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MAOHMATIKA.— A numerical method for solving singular integro-
differential equations with variable coefficients, by P. S.
T heocaris and G. Tsamasfyros*.

ABSTRACT

A method for the numerical solution of singular integrodifferential equa-
tions is presented where the integrals are discretized by using a convenient qua-
drature rule. Then, the problem is reduced to a system of linear algebraic equa-
tions by applying the discretized functional equation to appropriately selected
collocation points. This technique constitutes an extension of an analogous
method convenient for solving singular integral equations, which was proposed
in ref. [1].

1. INTRODUCTION

The solution of a large class of boundary-value problems in physics
and engineering can be reduced to a system of singular either integral,
or integrodifferential equations along a finite part of the real axis. In
particular, singular integrodifferential equations are encountered in the
theory of wings of finite span [2-4], or in contact problems of two
elastic bodies [4-6].

Problems expressed in the form of singular integral equations have
up-to-now extensively developed. The solution of such problems was
mainly based on the method presented in ref. [7], where a series-expan-
sion of the unknown function in Jacobi polynomials was used. Then,
with the aid of the ortliogonality properties of the Jacobi polynomials
an infinite system of equations was obtained, which yielded numerically
the solution of the problem. A further development of the solution of
integral equations with variable coefficients was presented by Dow and
Elliott [8], where again a series expansion of the unknown function was
used. The same problem was generalized in a recent paper by the
authors [1]. In this paper and a series of similar papers [9] to [14] a
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n-node Gauss-quadrature rule [15-16] was used in connection with a
special collocation procedure, which yielded a solution accurate to the
(2n—1) - degree.

On the contrary, little attention has been focussed to the numerical
solutions of integrodifferential equations. Multhopp [3] was the first in
1938 to present a numerical solution for a special class of integrodiffe-
rential equations. The method makes use of a variable transformation,
similar to the transformation used by Kalandiya [4] for singular integral
equations. The singular integral in the equation of ref. [4] was evaluated
by applying techniques of interpolation, instead of the efficient Gauss
rules of integration. This method was extensively described in the book
by Kalandiya [4], where its convergence was also proved. Another appli-
cation of the method was made by Sharfuddin [5].

An extension of Multhopp’s method has been recently developed,
where the procedures developed in refs [7-12] as well as in {1] for
solving singular integral equations were introduced to the solution of
integrodifferential equations [17].

According to this method two different quadrature rules were
introduced with n— and (n+k)-nodes respectively. The collocations points
of the n-node quadrature rule were used as abscissas for the (n- k)-node
rule and vice versa. It was shown in refs. [1] and [9] that the method
was of a 2n-degree of accuracy. This method was first used for the spe-
cial case where the unknown function ¢ (x) presents singularities of order
of !/, at the vicinities of the end points of the [1,1]-interval. Then the
number of nodes used in the method was (2n—1) and its accuracy was of
the same degree although the number of linear equations of the system
was equal to (n—1) [17].

In the present paper this method of solution was extended to
encompass the most general cases for singular integrodifferential equa-
tions. Thus, it was succeeded, in this method, to consider unknown
functions, which present in the vicinity of points x =+ 1 real and com-
plex singularities with positive real parts. Moreover, in the present
method (2n—1)-nodes have been used, while the accuracy attained was
of (2n—1) - degree.

Although the results obtained by using Multhopp’s method, which
is based on a Lagrange-trigonometric interpolation of the unknown
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function and performs collocation at the interpolation points, and the
methods based on Gauss quadrature rules are of the same order of accu-
racy, the latter methods present the advantage over Multhopp’s method
to reduce the final system of (2n—1)-linear algebraic equations to a num-
ber of (n—1)-equations by performing convenient substitutions. Finally,
it should be mentioned here that the superiority of the method of the
present paper over the previous method given in ref. [17] is the poten-
tiality of generalization of the procedure to a much larger area of

problems.

2. THE INTEGRODIFFERENTIAL EQUATION

Since any finite interval can converted to the interval [—1,1] by
means of a linear transformation, we assume without loss of generality
that the singular integrodifferential equation is of the form:

1 1

Ao (x)+ 2 f O get¢ ') + 20 f 21 e+

+fkl(t,x)w(t)dt-l-fkg(t,x)w'(t)dt:f(x). B et (1)

where the first two integrals are to be considered in the principal-value
sense. In relation (1) the quantities A,B,C,D, k;, k, are known fun-
ctions, satisfying a Holder condition in each of the variables x and t.
It is also considered that the unknown function o(x) and its deriva-
tives with respect to t are required to satisfy a Holder condition, whe-
reas o’(x), or its first derivative, are assumed to present an integrable
singularity at the end points t = * 1. Finally, the following two condi-
tions are assumed valid in order that the solution o (x) of Eq. (1) be uni-
quely determined :
o(—1)=0()=0 (2)
Supposing that ko (t,x) is once differentiable with respect to x, be
performing an integration by parts of the last term of Eq. (1), the singular
integrodifferential equation may be written in operator form as :

Loo+ Koo'+ Ko = f (3)
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where the operators Ly, K, and K are expressed by:

S e h il - B(X) f o (4)
Ko = C (x) o’(x) + D—ft"l f(% f T‘”_‘% dt (5)
Eo = fk(t,x)w(t)dt (6)
and the quantity k(t, x) is given by :
k(t, x) = [kl(t, x) — = Kalt, %) )

The singular behavior of the function ’(x) around x==*1 may be
obtained from the dominant par Koo' of the integrodifferential equation
(1) by applying a method given in ref. [18]. It can be readily established
that the fundamental function Z(x), which characterizes the singular
behavior of w’(x), is given by :

Z(x) = w(x)Q(x) )
where :
w(x) = (1—x)* (1 +x)° o)
and :

C(1)+iD(1)}+”’ {0

i B C(—1)—iD(—1)
e o 2Jt = [

C(—l)—iD(—l)]“” o]

Moreover, Q is a mnon-vanishing in (1,1), Holder-continuous fun-
ction, u’" and u’’ are integers, chesen in such a way that the behavior of
the fundemental function Z at points x = *1 is compatible with the
expected singular behavior of the unknown function w’(x) (i.e. either
bounded, if O0<Rea, Ref<1, or infinite, but integrable, if —1<Rea,
Ref <0).
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In the case when both C and D become equal to zero the integro-
differential equation (1) is reduced to a typical integral equation, whose
solution may be obtained by anyone of the well established methods of
numerical solution (see for example refs. |7 to 16]). The case where C
and D are constants was studied in ref. [10]. When C=0 and D40 it
can be shown that o =f=—'/, and Eq. (1) is reduced to the case
which was studied in ref. [17].

Thus, by taking into consideration the conditions (2) we can write:

w(x) = (1—x)"*" (14 x)" " g(x) = (1—x)" (1 +x)" o(x) (12)
and

o'(x) = (1—x)* (1 4+ )" { [(v—1) — (n+v) x] @(x)  (1—x) +@’(x) ] (13)

o, i a0 B, if B<O
V= (14)

r== )
a—1, if a>0 g—1, if >0

3. METHOD OF SOLUTION

3.1. The Formation of the First Set of (n—1)-Equations.

Applying methods similar to the methods used for singular inte-
gral equations, the integrodifferential equation (1) may be transformed
to a Fredholm equation, whose solution can be obtained only by nume-
rical means. However, in order to avoid the above unnecessary opera-
tions, a direct approximation method may be developed, which pre-
serves the correct nature of singularities of the unknown function w (x).
In this method we consider the Gauss-Jacobi integration formula with
n-nodes [7] :

) |

fW(t)cp(t)dt -2 % Molt), Pﬁ,“’”’(tj) wmly = @y nnptte (15)
=y

—1

where :
W(x) = (1—=x)" (1+x)" (16)

and A; are the weight coefficients.
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Applying an extension of this formula for singular integrals [10, 15]
we can write the part Lyw of the operator equatior: (3) as follows:

e 4 Bl;xlj'; g‘% e b Pl (17)

with
G, (x) = A(x) W (x)+ Bft) ) (x) (18)

and :
A (x) = =29 (x) [ P (x) (19)

where the Jacobi associated function P is defined by :

1

(p"’)
Pl (y) — 3 f W(t)\it Hhge, * izt (20)
£ i

Furthermore, by differentiating with respect to x the above Gaus-
sian quadrature rule for singular integrals, we can write :

KD(:)IZ 7(X) z (t X)z (P( ) [C(X)\N(X) V_L;:_(;;-FV) +
+ P89 05 o)+ 1, ()0 @1
where :
B, () = ClWix)+ 0 ) (x) (22)

The necessary conditions for the function F (x) to become zero are
explored in ref. [9], whereas in ref. [10] the particular case where C and
D are constants was examined. In this case it is valid that :

F (x)=—2"" " DT (1—w) P54 " (x)/ P (x) (23)

where the F_ (x)-function presents (n—1) - roots.
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If the above-mentioned necessary conditions are satisfied, so that
n—1

there are at least (n—1)-roots at the collocation points {Xi} the ope-

=1
rator equation (3) can be written as follows:

v—gu— 4 v, + D(x.)

i S (x .
G, (x)+ C(x))W(x,) . . (x,) ] (x,)+
+ 350, ) elt)=f(x), i=1(1)n-1 (24)
=1
where :
g - A [ B(x;) D(x)) ] )
(tj ) Xi) b ;l’ tj_g (m _‘" aK (t] ) Xi) (25)
Taking into consideration that :
(1, v) ! C X. \T\' X.
4 n(x‘) = — (\131(?)(\') , for D(x,) %0 (26)
relation (24) takes the form :
Hi(x)o(x)+ 3 S0, x)e)=fx), i=1hn-1 ()
=
where :
C(x) B (x) v () x,
H, (x,) =Wi(x,) [A(x)) - ) +Clx, — =
Bix) q ®"x) .
W =it (28)

2.2. The Formation of the Second Set of n-Equations.

Relation (27) gives (n—1)-linear equations for the (2n—1)-unknowns
{(p(tj)}_‘i]=l ; {m(xi)}‘};}. The complementary (n-1)-linear equations
necessary for completing the solution can be obtained if we use the
Lobatto - Jacobi integration rule [15] at the (n+1)-nodes [il and {tj}?n—l ] |

j=n+1
Thus, by taking into consideration the zeroing of the integrand at the
points 1, this rule yields:

j=n+1

1
2n—1
[wwemar="5 1), P <0,
—1

j=n+1, n+2,..., 2n (29)
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On the other hand, by using again the extension of this rule for
singular integrals, as presented in refs [10] and [15], we obtain for the
first term of the operator equation (3) that :

6t A
Lo=28 "% N o) tg, e (30)
T j=n+41 t—X ] L
with :
g, (%) = AGx)W(x) + B (x) g 4 (x) (31)
2w£|u_+ll,v+ll(x)
gl () = — (1—x®)POH v (x) (32)

In the same way as previoulsy we can write for the second term of the

operator equation (3) that :

, _ D(x) mt lj { ) ve—p—(u + v)x
Rox P T i o) oW T 4
" DJ(tX) q',l(ﬁ-x,wrl)(x)] @ (x)+1f_ (x) @'(x) (33)
where :
£, () = ClWix) + 20 qunven ) (34)

n T 1n—1

If we suppose again that f (x) has n-roots and the necessary con-
ditions are satisfied at the collocation points {xi}?"“l we can reduce

i=n

again the integral equation (3) to the following system of (n—1) equations :

vop—(utv)x; - Dx)

g, (x)+Cx)W(x) ——5— + - = q&f""*(x) |o(x) +
+jigls(tj,xi)cp(tj):f(xl), ) i (35)
or ‘to
H, (xi)cp(xi)—l—jj?_J:IS(tj,xi)cp(tj) Sy, TRl 09
where :
aC (x;) B(x,) Ve o T ¥ X,

Hq(x;) = W(x,) [Alx)— — D(x.)

L AN

=%

Dlx) )
+ - *Wj, i=n(l)2n~1 (37)



ZYNEAPIA THZX 25 NOEMBPIOY 1982 589

Relations (27) and (36) [ or (24) and (35)] constitute a linear system
of (2n—1) - equations with 2(2n—1) - unknowns, that is the values of the
function (x) at the points x; and t; {o(x) };"7' and {o(t;) }227.

Taking into consideration the fact that relations (27) and (36) are
exact for @(t)EPs.—; (where Ps,—; is the class of polynomials of degree
£ 2n-1) it is easy to express the set { o(x;) }2"7! by the set {o(t) }n?
by using a Lagrangian interpolation. In particular, by selecting as inter-
polation points the points %1, { }f"ll and taking into consideration
relation (12), we have :

2n—1

@(x) = Z Li(x) o (t;) (38)
where :

A x) = (x*=1) P (x) P " (x) (89)

e 7T, (
. ((‘( t)ﬂon+1 J) "

The last interpolation is exact for any ¢@(t)€P, , i.e. for polynomials of
degree by a unity greater than the degree of accuracy of relations (27)
and (36).

3.3. Numerical Solution of the Set of (2n—1)- Equations.

Relations (27) and (36) may be written as follows, if we introduce
also to this set of equations relations (38) :

2n—1

jlz]l{ Hl(xi) Lj (Xi)+ S (tj ) Xi) }Cp (tj)+ H](Xi) i §+l L ( ) ( J) == f(Xi) )
=1(1)n—1 (40)

Hz(x;) j;zli Lj (Xi) @ (tj) jrg—-:l { H, (Xi) Lj (xi) 1+ 5 (tj ) Xi) }Q') (tj) = (f Xi) )
i=n(l)2n—1 (41)

Eqgs. (40) and (41) constitute an algebraic system of (2n—1)- linear
equations with an equal number of unknowns, the values of the unknown
function ¢(t) at the pomts{t }f’" 1. This system may be solved and
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then, using the intepolation formula (38), we can determine the values
of @(t) at any point in the interval [—1,1].

In the particular case where C and D are constants and p = a and
v =B, that is the index of the function Z(x) is unity, the expressions
H,(x,) and Hs(x,) may be transformed to :

. eT R P P

) = (s () B [ . 2
i=1(1)n~1 (42)

- " 6 C Dn Pi% P (x))
Ha () = (=) (L7 AG) =BU) 57| = o (1ocd) P 651 ()
i=n(l)2n~1 (43)

On the other hand, the integration points of the Gauss quadrature
rule are given as the roots of the Jacobi polynomial | ﬁ), whereas the
corresponding collocation points as the roots of the Jacopi polynomial
PP, The integration points and the collocation points of the Lobatto-
quadrature rule are given respectively as the roots of the Jacobi poly-
Pglu:ll, B+1)

Py 7PV Taking into consideration that x =1,

nomials ,
the last polynomials coincide with the polynomials pLh —“), Pflﬁ;‘f’. But,
the roots of the last polynomials may be obtained by taking respectively
the opposite valyes of the roots of the polynomials Pf,__“l'—p), Pfﬂﬁl’. In
this way we can write that :

=it

In—i = 17
44
o (44)

on—j b

The importance of this remark appears when the ¢(x)— and ¢(—x)—
functions are known a priori to be related with a given formula (i.e. if
@(x) is an odd or an even function). In this case we can replace the
values of {rp(tj)}g‘=l from relation (36) to relation (27), or, inversely, the
values of {qo(xi)};’:—l‘ from relation (27) to relation (36). Thus, we obtain
a system of only n— or (n—1)-linear algebraic equations with an equal
number of unknowns.
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TABLE

Numerical results from the solution of Eq. (46) by applying
the method developed in the paper for several abscissas

at the integration interval [—1,1].

@ (x)
X
n=>5 n =10 n=15
—1.00 0.000000 (0) 0.000000 (0) 0.000000 (0)
—0.90 —0.815112 (0) —0.815139 (0) —0.815122 (0)
—0.80 —0.167040 (1) —0.166998 (1) —0.166996 (1)
-0.70 —0.252861 (1) —0.252777 (1) -0.2562774 (1)
—0.60 —0.336177 (1) —0.336081 (1) —0.336076 (1)
1350 —0.414541 (1) —0.414432 (1) —0.414426 (1)
—0.40 —0.485665 (1) —0.485536 (1) —0.485529 (1)
—0.30 —0.547407 (1) —0.547258 (1) — 0.547250 (1)
—0.20 —0.597797 (1) —0.597632 (1) —0.597624 (1)
—0.10 —0.635069 (1) —0.634890 (1) —0.634880 (1)
0.00 —0.657688 (1) —0.657492 (1) —0.657482 (1)
0.10 —0.664380 (1) —0.664168 (1) —0.664158 (1)
0.20 —0.654176 (1) —0.653963 (1) —0.653952 (1)
0.30 —0.626474 (1) —0.626277 (1) —0.626267 (1)
0.40 —0.581098 (1) —0.580926 (1) —0.580917 (1)
0.50 —0.518354 (1) —0.518194 (1) —0.518184 (1)
0.60 —0.439073 (1) —0.438899 (1) —0.438891 (1)
0.70 —0.344677 (1) —0.344501 (1) —0.344494 (1)
0.80 —0.237353 (1) —0.237245 (1) —0.237239 (1)
0.90 —0.120529 (1) —0.120497 (1) —0.120492 (1)
1.00 —0.397877 (—14)  —0.394468 (—14) —0.393855 (—14)
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4, A. NUMERICAL EXAMPLE

As an illustration of the method we consider the simple singular

integrodifferential equation :
j &
w(x)+cos(cn)w'(x)—ﬁ“—fﬂfi’j?dt:l, ekl e=—08 @
=1

In this equation the derivative w’(x) has integrable singularities at
x =11, A(x) =1, B(x) =0, C(x)= cos(cn), D(x) = sin(cn) and f(x)=1.
Finally the exponents o and B are determined to be a = —0.6 and
f=—0.4(x=1).

This equation was solved numerically by the method proposed in
this paper for n=5, 10, 15. In order to obtain a comparison of the numer-
ical results derived from this solution we have further used the inter-
polation formula (38), so that the values of @(x) at arbitrarily selected
abscissas x are obtained. The values for the @(x)-function are listed in
the Table. Since there is no other means of comparing the accuracy of
the method, the only indication is the stability of the values for ¢(x) at
the various abscissas as the number of integration points is increased.
Indeed, the differences between corresponding values at various x’s
differ only at the fourth decimal number between steps with n =5 and
n = 10, whereas for the steps between n = 10 and n = 15 the differences
in respective values for ¢(x) appear only in the fifth decimal number.
However, the speed of convergence appears to be similar with the spe-
cial case of ref. [17], where the results were checked directly with Mul-
thopp’s solution.

NEPIAHVYIZ

“H Moig ueyding ratnyooiag moofAnudrov cvvoglaxdy tiudv eic tae @uot-
rag Enoniag xal tag Emotiuag tol ungavirod Stvatar v’ Gvaydi elg ovotnua
idondepwv eite 6hoxhnowtindy, elte Ghoxkngodiagoouxdy EElodosmy xatd pijxog
MEMEQUOUEVOY TUNUATOS ToD moaypatxob dEovog. Eiddg ai ididpoogor 6hoxhn-
godragogirai EElomoelg ouvavidvral elg v Yewolav TV wreglywv TETEQUOUEVOL
dvolypnarog el Ty degoduvamxiy xados xai el ta mofAfuara imagiic dvo

glaotiv®dv coudtwv elg v Mnyavixiyv.
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[ToopMjnata éxgoaliueva Vmod pooenv idtoudopwv GAoxAnowtix®dy EEiom-
oewv Eyxovv uéyor ofueoov aMjows avamtvydi. “H Adoig tolovtwv moofAnudrwv
Baoiletar xvelwg eig pédodov nagovotacdeioav Hmo 1ot Kadnynrot Erdogan
%atd 10 €rog 1973 xai t@v cvvegyat®v tov el 10 [Tavemoriuiov Lehigh tdv
‘Hvouévov IoAireidy.

Kara v uédodov adtiv 1 dyvwotog miyadint) ovvdotneic avamtioostol
el oepav mohvovipwv Jacobi. *Ev cuveyelq, xai U Epaguoyic tév idotirov
oodoywvirdtnrog 1@V mohvwvinwy adtdv, ovotmua aneloov EElcwoemy dtaop-
@ovtat, tO 6moiov mapéyer TV dovduntixny Aoy tod moofAjuatos. IMegattéow
avamtuils tig uedédov Moewg GAoxAingowtixdv Ewodoswy ué uetafintovg cuvre-
Aeotag elonydn Omo tob Elliott elg v Adoroakiav 10 Erog 1979. Kata v
uédodov tov Elliott yomowomoieitar xal mdAv dvdmrvilg els oelpav tig dyvad-
otov ovvagtioews. To adto medPfAnua Eyevixeddn tedeviaiog o TV ovyyoo-
péov. Eig mv avaxoivoowv adtv xadog xal eig oelpav oyetindv dnuoctevosmy
%ONOLUOTOLETTAL *aAVOV TETQUYWVIGHoD xatd Gauss n-dorduod xéufov &v cuv-
dvoaoud pe Sradiaciav eidiniig takideoiag, 1) 6mola magéyer Aoy tod mooPfAfjua-
tog axgifelag (2n — 1) - faduod.

‘Ev avudéoer, éhayiotn mooomddeia xarefAidn uéyor ovuegov S v
aoudunrinyv  &nidvowy  6hoxAngodiagoourdv Eficdoewv. ‘O Multhopp Omijotey
6 mpdtog 6 Omolog xatd tO Frog 1938 magovsiace aoudumtixny Aoy eidixiic
ratnyopiag 6AoxAnoodiagooundv gElowoswy. ‘H nédodog xndvel yofiowv peraoynua-
tiopod petafAntdv, 6uolov pe tov petacymuationdv wov yonoipomolel 6 Pdococ
¢motipov Kalandiya dua v éxihvoy idiopdogpav 6roxinowtindv EEiomosmy.
To diépuoegov Ghoxhiiompa tiig EElodoens tob Kalandiya fxtindran 8° paouo-
Yiig TERVIR@V TaeufPoAdig, Gvii tilg yenoitnomonjoemg TOV duvamr®v xovivov
ohoxdnowoews xate Gauss. “H pédodog adri) meoiyodperar #v éxtdost eig T0
Bipriov tob Kalandiya, elg 10 6molov amodetvietal xai % ovyxhioic tdv yonot-
UOTOLOVUEVOY GELODV.

’Enéxtaoig tijg uedddov tod Multhopp magovoidohy televratwg eig v
diedvi PrfAioyoapiav, drov ai diadiracior ai avamxtuydeioar 0 tob Guikoivrog
%al Tilg 6pddog tov dud v Ao Wdoudopwv GAoxinowtixdv EElcwoewy Eneterd-
Inoav xai dua v Moy 6hoxAnpodiagooin®dv EEicdoemy.

vupdves weos v uédodov adtnv dvo didgogor xavdves TETOAYWVIGLOT
glodyovrar pe n— xai (n=4k) - xéuPovg avuortoiyws. Ta onueia tabdestas o

#avOvog TeEToUyVIoHod n - x0ufov Exonowomoidncay hc tetumuéval tol xavs-

144 1982
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vog (n-+k)-z6ufav xal avuieteépmg. *Amedelydn xiong, dnu 1j uédodog 1jto
axoiBiig e axoifelav 2n-Baduod. ‘H uédodog advry xonoimonody xata medrov
glc Ty eldunv meplntwoty, Gmov 1) dyvwotog ouvdotnolg tagovatdlet idopoopias
tijg tdEewe 1/, eig v yertoviav tdv axgaiwv onueiwv tob draotijparog [—1,1].
‘O Govdude v wépufov mol éxonowwonouidneav eig v uédodov fro (2n—1)
xai 1) axoiPera tig uedddov 1jto tob avrod Paduod, dv xai 6 dordudg Tod meoxrv-
JTOVTOC CUGTHUOTOS Yoouuxdv &Etedoewy fto toog meos (n—1).

Eic mv magolcav avaxoivwowy 1 pédodog dmlicews adtn Emextelverar dud
va ovpmeohdfny v yevixny mepintwory idoudopmv 6roxngodiagooindy EEiom-
cewv. Kat® adtov tov todmov dua tiig Bnextdosws avtiig, gmerevydn v pehetn-
doliv dyvworor ovvaottioelc, ai Omolar mogovotdlovy elg TV yeitoviav T@V
onuelov x =+ 1 moayuatxds 7 xal pyadwmas idropoopiag pe Yeria moayma-
xe uéon. Ilegattéow, nard v magoloav uédodov 6 Goduog T®V yonoluomoL)-
Yévrav x6ufov Mro (2n—1) xai § éxoifeia tiig pedddov Nro tg tdfews (2n—1).

Iag® Hhov G 1o amorsAéouata mov Emrvyydvovrar dud yoroewg tig uedo-
dov Multhopp, 1 6moia ormoiletar eig toLywvouetouxiy mmapeuforijv timov
Lagrange ti)g dyvdotou ovvoptijoewg xai &xtehel tafideotav elg ta onueia
aaeufPoriig, »al ta dmorehéopata ta mEorvmrovre O’ E@apuoyilg TV uedddmv
oy otneilovial oTovs xavivag tetoaywvionod xate Gauss magovotdfouvv dxgl-
Berav tiig avriig tdEews, al tehevtaiar uédodor, al Baciléusvar &ig tovg raviovog
tergayoviopuod Gauss, magovotdlovy td mAsovéxtmua, &v ovyxoioel ue v puédo-
dov Multhopp, 6t dmoBiBdlovy tov doduov tdv Elodoewy Tob tehxod ovotii-
uatog Gno  (2n—1) - yoapuuixdg alyefownag 8Ewodosig eig tOV  douduov  tdv
(n—1) - Ewodoewv, O eloayoyic ®atarAiiiov dviiratactdoemy.

’Ev xatoxkeidi dvagéoetar 1) vmegoyl) tig mopovong uedsdov, v cvyxoloet
meog TV 110 mapovoiacdeicav eidnlyy mepimtwoiv tng (g mEOg TV yevixevolv

g, dwa Ty Exilvowy peydhov Gotduot moofAnudrwy.
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