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gmmédov, dptlopévmy ¢’ ExdoTou T@Y GUTTRMETOY TOUTWY xal TEPLYPXPGVTWY 30
xapmdhag Tob Emmédou, cuviotd wlav oyéow looduvapixe. ‘H velevraia wpoxadel xa-
Tavophy TV xapumuldy Tob dmmédou el draxexpipéva &AMAAwY clvoha Amodsixvie-
o &v ouvexeln xaTd TpGwoy Yevixdy, 6Tt T& olvoha TalTa GuVGTOUV Gpddac 07O
doetapévov vépov cuvdéseonc.

‘H Swxgopk xal ) Suoxolx tiic Epyasiag Tabtyg &v oyéoet mpoe Thy dvaxoww-
Yetoay, de dvortéow, xatk tHv cuvedplay Tiig 28ng Pefp. 1957 Eyxevtan el iy M-
Qw  Tuyolong rapmilng B¢ &pxixdic xal elg THY YENCLLOTOINGLY GUETHUATOY GUYTE-
Toypévey, TdY émolwy of Timor wetaoynuaTiopnol eivor Emiome yevixeupévor Kotk
Thv mopelay TFc Amodetfswe Tob Dewphpatoc xatavoudc &v TR yevird Tou poped
mpodnuday Fépata cupPolniic wapacTdcEwg GOpoUEVWY TUmWY, TAY Omoiwy TO pé-
yedog xadiota dxpwe Stoxodov thy dvamtuly THg dmodelfeme. Ak T xemotpomort-
oewe xataAAhov cupBoliopol wapexdpednoay i Suoxohlur xal Emetelbydyn A &rd-
deréic 7ol Vewprpatog HmO THY Yeviehv Tou pOpEHV.

Téhog yiveror yewpeTpuny Eppmveta Tob yevireupévou Todtou Bewphipatog Eni
700 Edxdedeiov éminédou. Al wapiotdpevar xapmdlat xatatassovrat gig d0o Hmosl-
voha. ‘Bxdotn xapmddly tol évig Gmocuvélou Exer THY YEWPETPRGS «&VTIGTPOPOVS
e elg 0 dAho. AfwcnpciwTov elvar, tu F yewpetpuh woekb alty Epappolouévy
gml dVo olwvdnmoTe AvTIoTEdPWY xapTUAGY 6dMYEl elg THY xxTaoRELVNY THC dpyrTic
O,  Oomola dmwotedet &v eldog «oroiyelov TauTéTHTOL» THE Ghng Spddog xorp-

TUAGV.

MA®HMATIKH ANAAYZIE.— On the evaluation of double integrals
containing a large parameter, oy N. Chako *. *Avexoivddn vno t0d
% Todvy. Bavidxm.
1. INTRODUCTION
In this paper we shall be concerned with the evaluation of double
integrals of the type

(A) vi= [ [ sy ™" axay,
D

for large values of the real parameter k. The amplitude and phase
functions, g(x,y) and @(x,y) are real in the real variables (x,y) subject to
certain restrictions which will be specified later, and D is a finite domain
of integration. Integrals of this type occur often in mathematical physics,
especially in diffraction and scattering problems (1 - 3).

The method which will be developed here for evaluating integrals
of this kind will follow closely the method developed by Poincaré (4) and
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by Picard (5) for evaluating rational functions in two variables. The inte-
grals considered by them are of the form

(B) I:ff F(x,y) dxdy ‘-:fl/‘ g{:g’,—; dxdy

where g and h are polynomials in x and y.

In section II the method of Poincaré and Picard for finding the re-
sidues of such integrals is briefly outlined. In sect. III a procedure is giv-
en for extending their results to double integrals of exponential type (A),
when k is large. Explicit expressions for the leading term of (A) are given
for cases when the phase function has stationary points within or on the
boundary of the domain of integration, which in most practical applica-
tions is the required approximation. These expressions are the same as the
leading terms found by the method of stationary phase. Furthermore, we
have indicated a procedure of obtaining the higher order terms of the
asymptotic expansion of U(k). The coefficients of the higher terms of the
asymptotic series are expressed by Abelian integrals of exponential type in
a single variable. In the last section two typical examples taken from the
diffraction theory of aberrations are evaluated by this method.

1, THE METHOD OF POINCARE AND PICARD.

The method developed by Poincaré and by Picard for finding the re-
sidues of double integrals of the form (B) is briefly as follows. They con-
sider (B) as an integral in a two - dimensional complex space by letting
x=u +iv, y=w+it, The non - vanishing values of (B) arise from certain
points which make the integrand infinite or discontinuous. These points
are given by the solutions of the equation

(2.1 h(x,y)=0
or from its discontinuities.

Introducing the complex representation of x and y in (2.1), we have

(2.2) h(x,y)=h, (u,v,w,t)+ih, (u,v,w;t)= 0
hence,

(2:3) h, (u,v,w,t)=0, h, (u,v w,t)=0.

Relation (2 3) represents a surface in the four- dimensional space of
u,v,w, and t. The set of points which makes the integrand infinite or dis-
continuous are called szngular points, and from (2.3) these form in general a
surface, called the singular surface of the integral,
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Let q, B,y be three real variables which may be regarded as coordi-
nates of an ordinary space. Let S be an algebraic surface and «,f,y be a
point on S. We take.

(24) u=o, (a, B, Y), v=0,(q,B,v), wW=a,(qB,y), t=o, (o,8,7)
where ¢; (i=1,2,3,4) are rational functions and are finite for all o, f,y. As
a, B,y trace in ordinary space the surface S or portions of it, the point
u,v,w;t describes a hypersurface S* or portions of it in the hyperspace of
the u,v,w,t system, in such a way that it is defined by the surface S and
the four functions o,. The singular surface given by (2.3) is expressed by

the relations

(2.5)  h,(aB,v)=0, hy(aB v)=0,
which define certain curves in ordinary space. These curves are the
stngular curves T along which the integrand of (B) becomes infinite or
discontinuous.

If the surface S is closed and does not contain within it a singular
curve, the value of (B) vanishes. If S* belonging to the ordinary space, is
closed and lies entirely within S then the integral (B) over S* is the same
as that over S, provided there is no point of I" between S* and S. On the
other hand if in the interior region between S* and S there are singular
curves or portions of these, then the integral over S* is equal to that over
S. The surface S represents the surface of integration in the space of
a,f and y.

Now consider the following cases. In the first case let the function
h(x, y) be of the form

(26)  h(xy)=P(xy) Qxy),
where P and Q are irreducible polynomials. One wishes to find the value
of the integral,

(x,y)
(2.7) Iﬂf‘/‘ P(xgy)Q¥x 5 dxdy.

By considering x and y complex with u,v,w, and t given by (2.4),
one takes for the closed surface S in ordinary space the surface defined by
equation (2.4). The value of the integral will depend on the singular cur-
ves I" which are in the interior of S. These curves are of two kinds: (a)
Those arising from P=0, (b) those arising from Q=0. A third case arises
when both (a) and (b) are satisfied simultaneously. Since the singular cur-
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ves are closed, the quantities u,v,w,t are periodic of some parameter o with
period. 2n. We write

(28) u=¢,(0), v=¢,(@), w=yg(@), t=¢,().

Introducing two new parameters p and 6 and letting

(2.9) a=cos @ (1 +pcosh), B=sin (I +psinG), y=psing,
one then takes the following expressions for u,v,w ant t

(2.10)  u=y,(@), V= @), W=y,()+pcosd  t=u(w)+psind

If p<1, a point in the «,B,y space lies inside a torus. To every such
point corresponds one and only one point in the hyperspace. By taking S
the surface of the torus given by p=p, 0<<p,<<1, the curves I' are given
by p=0, or a®+p’=1, y=0.

One integrates (B) first with respect to y by regarding x as a para-
meter. Keeping x fixed one has y=, +iy, + p, €% therefore y describes a
circle of radius p, with center at g, +1y,. The value of the integral with
respect to y is equal to 2mi times the residue of the integrand evaluated
at g, + 1y, Hence we get

2. Teoni [ BlEW) g4,
(2.11) T B gy

where Py denotes the derivative of P with respect toy, and T is
the singular curve defined by P(x,y,)=0, with x=y, + i, y=us, + iys,. This
is an Abelian integral relative to the curve I'. In case (b) one obtains a si-
milar expression with Q,, instead of Py,.

On the other hand if (a) and (b) are satisfied simultaneously at x=x,,
y=y, located within S, then from the above arguments one finds after in-
tegrating with respect to y

(212) I=2mi [ ?yg% dx
B

and since Q (x,y,)=0 for y=y,, the value of the integral is

__ g(xoy0)
PYono' PXOQYO ’

A more interesting case is when h(x,y) has a double point at x=x,,

(213) I=(2mi)® [

y=y,. The singular curves [ are given by the relations, h(x,y,)=0,
h, (Xo,¥0)=0, hy (X y,)=0. From the result of case (a), one has.

— + & (X?Y1)
(2.14)  I=2ni J o xgy 9%
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and since hy, vanishes at y=y, the value of the integral (2.14) is 2mi times
the residue of the integrand, namely

. Xo,Yo
(2.15) I=(2wi) [lﬁylx—fh%:]
for x=x,, The quantities hyy, hyy, hy, are the partial derivatives of h with
respect to the subscripts, and y,, is the slope function. Since (x,,y,) is a
double point of h (xy), y,x is found by solving the equation
(2.16)" Ny, ¥ix ¥ hyx ¥ix + D=0
Introducing the values of y . id (2.15), one obtains the value of the

double integral

2 (Xo,y0 )
2.7
( ) I (ZTII \/ h?x oo~ hxoxohyoyo

Th:s is the formula derived by Poincaré which we shall find useful
in the next section.

11, EVALUATION OF DOUBLE INTEGRALS OF EXPONENTIAL TYPE

In various branches of physics and also in problems of celestial me-
chanics one often has to evaluate double integrals involving one or more
large parameters. More specifically, in diffraction and scattering problems
the double integrals can be generally expressed in the form announced in
the introduction, namely

(A) U(k):f /‘ g (x)y) eike(xy) dxdx
D

where k———z—;\[ and D is a finite domain of integration. The so called am-
plitude and phase functions, g(x y) and ¢(x,y) are in general non - analytic.
However, in many cases of interest they can be considered analytic, or
infinitely differentiable in D. Here it is assumed that g and ¢ are at least
n- times differentiable in D.

The purpose of this paper is to evaluate (A) for large k by following
closely the method of Poincaré and Picard which has been outlined in sec-

tion IIL
However, in order to apply their method to integrals of exponential

type (A), one must first reduce this integral in a suitable form so that the
procedure outlined in the previous section can be applied to the reduced
form. This can by easily carried out if one transforms (A) into the form

g(xy) iko(x,y)
(3.1) Uk f/“lkq) oLy dx-dy (e ) dy.
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Now consider a point (x,y,) in the interior of D. This point is call-
ed a stationary point if the partial derivatives ¢, and ¢, vanish simulta-
neously at x—=x,, y=y,. Therefore, at every stationary point in the inte-
rior of D, the denominator of (3.1) ¢, (x,y) vanishes. By partial integration
with respect to y (3.1) reduces to

(X,y1) 1. 1 2
(3.2) U(k)_ U R P o .[f e iko(x,y) a,
D

@yl(xryx)
( g (x,y) )dxdy
Py (Xxy) "
where I" is a closed contour in the x-plane surrounding the point x, and
y is a root of ¢, for values of x in the neighborhood of x—x, i.e, @y

(x,y,)=0.
Now we consider the first integral of (3.2)

(3.3)  Ufk)=—g [EEI oikelxyi) g,
‘PY[(X ya)

As y, depends on x, ¢y (x,y,) vanishes for x—x, Since g(x,y,) and
¢ (x,y,) are different from zero when x approaches x,, the integral (3.3) is
different from zero. Apart from the exponential part it is similar to the in-
tegral (2.1) of section II. The contribution to the value of the integral
comes from the stationary point (x,y, ) and its value is equal to 2mi times
the residue of the integrand at this point. Hence, we have (9)

4 U=Ts e otnare) [ __glmge) ),
197%0 yo— Pxoxabyeyol
where estand for the expression
[ 1if A>0, ¢xox,>0,
E=1 —1 If A>O, ¢YOYO<07 A:q)Xoqu’YOYD-q)2Xo Yo -
1 - 11f A<O,

Therefore, one has

(36)  Uk)=U,k)— [[ e Hatmy) d, (B Yaxan

For large k the leading term of U(k) is U,(k). This is the required
approximation to U(k) which finds many applications. Until recently this
formula has been derived by heuristic methods (see van Kampen, ref. 1). A
rigorous derivation of this formula as well as of the higher order terms
of the asymptotic expansion of U(k) have been recently obtained by Focke
(6) and the author (7) using the method of stationary phase Another de-
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rivation based on a different procedure was given by Jones and Kline (8).

If more than one stationary point exists in the interior of the domain
of integration, then the leading term of U(k) is given by the sum of the
contributions arising from each of these points. These expressions are of
similar form as the right hand side of (3.4).

In order to obtain the higher order terms of the asymptotic series of
U(k), one integrates the double integral in (3.6) by parts by merely repeat-
ing the same transformation which was performed for (A). The results lead
to the evaluation of certain Abelian integrals of exponential type in omne
variable taken along the singular curve I'. For instance, the coefficient of
the term in (ik)-n of the asymptotic series of U(k) is given by the following
expression

37) (1) [eikety) D™ (g (xy)]

T
with y replaced by y,, the latter satisfying the relation, ¢,(xy,)=0. The

. dX —
Py (%)’

operator D" stands for the expression
(38) D"=D"! D}DP2D2—=...... —pnkpk
with the operator D given by

(9  D=d,(5-)-

The coefficient of the second term of the asymptotic expansion,
namely of the term (ik)2is

(3.10) f e iko (x,y) (Fﬂ! :&YI) dx, with y=vy,
) b

¢y

This integral is of a similar kind as the one found by Poincaré, when
h(x,y) is replaced by h? (x,y) in the integral (B). The evaluation of (3.10)
leads to the same expression which is derived by the method of stationary
phase.

The procedure outlined above can be extended to cover the case
when the tangential derivative of ¢ vanishes at some point on the bound-
ary of the domain of integration D.

This is analytically expressed by ¢s = 0,s being the arc parameter
measured along the boundary curve of D. The integration of (A) can be
carried out first by finding a transformation which replaces ¢, by ¢ in (A)
and then integrating by parts. Without going into the details of the cal-
culations, we find for the leading term of U(k) the expression, (9)
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i 1 7 XX 2 —'2 xy Px + x
(3.11) U,(k):(T) lkqa(x,s){@ T w‘f;f(P?;Y) {‘Pyyq’ =
2

3 1 3
- (q:’x+q>’y)7}"7 (N
evaluated at x=x, y=y,, where the tangential derivative .¢s (x,y,) va-
nishes. The quantity p is the radius of curvature of the boundary curve at
this point. This formula was found by the author and presented at the
McGill University Symposium on Micro-Wave Optics in June 1953, (curren-
tly in press, Cambridge Air Force Research Center).

This formula is in agreement with the leading term which is obtain-
ed by the method of stationary phase. The higher order terms of the
asymptotic series can also be explicitly evaluated provided the amplitude
and the phase functions are infinitely differentiable. These results will ap-
pear elsewhere.

The two cases which have been treated here form only a part of the
general contribution to the asymptotic value of the double integral (A).
Besides the contributions coming from the infinities of the integrand —the
stationary points of the phase function within the domain of integration
and the boundary points — one must also take account of the contributions
arising from the discontinuous points of the integrand, that is, the contri-
butions due to the nou-analyticity of the boundary, of the amplitude and
of the phase functions, as well as, of the higher order infinities of the
phase function, such as the vanishing of the discriminant A within the
domain D and, of the higher tangential derivatives of ¢ on the boundary

of D. These cases are at present under investigation.

1V. APPLICATIONS.

Here we shall illustrate the method of the previous section by con-
sidering some scalar diffraction problems in connection with optical in-
struments.

From Kirchhoft’s theory the light distribution at some fixed point
in image space is, except for some constant factors, expressed by a double
integral of type (A). In this theory the amplitude g (x,y) is assumed to be
constant over the aperture of theoptical instrument D and the phase fun-
ction is a polynomial in x and y. In the first two examples g is assumed

constant. In the first example we consider diffraction by an optical instru-
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ment possessing defocusing properties and spherical aberration only. The
phase function then takes the form

(4.1) ¢ (x,y) =ax?4-by?+-2ex®y?c (x*+y?)

The constants a, b and e are the defocusing parameters and ¢ is the
spherical aberration constant. The stationary points are located at x—0,
y=0 and x, = (ac—bd) (d*— c?), ~'2, and y, =(cb-ad) (d*—c?) 2. A simple
calculation leads to the following expressions for U (k):

mi e ik (ax% +bytex®y-+2oc (xfty).
k xoyo(c’—d’)%

(42)  U,k)= 2" 4 (ab)-1e
where d=e-}-c.
As a second example we take the phase function to be of the form

(43) o xy)=ax'+y)+elxy+xy’),
where the second term represents pure coma and c is called the coma

aberration coefficient.
The stationary points of the phase function are located at (0,0) and

x°=y°=—%acl—. In this case the leading term U,(k) is the sum of two

contributions, one from the point (0,0) and the other from x,y, point. The

result is

(44) Uyk)=i(ak)—t — 3(15)" T (ak)—t et (a?;c,)

In this example the second stationary point has a negative discrimi-
nant. In both examples g (x,y) is assumed to be 1.
Finally, we consider a case where the amplitude and phase functions

are as follows:
1

(#35)  gEy)=(xlly)™ =", ¢&y)=ax+by+2exy-+c(x’+y?).

The method of section III is valid only when g (x,y) is a regular fun-
ction of x and y. However, as the absolute values of x and y appear in
(4.5), the method is still applicable to this case. If we take as new varia-
bles u and v given by therelations, u*=x, v’=y, the integral (A) is trans-
formed to four times the integral of the first example. Therefore, the va-
lue of the double integral for this case is four times the value found in

the first example.
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M ER I AN ILE

‘O ouyypxpede doyoheitor dvtabde mepl TOv mpoodioptopdy Simwhév 6hoxAnpw-
pdrav he poppdic U(k)=//, g(x,y)e™**Ydxdy, émov g (x,y) xad ¢ (x.y) mapt-
6TolV AVTIGTOlY WG TAE GUYXPTATELS TTAKTOUG Xl QAGEWC, af Gmolat elvat TwpoypaTial
dux wpxypmxTiRkg peTaPhntdg TAY X,y pé Twag wepwopiopolds. To D mwapiotd Ev mwe-
mwepaopévov wedlov 6hordnpdoewe xal T6 kK AapPdver peyddag Tipndg.

‘Oloxdmpddpata tob Timouv TodTou cuvavTédvron elg TNy padnpotiehy Quatkfv
xol dfwe el T mwpoPAfuata Sudhdosweg xal Sroyloews. "Axolovdeitar 7 pédodocg
Poincaré xoi Picard Sux pntd¢ cuvaptiiosig pé dbo petaPintde. Al v Aéyw upédo-
dot dvamwTiooovTal cuvTopwe el Tag mwapayp. 1 kol II. Eig thv mwapayp. 11T yiveta
grméxtooie TéY dpyaoidv Poincaré xal Picard elg Siwhé@ éhonhmpdpata THe mvnuo-
veudelone poppdic mou o k hapPdver peyddag Tipds. “TwodemvisTtar Eti Tpdmwog eb-
péocwe avmTépwy Gpwy THg oupmTwTIdg émernTasems ToU dvwTépw dSimhob GAoxdn-
pdpxtoc U (k). Eig vy wedevtaiav Télog mapdyp. Sidovrow dbo Tuming wapadelypata
gvdax 7 v Adyow pédodog edpioxer thv dpapproyiv Tne.



