 53 - 72 (1962).

On the Formula of the Integration in Iterated Singnlar Integrals (in
Russian), Trudy Thil. Mat. Inst. AN GSSR 28, 41-52 (1962).
Differentiability Properties of Solutions of Surface Singular Integral
Equations (in Russian), Trudy Gruz® Politekh. Inst. No 1 (81), 69-77
(1962).

On Boundary Values of the Potential-Type Function (in Russian),
Trudy, Vichisl. Tsentra AN GSSR 2, 285-313 (1961).

On the Properties of Multidimensional Singular Integrals in Space
Lp (S, p) (in Russian), DAN SSSR, No 2, 279 - 282 (1962).

On the Composition of Singular Kernels (in Russian), DAN SSSR
135, No 4, 767 - 770 (1960).

Boundary Properties of Generalized Spatial Potentials (in Russian),
Trudy Tbib. Univ. 56, 185 - 206 (1959).

Differential Properties of Some Integral Transformations (in Russian),
Ibid. 26, 195- 225 (1959).

Shvets and V. I. Eleiko, Stochastic Temperature Stresses
in a Cylinder with a Rough Surface, Prikl. Mekh., 13, No 12, 39-45
(1977).

The Stochastic Problem of Thermal Conductivity and Thermoelasticity
for a Deformable Body with a Rough Surface, Dokl. Akad. Nauk
USSR, Ser. A, No 11, 1021 - 1024 (1977).

Carslaw, Introduction to the Mathematical Theory of the Con-
duction of Heat in Solids, New York, Dover Publications (1945).

. Landau and E. M. Lifshitz, The Theory of Elasticity [in

Russian], Moscow (1965).

. Magnaradze, Solution of Boundary Value Problems for Some

Weakly Nonhomogeneous Elastic Bodies (in Russian), Rem. Appl.
Math. Inst. of Tbilisi Univ., Papers, No 8, 47-52 (1973).



466

116.

117,

113.

119.

120.

121.

122.

123.

124.

125.

126.

127, -

128,

129.

G
S
V. D
i

'y
I
=
A
0.1
T—

IIPAKTIKA THX AKAAHMIAY AGHNQN

Magnaradze, On General Representations of Some Classes of
Solutions of Linear Nonstationary Partial Differential Equations and
on the New Method for Solution of Cauchy Dirichlet and Similar Pro-
blems (in Russian), Trudy Inst. Prik. Mat. Tbil. Univ., 2, 71-92 (1969).

On Generalization of I. I. Privalov’s Theorem and its Application to
Some Linear Boundary-Value Problems of the Theory of Functions
and to Singular Integral Equations (in Russian), DAN SSSR 68,
No 4, 1949, 657 - 660.

. Kupradze and T. V. Burchuladze, General Mixed Boun-

dary - Value Problems of the Elasticity Theory and of the Potential
Theory (in Russian), Soobshch. AN GSSR, No 1, 27 -34 (1963).
General Mixed Boundary-Value Problems of the Elasticity Theory
(in Russian), 2nd Cong. Theor. Appl. Mech , Papers, Moscow (1964).
Boundary Value-Problems of Thermoelasticity (in Russian), Different-
sialnie Uravneniya §, No 1, 3-43 (1969).

Some Boundary - Value Problems of Thermoelasticity Solved by
Quadratures 1 (in Russian), Ibid. 5, No 10, 1735 - 1761 (1969).

Some Boundary - Value Problems of Thermoelasticity Solved by
Quadratures 1I (in Russian), Ibid. 5, No 11, 1923 - 1939 (1969).
Solution of Dynamic Problems of Elasticity (in Russian), Sem. Appl.
Math. Inst. of Tbilisi Univ., Papers, 66 - 77 (1970).

Proof of the Existence and Calculation of Solutions of the Basic
Mixed Dynamic Problems for a Three-Dimensional Elastic Body of
Arbitrary Shape (in Russian), Trudy Tbil. Mat. Inst. AN GSSR 39,
23 - 42 (1971).

Dynamic Problems of Elasticity and Thermoelasticity (in Russian),
Itogi nauki i tekhniki, Ser.: Sovrem, Probl. Mat, Vol. 7, Moscow,
163 - 296 (1975).

. Napetvaridze, On the Basic Contact Boundary Problem of Heat

Conduction (in Russian). Soobshch AN GSSR 33, No 2, 271-278 (1964).
On the Approximate Solution of the Third Boundary Value Problem
of Heat Conduction (in Russian). Soobshch. AN GSSR 35, No 2,
271 - 276 (1964).

On the Existence of a Solution of the Contact Boundary Problem of
Heat Conduction (in Russian). Soobshch. AN GSSR 37, No 2, 269 -
262 (1965).

On the Approximate Solution of the Cauchy-Riemann Problem for
the Equation of Heat Conduction (in Russian). Trudy Tbil. Univ.
110, 109 - 114 (1965).



130.

131.

132.

188. -

134.

135.

136.

137.

138.

139.

140.

141. -

142,

143,

144.

145.

146.

@3 I,

SYNEAPIA THE 10 TOYNIOY 1982 467

Napetvaridze, Potentials of the Theory of Elasticity (in Rus-
sian). Trudy Tbil. Mat. Inst. AN GSSR 89, 75-92 (1971).

On boundary Value Problems of the Couple - Stress Theory (in Rus-
sian). Sem. Appl. Math. Inst. of Tbhilisi Univ., No 5, 53-67 (1971).
Natroshvili, The Effective Solution of the basic Boundary
Problems of Statics for a Homogeneous Sphere (in Russian). Trudy
Inst. Prikl. Mat. Thil. Univ. 3, 127 - 140 (1972).

The Effective Solution of the Third and Fourth Boundary Problems

of Elasticity for a Sphere (in Russian). Soobshch. AN GSSR 67,
No 3, 557- 560 (1972).

Some Basic and Mixed Problems for a Semisphere (in Russian). Sem.
Appl. Math. Inst. of Tbilisi Univ., Papers, No 8, 9-17 (1973).

The Basic Contact Problem for a Sphere (in Russian). Sem, Appl.
Math. Inst. of Thilisi Univ., Papers, No 8, 19-22 (1973).

. Mikhlin, Multidimensional Singular Integrals and Iniegral Equa-

tions (in Russian). Nauka, Moscow (1962).

Solution of one Three-Dimensional Problem of Elasticity (in Russian).
PMM 10, No 2, 301 - 304 (1946).

Lectures on Linear Integral Equations (in Russian). Nauka, Moscow
(1959).

Direct Methods in Mathematical Physics (in Russian). Moscow - Lenin-
grad (1950).

Integral Equations and their Applications (in Russian). Nauka,
Moscow (1949).

Problem of the Quadratic Functional Minimum (in Russian). Nauka,
Moscow (1952).

Numerical Realization of Variational Methods (in Russian). Nauka,
Moscow (1966).

. Rukhadze, Boundary Value Problems of Elasticity for Piecewise-

Nonhomogeneous Isotropic Media (in Russian). Candidate’s thesis,
Math. Inst. Acad. of Sci. of Georgian SSR (1965).

On Boundary Value Problems of Elasticity for Piecewise - Nonhomo-
geneous Orthotropic Bodies (in Russian). Soobshch. AN GSSR 30,
No 1, 11-18 (1963).

Solution of Boundary Value Problems of Elasticity for Piecewise -
Nonhomogeneous Media by the Method of Generalized Fourier Series
(in Russian). Trudy Gruz. Politekh. Inst. 4 (97) 11-19 (1964).

The Existence Theorem for Boundary Value Problems of Elasticity
for Piecewise Nonhomogeneous Orthotropic Bodies (in Russian).
Soobshch, AN GSSR 30, No 6, 713 - 720 (1963).



468

IIPAKTIKA THY AKAAHMIAY AGHNQN

147, Z. A. Rukhadze, Basic Boundary - Contact Problems of the Theory of

148.

149,

150.

151.

153.

156.

1517.

158.

159,

160.

161.

. ¥u.

=

Thermoelastic Oscillations (in Russian), Soobshch. AN GSSR 56,
No 2, 285-288 (1969).
The Effective Solution of Problems of Thermoelastic Oscillations for
Some Plane Domains (in Russian). Trudy Gruz. Politekh. Inst. No &
(133), 164 - 171 (1969).

. Kvinikadze, The Third and the Fourth Boundary Value Prob-

lems of the Plane Theory of Elasticity for Stationary Oscillations of
Isotropic Bodies (in Russian). Soobshch. AN GSSR 32, No 3, 535 -
542 (1963).

Mixed Problems of the Plane Theory of Stationary Oscillations of
Isotropic Elastic Bodies (in Russian). Candidate’s thesis, Tbhil. Math.
Inst. of Sci. Acad. of Georgian SSR, Thbilisi, (1964).

On the Existence of Solutions of Some Plane Boundary Value
Problems of Stationary Oscillations of an Isotropic Elastic Body
(in Russian). Trudy Tbil. Univ., 117, 295 - 331 (1966).

N. Nemish, Approximation Method for Investigation of the Sym-

metrical Deformation of Orthotropic Bodies, Izv. Akad. Nauk. SSSR,
Mekh. Tverd. Tela, No 5, 81- 87 (1972).

Approximation Method for Solution of Boundary-Value Problems of
the Mathematical Theory of FElasticity of Anisotropic Media, Mat.
Fiz., No 11, 98- 104 (1972).

Elastic Equilibrium of Deformed Cylinders of Varying Thickness,
Dokl. Akad. Nauk URSR, Ser. A, No 2, 155 - 158 (1973).

Elastic Equilibrium of Three-Dimensional Deformable Bodies Bounded

~ by Nonround Cylindrical Surfaces, Izv. Akad. Nauk SSSR, Mech,

Tverd, Tela, No 2, 77-86 (1973).

Generalization of Three - Dimensional Harmonic Functions, Diff.
Uravn., No 5, 967 - 968 (1973).

Recurrence Relations of the Perturbation Method in Three-Dimensio-
nal Relationships of the Theory of Elasticity, Prikl. Mekh., 9, No 9,
64 - 70 (1973).

Three - Dimensional Problems for an Elastic Medium Bounded by
Cylindrical Surfaces, Mat. Fiz., No 13, 73 - 78 (1973).

Limit Problems in the Theory of Elasticity for Multiply Connected
Non-Canonical Regions in Spake, Dokl. Akad. Nauk USSR, Ser. A,
No 8, 743 - 747 (1974). .

Construction of one Class of Three-Dimensional Polyharmonic Func-
tions, Mat. Fiz., No 15, 123 - 128 (1974).

C. Miranda, Equazioni alle Derivate Parzialli di Tipo Elliptico, Sprin-

ger Verlag, Berlin - Gottingen - Heidelberg, (1955).



162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

173.

174.

ZYNEAPTA THZ 10 IOYNIOY 1982 469

V. D. Kupradze and M. A. Aleksidze, On a Certain Approxi-

T W
) WV
i iR
RN,

mate Method of Solution of Boundary Value Problems (in Russian).
Soobshch. AN GSSR 30, No 5, 529 - 536 (1963).

Burchuladze, Boundary Value Problems of Thermoelasticity
with Mixed Boundary Conditions (in Russian) Trudy Tbil. Mat. Inst.
AN GSSR 44, 10-29 (1974).

Burchuladze and R. V. Rukhadze, Green’'n Tensors in
the Theory of Elasticity (in Russian), Differentialnie Uravneniya 10,
No 6, (1974).

Burchuladze, On Some Spatial Problems of Elasticity with
Mixed Boundary Conditions (in Russian). Trudy Gruz. Politekh. Inst.
No 5 (138), 140 - 150 (1969).

Rukhadze, On the Solvability of the first Basic Mixed Dynamic
Problem of a Three-Dimensional Elastic Body (in Russian), Soobshch.
AN GSSR 73, No 2, 289 - 292 (1974).

Z. Domanski, Properties of the Stress Operator of the Double-Layer

Potential of the Static Theory of Elasticity Arch. Mech. Stosow,
20, 8, 347 - 354 (1968).

Z. Domanski - A. Piskorek and Z. Rvek, On the Application

of the Fischer- Riesz-Kupradze Method for Solution of the First
Fourier Problem, Rocz. Pol. Tow. Mat., Ser. I, Prace Mat., 137 - 147
(1972).

Polishchuk, On one Method of Solution of the Boundary Value
Problem of Electrodynamics (in Russian). Radiotekhnika i elektro-
nika 41, No 10, 1735 - 1758 (1966).

Pham The Lai, Potentiels Elastiques, Tenseurs de Green et de

B. 8
P. 8.
TA.

Neumann. Méchanique 6, No 2, 211 - 242 (1967).

Theocaris - N. Karayanopoulos and G. Tsamasphy-
ros, A Numerical Method for The Solution of Static and Dynamic
Three - Dimensional Elasticity Problems, Computers and Structures,
Vol. 15 (1982) (to appear).

Theocaris and N. Karayanopoulos, An Algorithm for
the Numerical Solution of Dense Large General Linear Systems,
Comp. Struct. 14, 5-6 (1981).

Cruse, Application of the Boundary Integral Equation Method to
Three - Dimensional Stress Analysis, Computers and Structures 3,
509 - 527 (1973).

Numerical Solution in Three- Dimensional Elastostatics, Int. J.
Solids Structures 5, 1259 - 1274 (1969).



176.

177.

178.

179.

180.

181.

ITPAKTIKA THX AKAAHMIAE AGHNQN

T. A. Cruse, An Improved Boundary Integral Equation Method for

5@,
J. &
Jo &
P. S

Three - Dimensional Elastic Stress Analysis, Computers and Structu-
res 4, 741- 754 (1974).

Lachat, A Further Development of the Boundary Integral Techni-
que for Elastostatics, Ph. D. Thesis, Univ. of Southampton (1975).

. Kazantzakis, General Methods for the Solution of Certain

Three - Dimensional Inclusion and Crack Problems in the Classical
Theory of Elasticity and Thermoelasticity, Ph. D. Thesis, N.T.U.A.
(1978).

. Kazantzakis and P. 8 T heocaris, The Evaluation of

Certain Two - Dimensional Singular Integrals Used in Three - Dimen-
sional Elasticity, Int. Journ. Sol. Struct., 15, 203 - 207 (1979).
Theocaris and J. G. Kazantzakis, On the Numerical
Evaluation of Two and Three - Dimensional Cauchy Principal Value
Integrals, Acta Mechanica, 39, 105 - 115 (1981).

On the Solution of the Three - Dimensional Problem of a Plane Crack
of Arbitrary Shape, Int. Jnl. Fract., 14, R 117 - 119 (1978).

On the Investigation of Certain Two - Dimensional Integrals Used in
Three - Dimensional Problems of Arbitrary Plane Cracks, Int. Jnl. of
Fracture, 15, No 5, R 165 - 167 (1979).



