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NIYPHNIKH ¢Y:IKH.— Charge polarisation and interaction emnergy
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ABSTRAECT

It is shown that the nuclear charge polarisation during heavy ion nuclear
reactions enhances the secondary maximum of the collective energy surface and
produces a secondary minimum in the deformation energy near R ~ Rmin + 2fm.
Potential energy and mass formulas are given as a function of A and Z. It has
been shown that charge polarisation without shape deformation and indeed of the
prolate type does not produce any secondary minimum. It is also seen that the
relativity effect consists in shifting the secondary minimum towards higher rest
excentricities. For deformation of the oblate type the collective potential has a
similar form like that in the spherical case. Entry and exit channel collective
potentials are also given for the case of strong nucleon transfer. The mass for
the two body interacting system has been calculated and for large distances it
tends to the corresponding reduced mass. The present theory is based on a partic-
ular form of the single particle potential following from the scalar x- meson
classical field theory.

1. INTRODUCTION

The precise determination of the nuclear collective potential energy
for heavy ions is one of the principal problems in the present day nu-
clear theory. Many authors undertook recently various attempts to estab-
lish a viable theory for the heavy ion nuclear interactions with consid-
erable successes [1-7].

Despite the encouraging results the problem continues to be present
in the literature [8-14] not only regarding the new experimental results
but also the theoretical investigations 16, 17].

The present work is based on an early development [18]in connec-
tion with the nuclear structure, radii and binding energies. That theory
has been used recently for calculations in fission theory and heavy ion
nuclear reactions (2, 15].

* K. H. ZYPOY - A. A. AYTAH, II6Awotig qoptiov xal évépyera GAAnAemidpdoewg
Bapéwy tévTwy.
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The main purpose of the present paper is to generalise previous
results [18] and to proceed in deriving various consequences of the theory
towards obtaining collective potentials for heavy ion nuclear reactions.
Many outstanding problems are still awaiting their solution, the chief
of them being the determination of the mass formula which has to be used
in solving the classical or the quantum mechanical equations describing
the motion of two fusing heavy ions. This problem may appear in a
number of different variances and in particular those concerning the
spallation, the nuclear fission, the nucleon ejection during fusion, etc.

In addition, as it will be seen later in the present work there is at
least one more aspect of an important phenomenon discovered almost
one and a half decade ago [19-20] in connection with the existence of
the secondary minimum of the potential energy barrier in the fission of
the heavy nuclei. It is related to the nuclear charge polarisation which
appears during the collision of heavy ions due to the strong Coulomb
repulsion in conjunction with the also very strong attraction between a
part of the neutrons. This line of thinking might lend a new aspect to
the proximity theory of the collective interactions.

In Section 2 the basic theoretical concepts of the present work are
formulated in the simplest possible form of a classical field theory. We
start with a non - quantised Lagrangian density for the two interacting
fields of the nucleons and the m- mesons. The coupling term used here
is the scalar one and the n - meson field is, of course, the one component
scalar field. The result is a set of two second -order differential equa-
tions. The solution of them leads to a multiplicity of polypoles which
may successfully represent shape deformations of the interacting nuclei.
In the present work, however, only the monopole solution is discussed
as in Section 3. Of course, as it was expected, the result to the lowest

approximation is equivalent to folding the simple Yukawa potential

—H.r
~e /r. However, the folding procedure does not lead to results beyond

spherical symmetry except in the case in which asymmetry is arbitrarily
introduced in the folding density distribution function for the nuclear
matter. In Section 4 the results for the collective nuclear potential are
given. They are referring to the centric collision of ions with given
excentricity and charge polarisation. The effect of the relativistic con-
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traction is also discussed. Extensive numerical calculations have been
made with a Hewlett - Packard 45b computer. The case of the collision
of prolate ellipsoids with non - zero impact parameter is investigated in
Section 5. In Section 6 the entrance and exit channel calculations of
Vcoll.
given in Section 7. Finally, some conclusions and the discussion of them

are briefly discussed, while the ion mass for fusion reactions is

are given in Section 8.

As the principal result of the present work might be considered
the revelation of the double humped collective potential energy surface
as a consequence of the shape deformation and the simultaneous nuclear
charge polarisation. Another important result is the fact that the shape
deformed nuclear potential can be obtained directly from the solution of
the resulting Kuler - Lagrange field equations for higher order polypoles.

A number of useful generalisations of our approach is obvious.

2. THE FUNDAMENTALS OF THE THEORY

Our contribution to the solution of the problem expounded in Sec-
tion 1 begins with a non - quantised IL.agrangian density for the deriva-
tion of a single particle nuclear potential. This potential is subsequently
used as the basis for the deduction of a collective potential for heavy
ion nuclear reactions. Since we consider the heavy ion fusion as the
inverse process of the nuclear fission the potential we obtain expresses
the features of the shape deformation. The form of the Lagrangian
we use is preferable to us because it allows to use the nuclear density
matrix in the form of products of normalised Slater determinants,
S,(x1,...x,), where the elements of S, may be appropriate Schrod-
inger or Dirac single - particle wave functions. Using these Slater deter-
minants we write the Lagrangian density in the form [18]

0 0 . 0
%(SA, '—_)‘SA, (D, T(I)) =—%SI Z(lyjj—l—mj)}SA
0x; 0x; ’ 0%
—%(MZ’CDZ—JZ%Q)%—@) (2. 1)

0x; 0x;j
— 8o, |
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. 0 ; : 2
where, e.g., 1y,—% +m; is the Hamiltonian and
0X;

—

xj=1{xvyjli=1,2...A}

the four-vector of the j-th nucleon. The parameter w= 1/ry, and r, is
the nucleon radius. The field ® will obviously depend on all coordinates

=
{Xj = (t, l‘j)}-

The form (2.1) of &£ is particularly suitable for the density
averaging procedure which we are intending to use subsequently in
solving the Euler-Lagrange equations. The variational principle

0 0
6fdxidx:g(85, “:SA, (D, T‘D) (22)
3Xj an
gives rise to the two coupled equations
. 0
Z(le_:+mj>SA=—GF(I)SA 2. 3)
. 0X;
and
S0;® +u2® =—GS{I'Sy . (2. 4)
3

We are interested in solving eq. (2. 4) in the time-independent limit
and we put []—> — V>
We consider also the simplest case I'=1 (scalar coupling) and we

use the property

fs: Sadry ... drl =A7" 3o, (), (2. 5)
where
- iy - -
Cny (r)) = q]n.,I (ry) - II/mx (r1) (2. 6)

and n. is a set of one - nucleon quantum numbers.

Thus, we can consider the stationary problem and carry out the
reduction of the many-particle problem (2. 4) by means of the integration

- o - - -
f@(rl,...rA)drg...dri=(p(r1). 2.7
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Next, we exploit the fact that ® is a fast decreasing function of

- -
all ry, ... ry and apply the Gauss theorem
. g
fdlvj : g‘radjfb(r,, v Ty, eo. 1) A =
(2. 8)
— — — -
=fgradj(l>(r1, ST A r,) -dA;j=20
for =2, 8, .. 8
From (2.4 - 2.8) it follows that
— - -
Vi (r) — e (ry) = 4ng’p (1) ; G = 4ng?, (2.9)

where (r;) is the mean nuclear mass density defined through the

expression
- ->

e(r) = A7 2o, (r). (2. 10)

A further simplification is concerning the volume, V, for which
the Gauss theorem has been applied in (2.8). The nuclear mass density
being approximately constant inside V is put to a first approximation

equal to
o gl e A
e =ATI = AT g = 2. 11)
From (2.9) and (2.11) we obtain the equations
— — A
Vi (1) —wle(r) = dng® 55 0<r<Ca (2.12)
and
. s =
Vi (r) — e (r) =0; a<xr, (2.13)

where a is the radius of the nucleus.

3. THE SINGLE - PARTICLE INTERACTION

The single - particle potential used in the present paper is obtained
by solving egs. (2.12), (2.13) and by taking only the spherically symme-
tric solution.
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It was shown a long time ago that it is possible to derive a single
particle central potential [18] which exhibits a characteristic dependence
on the mass number, A, of the nucleus. To this purely nuclear potential
the Coulomb potential was added and it was, then, used for nuclear
structure calculations.

The resulting total potential energy for the interior of the nucleus
is given by the simple closed expression

Vi(r) = —3g%¥r, [1 —(1+A1/3)e*A1/3(r0/r) sinh (r/ro)] +

. . (3.1)
+3Z-e2rp- AP [1—(18) (r/rs A PR]; 0<r<a
and for the outside of the nucleus by
1 1 -
Vo(r) = —3g%ry [As €A " — (14 A" sinh A™] (rgfr) e TP 4 69

+Z-e¥r; r>a.

Equations (2.12) - (2.13) may give as solutions all higher order
polypoles which are appropriate to the non-spherical nuclei. These,
however, are not considered in the present work.

The factor g2 is the interaction constant of the scalar = - meson
and the nucleon fields. The boundary conditions for (2.12) and (2.13)
have been taken such that the condition V;= V, holds. The form of

the above potential is shown in fig. 1 for the nuclei

10

128 235 500
B, she,

2V, X, 10X -
We use the above potential to calculate nuclear deformation energies
and collective potentials for interacting heavy ioms.

The method used consists in folding the nuclear density of the
part of the one nucleus which is outside the rest of the other nucleus
with the potential valid for the exterior region, both nuclear and Cou-
lomb. Other authors have also used in connection with (3.1) various
folding procedures with great success.

This procedure does not produce a secondary minimum in the
potential energy barrier. The way of folding used in the present work
is given by

VE) = [Vo® +7)- o) a7, 5. 9)
Ve:—0
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Fig. 1. Single particle potential curves for spherical nuclei
according to eqs (3.1) and (3. 2) as a function of the distance.
The various curves correspond to different mass and proton
numbers. The curves for protons intersect the r-axis. A certain
form similarity with the Woods-Saxon potential is obvious.
The principal characteristic of the present potential is the
slope change with the mass number. While the depth increases
for neutrons, if the mass number, A, increases, it decreases
strongly for increasing proton number, Z. Another important
feature is the change of sign in the slope of V (r) in the neigh-
bourhood of r=0, if Z increases beyond a certain Z,(A). Also
the slope of V (r) at the boundary of the nucleus increases for
increasing mass number. The interaction constant, g, has been
given the value g=1,92. 10~ °. The potential energy curves

intersect the axis of ordinates from top to bottom in the fol-
500 235

lowing order: 30X (protons), 300X (protons), 23U (protons),
'UB (protons), ;B (neutrons), ’3Te (protons), '%Te (neutrons),

2ggU (neutrons), gggX (neutrons) and gggX (neutrons).

201



202 NPAKTIKA THE AKAAHMIAZ AGHNQN

where V; >V, are the initial volumes of the two nuclei, O is

the common volume of the interacting ions and Q(r—’)) the nuclear matter
density distribution. Eq. (3.3) yields effectively the potential energy of
a fraction of the one nucleus in the field of the other one. In doing the
integration in eq. (3.3) we do not consider neither friction or change of
the density of the nuclear matter nor angular momentum effects or
transfer. This implies that the nucleons accommodate themselves in the
increasing volume of the bigger nucleus. The influence of the angular

momentum and of the spins of the interacting nuclei on the resulting
sy
collective potential energy will be considered elsewhere. R is the posi-

tion vector having its origin at the centre of mass of the one nucleus
and pointing to the centre of mass of the other nucleus.

In studying heavy ion reactions one has to answer the question as
to the direction of the nucleon transfer. One also has to think about
parallel or antiparallel neutron and proton transfer. These questions
have been investigated in the present work. The result is summarized
in the Fig. 3c which gives the force exercised by each of the ions on
protons or neutrons in the critical region of the interaction volume. To
find the force on protons we take, as usual, the gradient of the poten-
tial energy and we find

3g2. (14+A7). A [cosh (r/re)/(x - r) — sinh (r/ro) / 2] —

Fr; AyZ)= —Z-ez-r/(rﬁ-A); r<ro-A1/3,

|~V = (3. 4)

3g?. [Al/.seAlls— (1 +A1/3) sinh Al/”] e~ (1)(r - 1o)+1/r2)—
—Z-e%[r?%; r>roA'ls.

If we put Z =0 in eq. (3.4) we get the force acting on the neu-
trons when they are exactly on the nuclear surface. This force exhibits
a sharp maximum just on the nuclear surface (Fig. 2a, b).

From Fig. 2a, b it follows that in the neighbourhood of the nuclear
surface there is a shell around the nuclear surface of approximately 3fm
thickness, where the force acquires particularly high values (Fig. 2c).
In the interior of the nucleus and beyond the spherical shell the force
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which the FWHM is about 2 fm.
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This implies that an exceedingly
strong force acts on the nucleons
on the nuclear surface (c), whilst
the rest of the nucleons are
quasi-free. This strong surface
force gives rise to the formation
of a shell of strongly attracted
nucleons which compress the
rest of the nucleons inside the
nucleus. Considering that the
ratio As/A is a rather small

number, where As the number
of the nucleons inside the strong

force shell, we see that it is

consistent with the independent
particle model. Using the sur-
face force one easily calculates
the classical surface tension as

insi 5500 _0
well as the pressure inside the £ 08 0208 060280
© 6 220
nucleus. o6
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on the nucleons is considerably weaker and tends exponentially to zero
wiht increasing distance from the surface.

The situation arising is reminiscent of a gas of almost free nuc-
leons which are compressed by a spherical layer of nucleons.

If the mass number, A, is very high, then the ratio As/A,
where A is the number of the nucleons on the surface, is very small.
This might give some explanation for the success of the independent
particle model. The majority of the nucleons are moving quasi - free in
the nucleus inside a nuclear «wall» kept by the strong central surface
force.

From eq. (3.4) we can gain still more information about the heavy
ion nuclear reactions. To this end let us take the derivative of F with
respect to the mass number in the neighbourhood of the nuclear surface.
The result is :

gz«A_z./’e—Al/a/ (rﬁ . (A+A1/3)) . {(—Al/s) (cosh (A + Alls)—
—sinh(A+A"7) [(A+A") £ (14+A"5) . (sinh (A +A ) —
—2.cosh(A+A""Y) /(X+A1/”)—l—2sinh(A-I—Al/")/(A—I—Al/")z)}

+Z.e/12(2. AT B34+0A7Y; a=i; A<O
- (3.5)

—Fu(r, A, Z)| = - 1 :
3A ( ) . & *la e—(A+A /3)/(rg-(l+A1/3)) ; {Al./3 sinh (A /“)+

—. A'ls
r=roA "3+Ar, 1 1
+ eA /3_(1+A1/8) COSh (Al/a) + (eA /3__A1/3 . eAlla —

b 1 . b/ s . b/
— (14 A "®*)cosh (A *) +sinh (A *)+ 2. A Psinh (A "))/

A A) + (2. (1A sinh ATy —2. A"ea )/

(A+A1/3)2} +27e2 A7 /(32 0+A Y, a=o0; A0

In eq. (3.5) A>0 (A<0) means that the derivative of the force is
taken outside (inside) the nucleus.

| = 0 gives the critical value of A.(Z) for pro-
oA r=t

tons (Z>0) and for neutrons (Z =0) for which the resultant force at the

Equating
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The force acting on the nucleons
in the neighbourhood of the
nuclear surface as a function of
the mass number having as a
parameter the number of pro-
tons, Z. For neutrons (Z=0) (a)
the force is generally higher
than for protons (Z>0) (b). The
three curves o, B, y give the
force on three different surfaces :
(a) corresponds to r= a-2r,
B) to r=a and
It is important

(a = radius),
(y) to r=a—2r,
to note that the force exactly
on the nuclear surface is a mono-
tonically increasing function of
the mass number both for neu-
trons and protons. In the neigh-
bourhood of the nuclear surface
this ceases to be anymore the
case. This fact complicates the
determination of the direction
of the nucleon transfer during
the heavy ion nuclear reactions.
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Fig. 3c.
Izo—
w Z>0
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05 1
0 ! Ll el J 1 ] !
p=(A~A (A TA,)) —
-5

Fig. 3d.

The nucleon transfer criterion (c) is shown also for protons (d) with
the detail (e) and for neutrons (f). It is seen that the force directing
the nucleon transfer becomes positive after a certain mass number,
Ac, or mass asymmetry (A;— As) [ (A;+ Ag). For larger values of the
mass number, A > Ac, the nucleon transfer force (f) is constantly
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Fig. 3f.

= directed towards the heavier ion. For A<Ac the force is very weak
and mainly directed towards the smaller ion with several exceptions
capable of causing nucleon oscillations. This curve corresponds to
stable nuclei. For non-stable nuclei the situation changes drastically.
In intervals of f==0 the nucleon transfer may become stochastic.
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b !
considered point (?=r0A/3+Ar0) changes direction with increasing

mass number.
More precisely we have the following behaviour of the nuclear

force :
increasing function of A for

increasing A< A _(Z) for all values of r.

(
Fu(r; A, Z) = 3 (3.6)
' decreasing function of A for
l

increasing A > A.(Z) at points r=~a.

Considering eq. (3. 6) we construct the following nucleon transfer
criterion, f, for determining towards which of the two ions is the motion
of the transferred nucleons during partial or complete fusion reactions.
It is defined by

f(Ah As, Z,, Zz) = [Fi(a; A, Z1)‘— F;(a, Ay, Zz)] + [Fo(a+2 + Toy Al) Zl) —(3 7)
—Fi(a—2- 10, Ag, Zy)] + [Fi(a—2 - 14; Ay, Z)) — Fola+2 - 15 Ay, Z5)] -

The expression for f gives the resultant of the forces acting on a
chain of three nucleons (Fig. 3c-f). These three nucleons occupy the
critical contact region of the ions where the nucleon transfer is initiated
(Table I).

The nucleon transfer criterion has been evaluated for the case of
A;+ Ay, = A const. and Z;+ Z, = Z constant. The result is shown in
Fig. 3d. In defining f the convention has been adopted that positive
values imply nucleon transfer from (A;, Z;) towards (A, , Z,) while nega-
tive values indicate the contrary (A;> A, and Z,>7Z,).

The change of sign of the nucleon transfer criterion implies the
existence of oscillations in the mass number space. The relationship
between the nucleon transfer and the mass number oscillations and their
physical significance will be discussed elsewhere.

Another factor causing deformation of the two interacting nuclei
is the differential action of the nuclear and the Coulomb forces. While
the protons belonging to the two nuclei repel each other and their
motion becomes decelerated when the repulsion becomes too strong, the
corresponding neutrons attract each other stronger and stronger and
their motion becomes accelerated. This leads to a pronounced deforma-
tion of the colliding nuclei which eventually take on an ellipsoidal form.
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TABLE T

Some extreme values of the force as function of the mass and atomic numbers,
A and Z. The force acting on the neutrons is constantly directed towards the
bigger nucleus for distances satisfying r> — 0.5r, (r> 0 for the exterior, r <0
for the interior of the nuclear surface). For r <—0.5 there exists a maximum of
the force at the indicated mass numbers. For protons there exist also maxima at
the relevant distances from the nuclear surface for the indicated nuclides. The
existence of a maximum implies the change of force direction acting on the
nucleons in the neighbourhood of the nuclear surface between two interacting
ions (see also Fig. 2).

Distance o Normalised absolute| Absolute value of
Position of the y
from N maximum the force for
nuclear value of the force | max{A} and max{Zz}
surface
in } [ i 1
To-units [A(Z=0) A ,‘ Z | Neutrons J\ Protons | Neutrons | Protons
[ | i
|
+ 2.0 — | 62| 28 2.801 <t 1815 2.801 | 1.025
+ 1.5 — 170 | 68 4.944 ‘ 3.086 4.944 ) 2.936
+1.0 — | 170 | 68 8.770 { 6.570 8.770 | 6.480
+0.5 — 248 | 96 15.644 [ 13.106 15.644 13.010
00 [ — 170 | 69 | 28.090 = 25.200 | 28.090 | 25.027
|
— 0.5 — | 62| 28 18.194 | 15.960 18.194 15.370
— 1.0 118 | 62 | 28 11.926 } 10.215 11.831 | 9.248

— 1.5 100 | 62 | 28 7.894 6 490 71.726 5.383

i
~—2i0 104 | 62 | 28 5231 | 4.064 5.068 |  2.965

ITAA4 1982



210 IPAKTIKA THS AKAAHMIAS AOHNON

Contrary to this deformation is acting the relativistic contraction. If no
nuclear charge polarisation is assumed, then the collective potential
shows only one single minimum. However, while the ions proceed to
the collision, the protons of them show a certain <«unwillingness» to
follow the neutrons. As a consequence, while the distance of the two
nuclear matter centres becomes smaller and smaller, the distance of
the two nuclear charge centres may decrease slower than the distance
of the mass centres until it suddenly becomes zero. At this point the
charge in the compound nucleus acquires again a more or less uniform
distribution.
- =
This process may be described by a polarisation function, P (R),
for the nuclear charge which is calculated in the next section.

4. THE CHARGE POLARISATION IN CENTRIC COLLISION

The most important feature of the present theory is the introduc-

—- =
tion of the polarisation function, P (R), in the collective potential. We

define the polarisation by the expression

- = — - — —
P (R) =frA gcl(r) - drd —I—fr . Qca(r) dr®, (4. 1a)
Vi+0 V20

— -
where ch(r) and ch(r) are the charge density distributions of the

two ions.

To clarify the physical conditions for which the charge polarisation
inside the interacting ions takes place the following different cases are
considered :

(i) If the heavy ions are in sufficient distance from each other and
they already interact through the Coulomb potential, the protons
show a tendency to occupy the farest parts of them. Therefore,
the average charge distance, R., entering the Coulomb potential
is bigger than the distances of the centres of the nuclear masses.

It is given by
R. = R+P(R), (4.1)

where P (R) = [31‘0 l 8. (1 ’—82)—1/3 (Ai/:i_*__ A;/S)]



(ii)
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and ¢ is the excentricity of the heavy ions. The absolute value, P,
of the polarisation is used due to rotational symmetry. These equa-
tions result from the reasonable assumption that the protons occupy
the farest parts of the two ion volumes together with an adequate
number of neutrons. The excentricity used to express the form of
the interacting ions is for prolate ellipsoids defined as usual by

o2 3 .
£ =V1 —_— = Vl — —5—2 and is in the present work assumed

-
to be the same for both ions. However, there is no difficulty in
introducing two different cxcentricities or even completely differ-
ent triaxial ellipsoids. Here and throughout this work we use the
notation {Al, T b} and {Ag, Za, B} to express the mass num-
ber, the atomic number, the large semi - axis and the minor semi-
axis of the bigger and the smaller ellipsoids respectively.

If the nuclear interaction starts, nucleons pass from the smaller to
the bigger heavy ion with the consequence that the half axes of
the latter increase. In this case the polarisation function is obtained

after some calculations and is given by
P(R) = [3ro/8] - [ar (R)+ (1 — &)~ 2 4,1, (4.2)
The function o,(R) is a solution of the equation
x*+c5 - x34-cpx®+cy = 0. (4. 3)

Eq. (4. 3) is a consequence of the nucleon number conservation
during fusion and the assumption that the nuclear matter density
remains essentially unchanged. The coefficients of the polynomial
are given functions of the distance, R, of the ion centres and are
given by the expressions

co= —(16/3r) - A, - R —(8/3r0) - Ag- R+ Ag® —
—(1/35%) - R+ (2/r2) - AL R® (@)
=0 () ¢ (4.4
e =2 [(Rfro) — A" (c)
cs = (8/3ry)- R . (d)
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(iii) If the nuclear interaction has advanced at a stage in which the
remaining volume of the smaller heavy ion cannot accommodate Z,
protons, charge transfer sets in from the smaller to the bigger
heavy ion. In this case the charge polarisation weakens, but the
proton charge centres change their positions during the fusion
reaction in the same way as in case (ii) above.

(iv) If the fusion process of the heavy ion has arrived at a stage in
which the remaining volume of the smaller ion is too small to
contain any protons, the polarisation disappears suddenly. The
polarisation function equals zero and the distance of the nuclear

matter centres is given by

R. = R+4+Q(R), (4. 5)
where
O(R) = d;(R1+ds(R). (4. 6)

If it happens that the inequality is satisfied
R®— o} (R)+a*>0,
then d;(R) and dy(R) are given by
d;(R)=(A+B)/C and dy(R)=(D+E)/F, (4.7)

where the quantities A, B, C, D, E, F are also functions of the distance R
and are given by
A=(R—(3/8R) (2 a-R+R*—a(R)+o?)/ (4a-R+R2— e (R)+a?) ) -

(26334 (o (R) o — o' — a2 R?) /2R + (R? — o (R) + a?)’/ 24-R?), (4. 8)

B = (3/8R) - (2R -y (R)+ a2 (R) —a®+R*)’/ (40y (R) R+l (R)—
—a2+R?) - (203(R)/3+(a?(R) - a2 —a!(R) —R? a?(R))/(2R)-+
+(a? (R)— a®+R?)’/ 24 - R?), (4. 9)

C=4a®)/3—(2 (@R)+a®/3+(2- a* a?(R)—2 - a*(R) - R2—
— 202 R*— ! (R) — of) [4R+R3/ 12), (4. 10)

D = (3(1—?/8-R) - (02+2a- R+ R2— a3(R))’/(a2+4a- R+R2—a?(R)) -
(2- a®/3+ (a2 a2(R)—a'—a?R?)/2- R+ (R*—a?(R)+ o?)’/ 24 R3) . (4.11)

i
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E = (1—s¢) (R—(3/8R) (2 R a,(R)+ a?(R) — a®+ R?)*/(404(R) - R+
+a(R)—a+R?)) - (2 al(R)/3+(a? - a2(R) — a4(R) —R?- a?(R))/ +
+(a?(R) —a?+R2)° /24 - R?), (4.12)

F = (42 Ap)/3—(1—e?) (2(3(R)+0?)/3(2- o®- 3(R) —2 - a}(R) —
—92R®. a2 (R)—2a? - R®— a!(R) —af)/4R+R3/12). (4. 13)

On the contrary, if the inequality is valid
of (R)—o® — R?* 250, (4. 14)
then eqs. (4.7) change and become
d;(R)=(A—B)/C and dy(R)=(D—E)/F. (4. 15)
In this case the quantities A, B, C, D, E, F are given by the
expressions
A = (3/8R) (2R - oy(R)+ 02(R) — a2+ R?)*/(4R - 0;(R)+ o2(R) —
—a2+R?)- (2a3(R) /3+(a? - o2(R) —at(R) — a(R) - R?)/2R +
+(a?(R)— a4+ R?)*/ 24 - R?), (4. 16)

B = (3/8R) (2R - a+R?®— a?(R)+a?)’/(4a - R+R%— a?(R)+0a?) -
(2 33+ (e a?(R)—a'— o R?)/2R+ (R*—a?(R)+ o?)’/24- R?), (4.17)

C = (4- &3(R)/3)— (2 (o4 a3(R))/3+ (202 - a3(R) —2R? - 0(R) — a* —
—20%. R2—a!(R))/4R + R¥/12), (4.18)

D = (3 (1 —¢%)/8R) (2a - R+R2—0?(R)+ «?)*/(4a - R+R%— a?(R)+a?) -
(2- @¥/3+ (a® a?(R)—a?- R*—a?)/2R + (R*+ o®—a?(R))*/24 - R3) , (4.19)

E=(1—e)(3/8R - (2R - a (R)+o2(R) — a>+R2)*/(4R - a, (R) -+
+a}(R)—a®+R?) —R) (2a3(R) /3 + (a2 - 2(R) —R?- ?(R) —
— a!(R))/2R + (a2 (R) — a2+ R2)*/ 24 - R?), (4. 20)

F = dr3. Ay/3—(1—¢) (2(c3(R)+0?)/3+ (202 a2(R)—2R? - o?(R)—
—af—20%. R?— a!(R))/4R+R%/12). (4. 21)
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The relations (4. 6) - (4. 21) follow from geometrical considerations
on the basis of Fig. 4 and from the fact that complete fusion of the ions
takes place with nucleon transfer from the small to the big ion. This is
not an assumption but the result of the calculation of the force respon-
sible for the nucleon transfer. It is evident that the nucleons likely to be
transferred from one to the other ion must necessarily be on the nuclear

Fig. 4. Collision of two deformed heavy ions with impact
parameter equal to zero. The initial values of the semi-
axes fulfill the conditions a>a, b>f. The fact that
nucleons move from the smaller to the bigger ion is used
to calculate the increasing axes 2a(R), 2b(R) with dimin-
ishing R. The initial volumes of the ions are V,; and V,,
V;> V,. The common volume is AEBC. The volume of
the smaller ellipsoid AEBC determines the transfer of
nucleons which are distributed uniformly inside the bigger
ellipsoid (shaded volume). The shaded volume increases
with decreasing centre distance, R. D and d are the cen-
tres of the nuclear masses.

surface. But exactly on the nuclear surface the force is a strictly increas-
ing function of the mass number. The effective force responsible for
the actual nucleon transfer equals the difference of the forces by the two
interacting ions on their common surface.

=

The polarisation function P(R) as defined here represents a length
which is added to the distance of the nuclear mass centres, R, to give
the average distance of the proton charge centres entering the Coulomb

potential. It is illustrated in Fig. 5 for a pair of ions ff,; No — 2;: Am.
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In calculating the collective potential energy, Veon. (R), the poten-
tial energy of each of the ions in the field of the other ion should be
determined. In doing so one is tempted to take the half of the sum for
reason of symmetrisation. However, the argumentation just given above
shows that this should not be done due to the inequality (Fig.3a,b(B)).

grad Vii(r) |r=a > |grad Vislr) |r=c 4. 22)

It is, therefore, seen that nucleon transfer takes place generally
easier from the nucleus with smaller A, to the nucleus with larger A,
than conversely (A; > Ay). This happens because the nucleon attraction
is stronger towards the surface of the heavier ion as inequality (4.22)
shows. If the mass numbers A; and A, of the ions before the interaction
are different, then, of course, it is not allowed to symmetrize the collec-
tive potential energy because of the effect just mentioned. In this case
the half axes of the bigger nucleus increase. For spherical nuclei the

radius, R;, will take the final value R, =(A,;+ Az)lg,, if no nucleon
emission accompanies the fusion process. In any other case, e.g., of
scattering, nuclear reaction or spallation, the final value of the radius,
R,, will be smaller than Ry, associated with no nucleon emission.

The collective potential energy obtained in the above way has the
following forms corresponding to the clarifications given in the equa-
tions (4. 1) - (4. ). Thus, we have :

(i) Veon = (—3g?- A2)/r0(A:/seA1/3—(1—}—A1/3) sinh Ai/a) e~ R/ /(R Jr,)
+(Zy- Z,- €?)/ (R+Ro) (4. 23)
(i) Veou = (—3g2 (Ag—AY)/r, ((Ay+ ApTs eBr+as)h_
— (1+(Ay+ A3) ®)sinh (A+ 42 ") -
e~ (R¥ &R/t | ((R+dy (R))/10) +(Z1 - Za - €/ (R+ Ro)), (4. 24)

where the nucleon transfer from A, to A; at each distance is given as a
function of this distance by

Ai=(8(1—e)/rd) (2(a§(R)+a3)/3+(2 - @?- a}(R)—2R?- a?(R)
—2a2. R2— a'}(R)—a“)/4R—|—R3/l2). (4. 25)
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R—— Rmin —_— 'm

Fig. ba.

Nuclear charge polarisation as a function of the distance of the ion
centres. It is defined as the distance of the charge centres of the
fusing ions. The axis of abscissae gives the difference R - Rmin,
where Rmin is the value of R for which the one ion is absorbed by
the other. In the last stage of the fusion the charge distance remains
almost constant until it vanishes suddenly. As it is expected the
charge polarisation implies the slower decrease of the distance of
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Fig. 5b.

— the two charge centres with decreasing R. At very small distances
the charge transfer sets in, but the distance of the charge centres
remains almost constant until finally it vanishes completely. The cur-
ves are for the pair 33;N0 - 2;2Am, and 1-8 correspond to the
excentrieities ¢ = 0.876:, 0:8, 0.7, 06, 0.5, 04, 0.2, 0.0 (a).
In (b) the curves represent a detail of (a). It is seen that

there is a small variation in horizontal part with varying R.
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—500

~1000L

Fig 6. Collective potential energy of the fusing heavy ion
system fg;No - 23§Am as function of the centre of masses
distance, R. The ions are considered as spherical (e =0) but
the nuclear charge distribution densities in their interiors are
not uniform (P =£0). Under the conditions stated the potential
energy surface exhibits a single minimum due to the nuclear
attraction and a single maximum due to the Coulomb repulsion.
After the beginning of the fusion the distance is measured
between the centre of the bigger sphere and the centre of that
part of the smaller sphere which is still in the exterior of
the other sphere.
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Collective potential energy of the fusing heavy ion system 5:No - *2Am as a
function of the centre-of-masses distance, R. The curves (a) show Vcoil. for various
excentricities £€=0.0, 0.2, 0.4, 0.5, 0.6 and 0.8 with no charge polarisation, P=0.
The charge of the excentricity has as a consequence a tremendous change in the
depth of the nuclear attractive potential from about —1100 MeV to 0 MeV (a). This
change is not very simple in structure. As it is seen in the detail (b) there appears

a weak structure of a double humped potential in the neighbourhood of & = 0.600.
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The secondary maximum which appears at R = Rmin + 6 to 8 fm is of
about 10 MeV, when the secondary minimum is (c) also situated at
about 4 10 MeV. If P=£0 and ¢=0, then the minimum of Veoi. is
of about —900 MeV. The structure of the collective potential in the
upper neighbourhood of ¢=05 is also shown (d). Comparing the
curves in the parts (b) and (d) of the above figures it is seen that
the charge polarisation strongly enhances the appearance of the
secondary minimum in the collective potential energy surfaces. Since
the polarisation shifts the Coulomb maximum towards smaller values —»
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—-504

Fig. 7d.

- of R the consequence is that the depth of the minimum is diminished
as compared to the corresponding minimum without polarisation. For
spherical ions and P =£0 the minima differ due just to the mentioned
effect (see Fig. 6). The small energy barrier is of the order of
about 10 (b) resp. 20 MeV (d), while the big one is of 650 MeV.
The virtual equilibrium deformation corresponds to R=a— o+ 2fm,
where a and a are the two large semi-axes. This equilibrium could
only be realised in the process of fusion if the nucleon kinetic

energies were removed by y-emission.
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Vs
)/ro ((A1+A /se(A1+A2 )

(14 (Ay+ A2 2 sinh (A AY) /3) e~ R+ RN/ ((R+ dy(R))/ 1o)

+ (2, +Z3)

+(Z—Z3) - €¥)/(R+Ro). (4. 26)

Again, the charge transfer from A, to A; is given by

Zi=—7y+(8 2, - (1—e)/(r3- A

—aot—2.03(R) - RZ—

Ag) - (2(2(R)+?)/3+ (202 2(R)

Da® - R?—af(R))/4R+R3/12). (4. 27)

2101
=
o 1 o __ifu 1 s, i ;0 O ¢
5 10

4 R=Rmin —>tm
©°

>

—~ 40}

—-80k

Fig. 8. Potential energy curve for the ion pair SgNe- JEC

with excentricity & =

0 and polarisation P= 0. In this

case no secondary minimum appears.

It follows from the above expressions that the nuclear charge polar-

isation enhances the secondary minimum in the collective energy sur-

face. Also the charge polarisation together with the neutron attraction

may be considered as responsible for the ellipsoidal form of the colli-

ding nuclei. Charge polarisation alone does not produce any secondary

minimum in spherical nuclei.

The results of the above equations are
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Veoll

Fig. 9b

Jis

The same as in Fig. 8 with P=0 and £=0.841, 0.838, 0.834, 0.831,
0.827 corresponding to the curves 1-5. Again in these cases
no secondary minimum appears due to absence of polarisation.
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shown in the Figs. 6 - 14b, where no relativity effects are considered. If
the relative velocities of the two approaching ions are high, then the
relativistic contraction results in a reduction of the large semi - axes
of the two prolate ellipsoids. If the initial form of the nuclei is spher-
ical, then, of course, the relativity effect consists in giving them the

-
o

% 1
(¢]
EO o W 5 i RN (SR (| S| P S BORY
T R—-Rmin —>fm
"-—(; =
v
>
— 40}
— 80

Fig. 10. The same as in Fig. 6 for the ion pair )Ne-'2C.
No secondary minimum appears due to the conditions g=0
despite the non-vanishing charge polarisation (P =£0).

form of the oblate ellipsoids. For prolate ellipsoids the excentricity has
the expression

e =V1—(b/a)?(1—%)1, (4. 28)
where as usual (*)

B =(1—(By/ M- 2+ 1)) 2, (4. 29)

¢ is the speed of light in vacuum, E. is the kinetic energy and M is the
mass of the ion. Secondary minimum in the collective interaction ap-
pears only for particular values of the excentricity, £(3), and it disappe-
ars completely for oblate ellipsoids as illustrated in Figs. 15a - 16b.

(*) This p should not be confused with the minor semi - axis of the el-
lipsoids.



Potential energy (a)
as function of the
centres distance of
the fusing ion system
nge -12C. In con-
trast to the case of
Fig. 7 now the ions
are both deformed
(e == 0) and have
non-uniform charge
density distributions
(P=£0). The effect
of this combination
of parameters (e=£40,
P =£0) is that the
potential surface ex-
hibits now two ma-
xima (Coulomb) and
two minima (nuclear).
Due to the low num-
bers (A;, Z,) and
(A2, Z;) the barrier
heights are very
small (~ keV). This
appears clearly in the
detailed (b) curves.
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Tbe curves show the potential energy of the fusing system
2;2U - 12(',Nd for the excentricities (from bottom to top) £=0.475,
0.485, 0.490, 0.495, 0.5 and for charge polarisation (P =£0).
The doubly humped structure of the energy surface is now
clear. The barrier heights now are of the order of magnitude of
a few MeV as it can be seen from the detailed (b) curves.
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The doubly humped character of the energy surface becomes
accentuated with increasing mass and atomic numbers, A, Z.
In the case of the ion system 2;2Am - 2;;Np the barrier heights
are approx. 20 MeV (b) and 650 MeV (a). This behaviour of the
energy surface is a consequence of the combination of the
parameters €¢=~0 and P=k£0. The values of the excentricity
are &= 0.517, 0.523, 0.530, 0.536, 0.593. There is no difficulty

in taking different excentricities for the two ions.
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R - Rmipn —>

The same (a) as in
Fig. 12 for the ion
system 'fsSm - 19Zn
for P=£0 and £=0.513,
0.520, 0.527, 0.534,
0.541. It is seen from
the detailed curves
(b)that there is an ex-
centricity for which
the nucleus 2ggU can
undergo a transition
from the spherical
to the deformed (b)
state with R==1,5fm
almost without any
energy consumption
and indeed with the
emission of about
5 MeV.
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Fig. 15b.

The effect of the relativity factor p=v/c on the potential energy
curves (a) appearing during the fusion process of the heavy
ions 23;U - l2(1,Nd. The different curves correspond (from top to
bottom) to the values f§ =0, 0.07, 0.14, 0.21. It is seen in the
detail that the potential energy curve is strongly suppressed
towards more negative values (b). This becomes clear by com-

paring the curves 13b with 12b, where = 0.
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Potential energy for the

232Am - 2;;Np as

ion pair
function of the distance
with parameter the relati-
vity factor . The curves
(from top to bottom) cor-
respond to the values =0,
0.07, 0.14, 0.21. The curves
for the first two P-values
coincide due to scale (a),
whilst they are distinct
in the detailed curves (b).
The role of B is to deepen
the potential curve for
prolate ellipsoids of very
high rest excentricity
(e (0) = 0.543). On the con-
trary, if the rest excentri-
city is less than a certain
value, then the effect of
is to flatten the potential
curve. This demonstrates
that the role of the rela-
tivity factor § is not uni-
que but it depends on the
rest excentricity of the
colliding nuclei.
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5. THE INFLUENCE OF THE IMPACT PARAMETER

The results described in Section 4 are valid for centric collisions,
i.e., vanishing impact parameter. Since this case is not the most general
one we derive here the formulas pertaining to non-zero impact para-
meter. For the sake of generality we consider from the beginning pro-
late ellipsoids. The reasons distinguishing the prolate from the oblate
ellipsoids consist in that the latters do not lead to double humped poten-
tials. They can be considered separately. The next step is to find the
common volume of the two ellipsoids and calculate the nucleon transfer.
To this end the coordinates of the points A, B are necessary. From
Fig. 17 we find that the coordinates of these points. A(x,,y,) and
B(xy,vy), are given as solutions of the nuclear volume conservation

0% x4+ 20tx3+ wx®+42rpx — VP =0 . (5. 1)

The coefficients are functions of the centres® distance of the el-
lipsoids and the impact parameter, q, and have the expressions

6=b%/a?—p%/a?

T =28%5/ a?
0=F— 5/ —b%g?
v=2bg

and o = t*+v?/a?+ 200 .

The parameter § is related to the distance of the centres and the
impact parameter, q, through the relation

b =VR*—¢. (5. 2)
The common volume O (R, q) of the ions 1 and 2 is the sum of
O1(R, q) and O3 (R, q) and they can be obtained from the integral

Oy (R, ) = bﬁfu —x*/a?) [g(x) — 1/2 sin2¢(x)] dx, (5. 3)

Xa
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where the angle ¢ (x) is given by

wile)i= arccos{[yA+(yA—yB) (x—x,) /(xB—xA)] /b - Vl—x2/a2} (5. 4)

and y, > 0.

If y,<0, then the volume O;(R,q) increases by the volume
(”);(R, q) which is calculated from the expression

O1 (R, g) = ab?[2/3a — x,+ x5 / (3a?)] . (5. 5)
More precisely we have

O1 (R, q) O

=~ ' (5. 6)
0:(R,q)+0:1(R,q); y<0.

61 (Rv Q) =

The volume {9; is included inside the surface of which a plane cut
is denoted in Fig. 17 by CDBC.

Similarly we find O, from (5. 3) and (5. 5) in the form

0: (R, q) ;o v.<4q
R0 = T's : 5.1
Sis. {62(R;Q)+62(R,Q); - &0
In (5.7) the following definitions hold:
0:(R, q) = 62f[m(x) —1/2 - sin (20 (x))] - [1—(x—8)%/a?] dx (5. 8)

with
@(x) = arccos {[y,—q —(x —x,) (y,— v,/ (x,—x,)] /BVI— (x —0)* [ o}

anﬂd

0:(R, q) = f? [x, — 8+ a—x3/(Bo®)+ (8 — a)*/ (3a?)] -
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plane cut is AFEA in Fig. 17.

Fig. 17. Collision of two deformed nuclei with semi-axes (a, b)
and (a, ) (a>a and b>B) and with non-vanishing impact para-
meter, q. The points A(x,, y,) and B(xy, yg) are the top
and the bottom, respectively, of a plane cut of the two ellipsoids.
The distance of the two centres R =\ 8-+ q2. The point K is
the centre of mass of the part of the small ellipsoids remaining
still outside the big ellipsoid. The illustrated situation of the
colliding heavy ions corresponds to the case q<f. The neck is
an ellipse containing the points A and B. According to our model
the volume delimited by ADBEFA has contributed to the increase
of the big ellipsoid indicated by the shaded area. The charge
polarisation is indicated qualitatively. Before complete fusion
the proton charge density in the central volume of the system
is considerably diminished due to the polarisation phenomenon.

the centre of the volume AGHBA, the expression

with

and

K.(R, q) = [X.?\I —{—yir]l/2
Xy = (LT + )/ (Vo= 01— 8. — 01— 02) +0

vy = (5 +13)/(Ve— 51— B — 01— 0:) +4.

233

The volume @ is that contained inside the surface of which a

Using the above results one finds for the distance K., where % is

(5. 9)

(5. 10)

(5. 11)
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Potential energy curves for interacting heavy ions with various impact parame-
ters during fusion or fission processes. In part (a) of the figure the potential
energy curves correspond to the case in which only neutrons are transferred from
the smaller to the bigger ion. It is seen that the main change in the curves
appears in the region of nuclear attraction dominance, while in the Coulomb
dominance region the potential energy is almost unchanged. If protons are also
transferred from the smaller to the bigger ion then the change is extended to a
greater region of distances as is seen in part (b) of the figure. In this particular
case the two ions are mutually exchanging equal numbers of neutrons and pro-
tons, while due to the partial fusion a number of neutrons corresponding to the
value of the impact parameter, q, is transferred from the smaller to the bigger
nucleus. The depth of the potential curves decreases for increasing impact parameter.
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The symbols in (5. 10) and (5. 11) are defined by
Xpg

I3 = 61"b2fx(1—x2/a2) [@(x) —1/2 - sin2¢ (x)] dx, (5.12)

Xa

5 61_1 bzf[yA_(x—xA)(yA—yB)/(xB-—xA)] [o(x)—1/2sin(2¢(x))]dx, (5.13)

XA

o f (@ (x)—1/2sin (20(x))] [1—(x—0)*/ 2] (x—5) dx, (5. 14)

XA

1525, '8 [ lo (0 —1/2sin (20(0)] [1—(x—08/a2].
a . [YA—Q‘—(X—XA) (yA_ yB)/(XB‘_‘XA)]dX. (5' 15)

With the data obtained in the present section the collective poten-
tial according to (4. 23), (4. 24) and (4. 26) has the form given in Fig. 18

for spherical nuclei.

6. ENTRANCE AND EXIT CHANNEI, ENERGIES

In the case of elastic scattering the collective potential energy in
the entry as well as in the exit channels is the same. If the scattering
is inelastic the collective potential energy of the two colliding ions is,
in general, different in the two channels due to the change of the
nucleon states. Despite this change the error resulting from neglect-
ing it in the collective potential energy is of minor significance.

However, when both matter and energy are transferred from the
one to the other heavy ion, the difference of the collective potential
energies in the entry and exit channels is so large that it cannot be
ignored. In order to take it into account properly one has to make sepa-
rate calculations of the collective potential energy for each channel.
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This has been done in the present section. The method used comnsists in
the following :

(i) ‘The impact parameter, q, and the distance of closest approach,
ﬁ, are fixed in advance. We select two ions identified by (A;, Z,)
and (A, Z,) as well as by the excentricities &, &, which for
simplicity we assume to be equal, & =¢&,. We let these ions collide
with given relative energy E, , . By the procedure described in the
previous sections the collective potential energy is calculated as a
function of the distance, R, until this intercentre distance becomes
equal to R (Fig. 17). While R > R the collective potential is a
sum of the nuclear and the Coulomb parts of the energy. The dis-
tance R=R defines the last point of the entry channel collective
potential which is represented by the curve on the left of the axis
of the ordinates in Fig. 18a, b.

(ii)) In the exit channel the ions do not approach each other any more
but instead they recede. In the exit channel again the collective
potential is the sum of the two terms as in the entry channel.
However, an important difference exists now in the process of
calculating it. While nucleon transfer takes place in the entry
channel due to the gradually proceeding partial fusion, there is no
nucleon transfer in the exit channel. Consequently, the neutron
and proton numbers of the two ions are equal to those at the last
stage of the fusioning system in the entry channel. The numerical
calculations showed that the depth and the width of the curves
depend for constant A;, Ay, Z;, Zy on R, P, ¢ and on the impact
parameter, q, of the colliding system. According to the usual con-
vention the distance of the two centres has been given negative

values.

After the above preliminary explications we proceed to a formal
definition of the entrance and exit channel of the collective potentials.
We consider the two intcracting iomns ((A,, Z,);0=1,2). Let the wave

function of the i-th ion be approximately given by a Slater deter-

e
minant, S(u") as defined in Section 2. Let {r;.’oljo——— ) (— Au} be the
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coordinates of the nucleons. «s is a set of quantum numbers including
As. Zs. We write for the coordinates of the second ion nucleons

—)2' e —)2’ - —)z
rj, = R+1j, where R = 3 mj,. 15,/ Zm;,
the CM coordinate of the second ion with respect to the CM of the first

-
one. The expectation value {R)> is obtained from the expression
% (o) = (a)"
<R (J’ M: Oy, O, El) E2)> = <IP]M |R| \Il”;>_ (6 1)

The wave functions"-I’m) are defined as follows [21] :

Let I, is; (=1, 2) be the spin and its projection of the iomns. The
- = =
total spin and its projection of the ion pair are s =1;-+1, and i;+is=v,

where [L[—L|<<s<< L1+, If ISES‘;:% 6 = 1,2 are the internal

wave functions of the ionms, then the total internal wave function is

given by
(@) - > — - —
W s, -« Tyn s ilione wanseibony) B, = 6.2)
_ . . (a1) q(az) i
= Z(II! bys Iz, 12|SV) Sh‘h Slziz y

i1 tiz=v

where {(Il s by Ty, 1] sv)} are the Clebsch - Gordan coefficients and
as determines Ag, Zs and all other quantum numbers of the o-th ion.

The complete wave function is obtained by taking into account
the relative motion of the ions by means of the corresponding set of

. . -3 =3 l
relative wave functions {cp,m(R, Q).
The total wave function of the two ions is

Vi = 2 (v im [ JM) gy, WY (6. 3)

Since according to eq. (2.5) the matter density distribution is

determined by ng‘i‘: in each ion and consequently its shape (g) is also

oy
determined, {R> fixes already whether or not the two interacting ions
overlap and, given their shapes, which is the volume of the overlap. If
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it is assumed that the density relaxation time practically vanishes, then
-

{R) determines for increasing volume but constant shape (¢ = constant)

of the first ion the number of nucleons already transferred to it from

the second ion.

In practice, of course, the opposite way is used : For each given

o
pair of overlapping ions with known internal wave functions, <R)> can

be calculated.

The matter density can be written with the help of egs. (2. 5) and
)

. (ag
the wave function Sp,;,

i (a2) (a2)
ol b, i, ag Ba)= <8850 > (6. 4)

Iziz I2i2

where the subscript r in <|>r means omission of integration with

respect to r.
Next, suppose that there takes place continuous nucleons transfer

8

from the ion «2» to the ion «1» with diminishing {R>. It is obvious
-

that in this case, A, and Z, become functions of {R>. Consequently we

-
shall write for as = as ((RD). With these preliminarities we define
the channel collective potential energy by the following expression:

Vcoll(<E>; Js M1 (11(<1-i)>), (12(<E>); El) E2) =

=fVol(<E>+: Iy, iy, (11(<1_€>), E1)‘92(?§ Iy, fo; az(<§>), Ee)‘ dr®. (6.5)

Va—3O

In eq. (6. 5) the spins Is; 6=1,2 are so added that the total

spin J and projection M are as required by the expression for <§> in
eq. (6. 1).

From eq. (6. 5) one can obtain both the entrance or the exit chan-
nel collective potential provided one uses the entrance resp. the exit
channel wave function for the relative motion of the ions in eq. (6. 3).

The actual calculations in the present work have been obtained
with a number of approximations to the above eq. (6. 5). They are:
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1) Neglect of the spins Is; 0 = 1,2 in eq. (6. 1) and (6. 2). 2) The inter-
nal ion wave functions have been approximated by unit step functions.

-
In this way {R)> reduces to the CM position vector of the second ion
with respect to the CM of the first one.

7. THE MASS FORMULA

The procedure developed in the previous sections allows us to
determine the mass of each ion in the process of fusion. In what follows
we give an explicit formula for the mass which can be used in solving
the equations of motion for two interacting heavy ions.

For nuclear forces of the type considered here this mass is given
in proton mass units (A = mu/m,) by the expression

[z +r Az - [Zo - (A—2Z)] O(R) OR)| .
MR, Q)= T (At A7, — 7 '[H IHF_VQ}'(“”

V, and V, are the initial volumes of the interacting ions. O (R) is

glven by

OR)=x-(1—¢) [2/3- (a?(R)+o?) +1/4R - (20*- a2(R) —

(7. 2)
—2- a2(R) R?—2?  R®— a(R) —at) + R¥/12].

The form of u(R, q) is given in Fig. 19.

8. CONCLUSIONS AND DISCUSSION

The results presented in the foregoing sections are based mainly on
the single - particle potential derived from the scalar m-meson field
theory. The most striking feature of this potential is its structure as
function of A and Z. It is noted that for increasing Z there does not
only decrease the depth for protons but also the slope of the curve V(r)
in the neighbourhood of r =0 changes sign for values of the proton
number larger than a certain value Z,. The collective potential energy
surface shows a behaviour which strongly depends on the shape defor-
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mation of the interacting heavy ions. Also the charge polarisation plays
a primordial role in the enhancement of the secondary minimum in the
neighbourhood of vanishing deformation. For spherically symmetric
nuclei the charge polarisation is not sufficient to produce the secondary
minimum. Similarly, the shape deformation without charge polarisation
does not lead to a secondary mininum in nuclei with medium mass

I130
=

100

50

10
R-Rpjp—*fm

Fig, 19a,.

Change of mass for the collective motion during fusion or fis-
sion processes. In the part (a) of the figure the curves show
the variation of the mass with the distance of the mass centres
for the case of the complete fusion or fission in a form corres-

ponding to zero impact parameter, q=0, for various ion pairs.

number. The depth of the secondary minimum is a function of the
excentricity the maximum being of the order of 10 MeV in heavy
nuclei, a value strongly depending on the coupling constant g. One of
the most important results is the prediction that certain spherical
nuclei may undergo radiative transitions (~bMeV) to shape deformed
and charge polarised states. Another interesting feature of the collective
potential is that for highly relativistic energies there does not show
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In the second part (b) of the
figure the mass is given for
various values of the impact
parameter in the case of the ion
pair '}Ba - JiKr for both neu-
tron (b) and proton (c) transfer.
The left-hand side of the curve
gives the variation of the mass
in the entrance channel while the
right-hand side gives the mass
in the exit channel. In the exit
channel the mass is almost con-
stant due to the detachment of
the ions. The mass variation be-
comes stronger for decreasing
impact parameter. The negative
values of R correspond to the

entrance channel of the reaction.
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any secondary mininum. The reason for this fact is that the combina-
tion of excentricity and charge polarisation which seem to be physically
mutually inclusive, is spoiled. It is also noted that the mass of the inter-
acting heavy ion system shows the expected behaviour. At very large
distances it takes the value of the reduced mass of a two particle system
whilst at very small distances it vanishes completely. Concerning the
accuracy of the theory we point out that two kinds of approximations
have been adopted : In the place of the nuclear radius we have used the

approximate expression a=r0A1/3, where for r, the value ry,=1.2 fm
has been used. We have done no attempt to optimise the value of r,.
However, there are indications that the dependence on ry may become
crucial in some cases concerning the nucleon transfer criterion. The eval-
uation of this criterion shows that nucleon transfer proceeds from
lighter to heavier nuclei, if the mass number is bigger than a critical
value. We took the point of view that the nucleons outside the bigger
ion interact collectively with the nucleons inside of it from the effec-
tive distance of their centre of mass. A similar point of view has been
taken also in the calculation of the nuclear charge polarisation.

We have tried to keep the calculations analytical as far as pos-
sible. If use of the computer is made for the calculation of certain mul-
tiple integrals, an increase of the accuracy may appear but as we believe
it will not change substantially the shape of the obtained curves.

HEPIAHYIE

"Hdn anod tag Goyxog tod aldvic pag #xer yiver yvootdyv, #x 1@V meloapdtoy
1ol Boetavvol muonvixold quowxold Sir Ernest Rutherford, 6t ta momtdévia
amoteholy uéoog 1ol drounol muoivoc. “Aoyixde elye yivel dextn émlomg 7 hav-

i ¢ ely ng 1

daopévn droyig, St ta NAextodvia foav &miong cvotatikd TdV ATowndy muEY-
vov. “H devréoa attn dmoyig xareooipdn Suwmg xata 10 Erog 1932, Ste dvexna-
Mednoav ta verpdvia, ta 6moio GveyvwolodInoav duécwe dc 1O &v 1@ petaby
avapevopevov dpdov delregov ouotatxov T®V GTOUR®Y TUOHVOY.

"Extote 1) ®voiwtéga ogvvntixt) mooomddela tHg muomvinilc Quolxiic ovy-

xevrgovratl émi tol moofAnuatog tol mooodioplopnod Tt@V Suvduewy, al Gmolat
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doxotvratr perav t@v vovxheoviwv, Smowg dvoudlovrar amod xovod T mpwTdvia
%al T vetedvia.

Al duvdpeg avral, al muvonvixal duvduelg, dév xatéotnoav eicét yvooral.
Towovrotednwg, &x 1@V tecodomv Jepehiwddv duvduewv tiic Ploswe, Hrou tiig
Bagvtnrog, t@v "Hhextpopayvnuxdv Suvduewv, tdv duvdueov tiic B-oadieveoyod
dondoews, ) drhog duvdpewv tdv dodev@v ariniemidodoswy, névov ai mwuon-
vinal duvduels, 1) dhlwg mog al duvdues t@v Toyvodv diAnlemidodoemy, mago-
uévouv eioétt dyvmotol.

"Ag onuewwdi) magemntdvrog, Gt ofjusgov al amdpeic TV EosvvnTOV GuUY-
xAivouv wpog Ty Umédeoty, Gt al mugnviral Suvdueig d&v elvan depehidderg, GAA
amogoéovy &x TV duvduswv t@V doxovpévoyv uetaby t@v tehevtalog Alav &vra-
Txdg uehetopévov couatiov, t@v xfdoxs, axofds 6mwg ai duvdueig van der
Waals, ai doxovpevar petald t@v dropmv xai wogtwv tdv deolov xai td@v Hyodv,
xal Edwoav Ggoounyv eig TV yévvnowy uiag véag dmotiung, tig KPavrnie Xow-
podvvapriic (Quantum Chromodynamics).

Ex t@v dvo stoayoymdv tagatneioswv xadiotatal capeg 10 wolimlonov
100 moofAjuatog T Vewontintic uerétng TV mugnvikdv Gvtidodoswy petaty
Bagéwv tovtwv, g m. %. 1 aviidoacig uetatd dvo muvervwv odpaviov - 23D, Grav
10 ovodviov mepiéyel 92 mowtdvio xal 143 vetrpdvia. A va xataocti axoun cogé-
ote0og 0 Poaduog 1ol molvmAdxov tob mooPfAfuatoc doxel va uvnuovevdi, Ot
andun nal gig TV meplntwoly teEcodowY pévov copatiov, TO mEOBAnua dev Eyeu
gmludi) avotnod, ovte eig v Khaoowxnv ovte xal gig tiiv KBavumy Muyyavinv.

‘H SR ; YauBd S A . e
aopovotalouévy €oyacio meguhaufdver oxtw xeqpdiaia, 1ot :

1. Eloayoyiv.

Do

Ocuéhia tijg Yewolag.
Thiv aAAnAenidoaoy uepovouévov copatiov.

= %0

Thv médwowv toD @oETIOV *UTO TOG KEVIQLXAGC %OOVGELS.

Ty &xidoacty ti)g mapouétoov *0oVcEnC.

o o

Tag éveoyeiag eloddov xai EGS0v.

-1

Tov timov tijg ndlng, »ai

8. Svumeodopota xal diegevvoLy.

Eig tv eloayoynv megryodgestal 1o meog Moy medfAnua xai meosdiopile-
tat, &xl th Pdoer Gvagoodv tiig Pfiflioyoaglac, T magotca xatdotacts Tiig oeu-

vng Exl ToU mooxetuévou touéwg.
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Eic 10 devregov xeqpdratov meguyodgovtar ta depéhia tiig magovotalouévng
dewolac #al datvmotvrar ai Bacixal &Ecdoelg, &x TV Omolwv i thg Vewolag
1@v MetaPordv (Variational methods) émirvyydvovral ol éEtowoeic 1ot tolTOU
xeohaiov.

Eic 10 toltov xepdiatov Avoviar i Bacinal &Eodoelg, al dmrevydeioar eig
10 mponyovuevov xepdhatov. *Ex tiic Moewg mooxVmtovy al duvduelg dua ta
uepovouéve vovrhedvia, Al duvdueig adral magovoidlovv v dmagaitntov dt6-
ta Tod %ogeopob, 1) 6mola 6pilel Oti: «Brav 6 Geunog T@V vouxkeovimv telvel
7o ueydhag Tiudg, 1 évéoyela Gva vouxhedviov teivelr meog otadegay Tiuijvy, (g
amatrel 10 melpapa,

Eic 10 téraprov xeqpdlatov diepevvatar 1) méhwoig tov 1jAextool ogtiov
wdv ovyrpovopévov muoivov. ‘H €vvoira advrt elodyetatr dva
wTOoWTNMY Qooay £i¢ tNy magovoav €oyaciav. I[lpayuaro-
nmowelror éxtetapévog dotdudg Gouduntixdv dmohoyloudy, ol Gmotol 6dnyolv eig
10 mnowtétvnov Gmotéleocpua, Ot «f) dvvapixmn EvéQ-
YyeiLo ToU cvetfuatog dVo fagéwy wvoNveoy xatda TNV
TvEMVLENY GviidoaoclLy magovoirdletr dvVo BAdyrLotTar.
To yeyovog avtd &véyer ueydiny demonuunv onuaciav, xad’ foov Gmodexvierat
xat® adtov T0v te6mov 1) Unagkis loopepdv xatactdoswy eig t© ovotnua @V dvo
aveivey, ©g xai elg v mepintwoy TV pootwv tiic Xmueloc.

Eis 10 mépmrov xeqdiatov Siegevvirar 7 Emidoaoig &mi tic Suvaminic
gvegyelag tol ovotrjuarog, 1) ogethouévy eig Stagpdoove T TG mapauétoov
%QOVOEWG.

Eig 10 &xtov xe@dhatov Sidovrar ai padnuatizat Exqodoeic t@V Qualn@v
peyeddv, ta G6mola mooodiogifovrar éx tdv Bveoyeidv tdv Svo avtdodvrmv
Bagéwv toviav.

Eig 0 &Bouov xeqpdhiatov didetar 7 Exgpoacic e v udav tdv dvo Gvri-
dodvrov Bagéwv i6viov. “Evexa tol gawvouévov tiic cuviitewne tov avudodvinv
Bagéwv iovrwv, 1) nala évog &xdotov perafdrlerar cuvaptijost tiic dmootdosmg
avtdv. ‘H &alhvoig tdv &Eowoewv tijg KBavuxiic Myyavixiic draitel Aemroueoi
yvdowv tiig pding td@v idvrov ouvvagrijcel Tiig dmostdoeme Twy.

Téhog, el 10 Gydoov xeqdratov diegevvdvral T mrevydévia anotedéoparta
®al cuvdyovtal ovumegdopato did v mepaitéow avdmtvEly Tiig demolag.

‘H yonowdtng t@v dnoteheopdrov tiig doyaciag ouvvictatar eig v onua-
olav, tv Gmolav &véyxer 1 uerdty t@v ovdhoydv GAAniemdodotwv tdv Pagéwy
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iovtov elc v 8Eyviaoy t@v Wdotjtov tig muonvixiic UAng. Al ididyreg adra,
gxtog 10V yvootodewontinol Evdiagéoovids Twv, maovotdlovy xal TEAKTIXOV
gvdiagéoov. *Apxel va uvnuovevdolv dVo omuaviixal gpaguoyai tilg Puoriig

OV Pagéwy Oviwy :

a) 1 mogaywyl &vegyelag &x thg ouvtnlewg 1 &x tig oydosmg TGOV
muofvov xal
B) 1 yofioic TdOV Wdvrmv elg TV XUTAOKEVTV WHQOGHOTUKDY TIAERTQOVIKGDY

xuxhopdtmv eic Tovg NAexTovixovg voroytotdg xal GAlayod.

*Extoc t6v avotéowm duvatoritwv Umdoyet, téhog, xai tO Evdiugégov tijg
ouwvdéoews Aav PBagéwv mvoivav g v uehérmv 1OV Umegfagéov isotdmav,
‘H dudoxeta tiig Lofig adtdv tdv icotémwy eival tdoov mixed ®ote va @Udvn
moMkéc ootc elz T Gora TV duvatoritdV UETONCEWS FQOVIXDY JLACTNUATOV.
‘H Sidoxeta Toilc modhdv texvntdv Pagéwv mugivev elvar tig tdtews peyédovg

10- 20 devregorémrwy.
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