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ABSTRACT

Simple numerical methods for solving singular integral equations of the
first and second kind with variable coefficients are described. The methods are
based on the generalized Gauss - Jacobi quadrature formula for singular integrals.
A further extension of the first of the two methods described is presented for

generalized Cauchy kernels.

1. INTRODUCTION

The solution of a large class of boundary-value problems in physics
and engineering can be reduced to a system of singular-integral equa-
tions along a finite part of the real axis. Since any finine interval can
converted to the interval [—1, 1] by means of a linear transformation,

we assume the equation to be of the form:

1

a(t)w(t)+b—:t)—f—;¥xgdx—}—fk(x,t)w(x)dx:f(t); —1<t<t (L 1)

* II. . GEOXAPH - I. TEAMAI®YPOY, "EniAvoig ovotnudtwy idlopéppuwy dAoxin-
pwTixdy EElomaewy pé petafAntods cuvteAeotds nal wiyadikiy cuvdptnaiy Bdpous.
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where the first integral is to be considered as a principal-value integral.
Moreover, @ = (o), (i=1, ..., N), denotes the unknown (vector) function,
the square matrices a = (aij), bi= (bij), (i, j=1, ..., N), are considered
known, with a -+ ib non-singular in [—1, 1}, and the vector f=(f),
(i=1, ..., N), consists of the known functions.

On the other hand, the elements kij (x, t) on the square matrix k
as well as the functions a;, bij,
condition in each of the variables x and t. The unknown functions ,(t)
will always be sought in the class H* (H* is the class of functions which
satisfy a Holder condition in any closed interval of the open interval
(—1,1) and have integrable singularities at the end points t =+ 1 [1]).

Taking into consideration that any technique of solution of singular

f, are assumed satisfying a Hdlder

integral equations may be readily generalized to apply to a system of
integral equations, it will be sufficient to consider the solution of the
singular integral equations arising from Eq. (1. 1), if it is supposed that
N =1, i.e. a, b, w, f are matrices with a single element. Thus, in the
rest of the paper we use, instead of bold-type sumbols a, b, w, f the
symbols a, b, o, f and thus Eq. (1. 1) takes the form:

a(t)m(t)+P?([ﬂf(;)(—jldx%—fk(x,t)w(x)dx=f(t); —~1<t<l (L. 2)

The singular behavior of the functions ® around x = 41 may be
obtained from the dominant part of the integral equations (1. 2) by
applying a method given in refs. [1] and [2]. It can be readily shown
that the fundamental function w(z), which characterizes the singular

behavior of w, is given by:

wi(z) = (1—2z)* (142z)P A(z) (1. 3)
where :
1 a(l)—ib(1) |,
¢ &ﬁ1°g[a(n-+ib(n]'*“ Bl

- a {—1)—~ibi(—1)
B”_Qﬁbqapn+mpn

]Jru” (1. 5)
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and A is a non-vanishing in (—1,1) Holder-continuous function, u" and p”
are integers, chosen in such a way that the behavior of the fundamental
function w at points x =+ 1 is compatible with the expected singular
behavior of the unknown function w(x) (i.e. either bounded, if 0<Reaq,
Ref <1, or infinite, but integrable, if —1 < Rea, Ref<0).

The constant » is expressed by:

® = — (W+un") (1. 6)

and it is known as the index of w(x). If the index x is greater than
zero, then o, besides satisfying equation (1.2), must also satisfy an
additional condition, which is invariably of the form:

fm(x)dx = A (1. 7)

where A is a constant.

In this way a system of singular integral equations is reduced to
an equivalent system of Fredholm equations, whose solution may be
obtained by numerical means. In order to avoid the unnecessary opera-
tions, it seems to be desirable to develop a direct approximate method,
preserving the correct nature of singularities of the unknown func-
tion o (x).

As yet only the case of constant values for a and b was considered.
In ref. [3], a series expansion of w(x) in Jacobi polynomials was used.
With the aid of well-known orthogonality properties of the Jacobi
polynomials, an infinite system of equations was obtained. Thus, the
coefficients of the expansion were obtained approximately by truncation.
For a =0 a special quadrature formula was used in ref. [3] for the
singular integral.

The general case with a=£0 has been considered in ref. [4] by
using a cumbersome procedure to prove an integration formula for the
singular integral, In ref. [5] it was proved that the quadrature formula
used in [3] for the singular integrals was of a Gauss-type.

An extension of standard rules of numerical integration for regular
integrals, to the case of Cauchy-type principal-value integrals with
arbitrary integration intervals and weight functions was presented in [6].
In a publication of the first of the present authors [8|, appeared
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for the first time in 1976 [7], it was given a general quadrature scheme
to include an arbitrary number of preassigned nodes for the Cauchy-type
integrals. In the same paper the integration rules of Gauss-Jacobi (open),
Radau-Jacobi (semi-closed) and Lobatto-Jacobi (closed) were completely
investigated. On the other hand, a number of theorems given in ref. [7]
prescribed the condition of the applicability of the method.

These results were applied later-on to a series of papers [9] to [12].
The cases of complex values for a and § were also considered in refs.
(43, 14]. Moreover, the convergence of the quadrature rule for singular
integrals was proved [15] and, in a recent paper, the equivalence of the
direct and indirect methods was demonstrated [16] and consequently the
convergence of the solution was proved.

In the present paper the case of complex-weight functions is
reconsidered. A generalized quadrature formula to include an arbitrary
number of preassigned nodes is derived. For reasons of simplicity only
the case where the preassigned node(s) is either at one limit, or at both
limits of the integration interval, is considered here. Finally, based on
this integration formula for the approximate evaluation of the singular
integral, we propose two methods for the numerical solution of the
singular integral equation (1. 2) with variable coefficients. But, in order
to be in a measure to apply the method described in paragraph 4 of the
paper, which is more accurate than the method described in paragraph 6,
it is necessary to prove the existence of a sufficient number of roots of
a complicated transcendental equation. The theorems, given in the text,
allow to find a lower limit of the number of such roots.

2. THE QUADRATURE FORMULA

Let the singular integral I(w) be defined by:

1

I(m)=f L P (2. 1)

oo !

with :
o(x) = w(x)p(x) )
w(x) = (1—x)*(1+x)? L (x) .5

1144 1982
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where @ is an analytic function in a domain D containing the domain
[—1, 1] in its interior and I, is free to be selected equal to either A or
to 1. If @ is a Holder-continuous function (¢ € H), then o is said to
belong to H* (0 € H*) [1 § 77].

Let also the m preassigned nodes {yk}:::l
(m £ 2), if they exist, be chosen to coincide either with the one limit,

or with both limits.

of the quadrature rule

We denote now by :
W (x) = (1 —x)" (1 +x)" L(x) (2. 3)
and we introduce the function Q(n) where:
i) if m=2and y,=—1, y,=1 then:
u=oa+1, v=p+1 and Q(x)=(1—x?
ii) if m=1 and y,=—1 then:

u=a, v=0+1 and Q(x)= (1+x)

iii) if m=1 and y, =1 then:
p=a+1, v=8 and Q(x)=(1—x)
iv) if m=0 then:

= oy =3 dund Q)= L.

We express now xn,(x) the product :
Ta(x) = (x —x1) (x—Xg) ... (x —xu) (2. 4)

which is a polynomial of degree n with simple roots at the real or
complex points {xj};’zl. Furthermore, by Runge’s theorem [17], we
may approximate ¢(x) uniformly in D by a complex polynomial P, n(x),
which is of degree (n+ m), and satisfies the relations:

fp(XJ) =Pn+m(xj), j:],2,...,ﬂ; T[n(Xj)zo

Do
(&1
~

q)(yk) = P"-Fm(yk)v k= 1’ ey ("
@t) = Pagalt) , Tor certain t.
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Then, by using the Lagrangian interpolation formula, we have:
@ (x) = Patm (x) + Rotms1(x) (2. 6)

B n (x—t)Q(X) Tn (X)
Pn+m (X) e jgl (x——xj) (XJ—t) Q(XJ) Jl';

) (x;) +

n (x —t) Q(x) 7, (x)
NN = A e (AL

<o)+ g = Bow @

In Eq. (2. 6) Rotm41 is the remainder of the interpolation formula,
which is given by:

_ (x—t) Q(x) ma(x) @ (z)dz g
Rotm (x) = 2mi f(z—x) (z—t) Q(z) ma (2) L

where C is a closed contour in the interior of D containing in its
. . . n m
interior all points {Xj}j——=1 and {yk}

We multiply now (2. 6) by w(x)/(x—t) and integrate from —1
to 1 to obtain :

- X =j=21 Aj,n *XJT{ + q,(t) o(t) + Eatmta (t) (2. 9)

f‘w(xmx)‘ ot elx)
4
with :
x,, if j<n
o=

2. 10
Yoo if j=n+k —

; (Z—xj) ¢, (2) ;
}Lj,n =—222[W'}, i) —-1,2, ...,(n+m) (2.11)
29, (1) —
1 ¢ (z) p,(z) dz _
En+m+1 (t) = ;t—l‘f(y__t) Q(Z) o (Z) (2 13)

C
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where _(z) is the associated to m,(x) function defined by:

1 WEmE,

v, ) = 5 | ol 2 € [—1,1] (2. 14)

=1

and

&

¢n(t)=%[wn(t—POi)—i—wn(t—Oi) . —1<t<l (2. 15)
Using the Plemelj formulas we have:
1
1l (W)
P (1) = 2f - dx; j T (2. 16)
—1

Using a Taylor-series expansion of 1/(z—x) and taking into consider-
ation (2.14) the error term may be written as [6]:

_ 1 g wlz) .
B el = Tz?ikZ,Mk"‘fzk(z—t) BamE W

C

where :

My = fVV (x) A (x) x*m, (x) dx. (2. 18)

But, following the theory developed in ref. [18] we may have:

1 f olz) o gt ) @ 19)

oni J 2 (z—t)m(2) " (@t mtk)!

where & is a point of the interval (—1,1) not coinciding with the
points t, X, and ¢® denotes the derivative of p order of the function ¢.

If a limited number of terms is retained, we will have:

< M n4m ] ¢
Entms1 (t) = m Ciad (2. 20)
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Thus, it follows that E,im41 =0 for every ¢(x)€E & where &

is the class of polynomials of degree < n-+m.

n+m n+m

If as @, (x) is selected the Jacobi polynomial P (x), and L(x)=1,
we see that 1;,, are the weights of the classical Gauss-Jacobi integration
[6] if m=0, or of the Radau-Jacobi if m=1, and of the Lobatto-Jabobi
if m=2. In this case, taking into consideration the orthogonality
relation, we conclude that the moments Mg (k=0, 1, ..., (n—1)) are
zero and consequently the error is given by: ‘

& My (n+m+k) .
En+m+] _\;=§+1(n+m+k)l P (E_L')' (2' 21)

If a limited number of terms is retained, then:

- I\‘In (2n+m+1) 9 9¢
En+m+l L - (?n+m+l) ©® (E) (-. 22)

and it follows that :
Eipmey= 0 (2. 23)

for every @ (‘() e g?n+m—l i

3. REMARKS FOR THE NODES AND THE CONVERGENCE
OF THE QUADRATURE RULE

The Jacobi polynomial P¥"Y(x) for real or complex values of y,v
satisfies the same differential equation, which is given by:

(1—x)y"+[v—pn—(@+v+2)x}y'+o(nt+pt+v+1)y=0 (3.1)

Thus, P%""(x) is given in explicit form by :

wwy _ _ T(a+p+1) (_ . : 1;’£>_
P"u (X)_F(M+1)F(H+I)ZF1 n, H+M+V+1, u+11 2 S
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%0(2)(H+H+V+l)...(n+u+v+k) (M+k+1)-~-(u+n)(x7—l) (3. 2)

where ,F; is the hypergeometric function.

The method of Liouville-Stekloff [19] may be applied just as in the
case of real values of u, v to obtain the following formula of Hilb’s tyvpe :

p+1/ v+41/
g (sing) ’ (cos —g—) 2Pf,“'v) (cos ¥) =

870 @m="h), if cn—' L9<n—¢

3.3
*#*Hom" , if 0<dLen! . &

—1y o=p I (n+u+1)
=2 N MTJM(N8)+{

and

N =n+4(un4+v41)/2 (3. 4)

where ¢ and & are fixed positive numbers, Reu>—1 and J, is the Bessel
function of first kind of order p [20] defined by:

B 55 (_l)k (Z/Q)u-l-?k
Tulz) = 2 35 Pk +utD) "

(3. 5)

From this formula we can furnish immediately a Mehler-Heine
type formula (similar to the one given by Szegd [19]):

(Z )—‘l/a(. p >u+‘/2( & )v+1/2 (w)< Z)
N sm-m coszﬁ B cos—N~ =

—/s N—uF(n—HH-l)
I'(n+1)

(3. 6)
= 2 Ju(z)+0(n"?)
which holds uniformly in every bounded region of the complex z-plane.

Another direct proof to obtain this formula is elementary. In this
procedure the following asymptotic expression is used [21]:
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e - (5= oG

|arg(z+a)| L x—e, £>0

in connection with relations (3. 2) and (3. 5).

Using the following relation [11]:

P (z) = & (n+p-tv+1) PR TH(g) (3.8)

ol

which remains valid for complex values of u, v, we obtain the following

Hilb’s type formula:

) 3
6_1/2<sin g)uT ) <COS§)V+ ) PV (5) = gl tmubrrunTHED

' —1y) : —1 —
B O ") if ca1LB<Lw—¢

o Dlatut1)
P om**?) if 0<9<cen!

n!

Jops (NO) + { (3. 9)

with z = cos V.
On the other hand, it is known that the associated function ¢ (t)

is given by [22]:

I (w) T(n+v+1)

$,(t) = — = cos auW (t) PV (t) + -
o 2 I'h+p+tv+1
( ) (3.10)
% le(n—I—l, —fn—p—v; 1—upu; 4%)
The second term of the right-hand side may be written as:
P () Tn4v +1) ( l—cosz/N)
Platutv il TRr T, S ol

_ outv—1 L .z \'& Fintlik) I'(n+v+1)
= ST DR (S“’ 2N) Z, T+l  ThaFarv—k+D
. 2k —qu
X (—1)¢ (sinz/2N)™* (3.11)

KIT(k—ud1)°
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Taking into consideration relations (3.7) and (3.5), as well as the Euler
reflection formula:

1

L) T(l—p) = P (3.12)
we obtain :
TP () (o4 v+1) 1—cosz/N> N
Fn+utvtl) le("H’ =R . g =
- g+l ONT\M
= e (Sinz2N)" T, (2). (3. 13)

Thus, by taking into consideration relation (3.6) we may write:

—1s v—1/s A
e _gutv=3y .z | < VZ'> <i> —u [(n+p+1)
2 n(sm 2N> cos 51 . N Tt X

2 ( cos unJLt(z) —J_u(z)) (5. 14)
sin ztp
which may be written as follows (see [20]):
z
q’"(c"s N> - (3. 15)
—/ " ¥
_ gt o 2 ) ( L) 2(}) : ¢ (tutl)
2 n(sm QN) cos 5o N N T(n+1) Y(e)

where Y, is the Weber function. Now, using the well known asymptotic
expansions [20] :

9 \/2
], @ ~ (;—) [ cos(z—un/2—n/4) P(z, w)—sin(z—ux/2—n/4) X Q(z,1) ] (3. 16)

s
Y,Az)N(%) [sin(z—un/2—n/4)P(z.u)+cos(z—un/2—n/4)Q(z,u)] (8. 17)
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with
* w T+2m+1/2) 1
y e P 3.18
Pl =2 (=1) (2m)! T (n—2m +1/2) (22)™" .
and
7, )= —1 — 3.18b
Qz,w) = 2 (=1) @m+1)! T (u—2m—1/2) (22" ( :

we can obtain the same formulas for P (z), ¥, and P'{"" (x;), as the
ones used in ref. [15], but valid for the case where p and v are only

real numbers.

Let us examine now the equation P{"“(z) =0. It has n roots,

whose values depend on u and v; since Pf,”"'), as we expect from (3. 2),
is an analytic function of z and u,v, it follows that each root of the
equation is an analytic function of u and v. Thus, as u or v vary, the
zeros of P"" vary continuously. Then, it follows that the zeros of
P! are derived from those of PM""* (u; = Reu, v; = Rev), or from
those of Chebyshev polynomials by a process of continuous variation,
as u or v vary.

On the other hand, differentianting (3.1) k- times we have:
(1 — =N y®+I 4y —p — (v + Bl S-S Jeti-
+Mmmtpt+v+1)—k(k+u+v41)]y® =0 (3. 19)

We prove now that y does not vanish for x =-+1. In fact, if y=0
for x =41, then from (3.1) we must have y’=0, whence from Eq.
(3.19) with k=1 it may be readily derived that y""= 0, and so on;
that is y = 0. Therefore, each of the zeros of P{" is different
from +1.

Now, using the well known Rouché’s theorem [10] and the formu-
las (3.3) or (3.6) we obtain, for enough large values of n, a number of
very interesting theorems on the zeros {xj};'=l of P, These theo-

rems are the following :

Theorem 3.1: The number of zeros of Pf,”’v) (cos V) between the
imaginary axis and the line on which R(z)=Re[(n-+u/2+1/4)a/N],
(N=n+(u-+v+1)/2) is exactly n (n must be sufficiently large).
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Proof.: See Watson [20, §15.4] for the large zeros of F, -
Another proof may be obtained as an immediate consequence of the
next theorem :

Theorem 3.2: Let{x;}

=t

with Rex; > Rexy > ... > Rex  be

the zeros PV . If we write x; = cos 9, , then for a fixed 1, it is valid that :

lim N9, =j;; N=a+(@ud+v+1)/2 (3. 20)
n—»0
where j; is the Ith zero with positive real part of J,(z).

Proof.: This is a consequence of the formula (3. 6). From (3. 20)

(see Watson [20, § 14. b4]), we obtain the following asymptotic expansion
for ¥;:

1 —4p2

8(I+u/2—1/4)aN SRR -0

4 =(0+u2—-1/4)x/N +

Thus, we derive immediately the following three theorems :

Theorem 3.3: Let 0 < Red; < Redy< ... < Red < x be the

zeros of PY"Y) (cos9), then :

& =N U+n2—1/4)a+0(1)} (3. 22)
with 0 (1) being uniformly bounded for all values of [I=1,2,,...,1n;
w="1208 ..«

Furthermore :
N'le (—1)! (sin 9,/2) @+ (cos §/2) P2
P'SIM'V) ( cos {)l ) _ 7777(77 ) _(_ ,i,,AL.,)',,_i';«.S, ,,,‘/_), e S
2 (Jt) [2
X [14+0(NT)] (3. 23)

Theorem 3.4: Let —1/2 £ Repn L 1/2, —1/2 £ Rev £ 1/2, then:
Re (9,—9,_) <Re(x/N) I=1,2...,n+1 (3. 24)

Here we define 9y= 0 and 9,4, = .
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Theorem 3.5: Let —1/2 < Ren£L1/2, —1/2 L Rev £ 1/2, then :

e {l+(u+§—-1)/2}n/}ze{w] _— )<Re(lin> (3. 25)

It is obvious from relations (3.21) or (3.22) that, for large n’s,
the zeros of P™" cannot have a large imaginary part; and so all the
zeros of P lie inside a rectangle whose left and right sides are given
by theorem 3.1 and upper and lower sides are parallel to the real axis
at distances from it, which are bounded when |u| and |v| are bounded.

Using relations (3.6), (3.15), (3.22) and (3.23) we can also prove
the convergence of the quadrature rule (2.9) in the same way as in

ref. [15].

4. METHOD OF SOLUTION OF SINGULAR
INTEGRAL EQUATIONS

Using relations (1.3), (1.4), the quadrature formula for Cauchy -
type integrals (2.8), and the quadrature formula for bounded functions,
equation (1.2) may be reduced to the following functional equation:

B (O "$ [PSE)
1

kzx

;\k.n
o +k(xk,t)lk‘n] 'P(xk) =

ik
= f{t)+eo, ); —1<E<A (4. 1)
where :

B0 =a()wi+ 20 ,,(t)=[a<t>w<t)nn(t)—2b—f1¢n(t)}/ﬂnm. (4. 2)

and :

i) x.A . q,(t) are defined by the relations (2.10), (2.11), (2. 12) and
ii) o, (t) is the remainder.

Taking into consideration the convergence of the described qua-
drature rule, g (t) can be made as small as required and hence may be

neglected.
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If the index » is greater than zero, then a supplementary equation
may be added to equation (4. 1), which results from the additional con-
dition (1.8):

n+m

kél )\k,n (P(Xk) = A * (4 3)

Obviously, if a(t), b(t), k(x,_,t) and f(t) are analytically extendable
into the domain D containing [—1,1] in its interior, then equation (4.1)
may be transformed to an equation valued for any t belonging to D.
of F,
(which are complex in general) we obtain from (4.1) a system of l-linear

Thus, by selecting as collocation points the [-zeros {t,}f=l
algebraic equations in the (n—m) unknows ¢(x,). To these equations
the N(N =0 or 1) equations (4. 3) must be added. If [+ N = n-m, this
system is solvable in the ordinary sense, while if /[-+N>n-+4m it is
solvable in the least square sense. Finally, if [-4-N<n-+m the system
is insolvable.

If now any one of a(t), b(t), k(x,,t) and f(t) are not analytically
extendable into the domain D, it may be replaced by a polynomial
approximation g(t), b (t), E(xk, t) and ~f(t), which is analytically
extendable. These approximations may be chosen in [—1,1] as close as
required to the original functions according to the following theorem of
Gel’fond [22] :

Theorem 4.1: Let a function f(x), assigned on [—1,1], have a
derivative of order m, with £™ (x) EH, (0 < u <1). Then, for every natural
n there exists a polynomial P (x) of degree not higher than n for which it is
valid that :

A

nm—v+up

1Y (x) =P (x) | <

=0,1,..., m%¥ —1LxLl) @ 4

where A is a constant (depending on f and m ).

But, in order to proceed in this manner, it is necessary to prove
under what conditions F, has a sufficient number of roots (I=n + m—N).
An answer to this question is given by the following theorems.

As a first step we introduce the notations :

ay, (x) = arctan [a(x)/b (x)] (4. B)
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), = arccost, (4. 6)
and we suppose that I, = 1. Then, the following theorems hold :

Theorem 4.2: Ifa, b and 1, are constants, then :

¥, = N"{(at+w2—1/4—pa+o@)} - (4.7)

with 0 (1) being uniformly bounded for all values of .
Proof.: By Rouché’s theorem, F_has the same number of zeros
as the equation :

ju(Nﬂ)cosnx—Yu(Nﬁ)sinnx =40 (4. 8)
Thus, (see Watson [24, § 54]) we can obtain the following asym-
ptotic expansion for the roots y_of F:

1 —4p2
(r+u/2—1/4—y)aN

Y= (r+u2—1/4—y)x/N+ ¢ +... (4.9

This relation completes the proof.

From relation (4. 8) we can also prove theorems analogous to the
theorems 3.3 to 3.5.

Now as anr immediate consequence of the above we can arrive at
the following corollary :

Corollary 4.1: If a(x) and b(x) are constants, then the number
of roots t_of F_(x) in the strip —1<Ret <1 is equal to (n—1).

Theorem 4.3: If in a contour surrounding [— 1 +¢, 1 —¢|, where

e is a small positive number, we have :

la(x) [ >M(@)]|b(x) | (4. 10)

with :

M (8) = max |tan [NO — (2u+1) x/4] | for Im [ND — (2u-+ Dx/4)] 20 (4. 11)

d being any positive number, then F (x) has in the strip —1<Rex<—1
(n+p) roots, if p are the roots of a(x) (n large enough).

Proof: By Rouché’s theorem, F  has the same number of roots
as the equation :
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J,(Nd)a (x)—Y, (NI b (x)=0 (4. 12)
or the equation :
tan [N — (2u+ 1) n/4] = ;‘(‘:)’ (4. 13)

On the other hand, we have:

talig = ——=—ce—4 ; g=wpiy (4. 14)
e

and for y>d:
|1 4™ et P Lo T ip1—e™® (4. 15)

In this way we can see that tan [NO—(2u+1)xn/4] is bounded in
the half - plane Im[NO—(2u--1)n/4] 2. Let now M(5) be this upper
bound. If we apply Rouché’s theorem to equation (4.13), taking into
consideration relation (4. 10), we arrive to the desired result.

It is possible to obtain a more precise theorem if we choose I, = A
and b(t) is taken to be a polynomial b . say of degree m, defined by:

e

bo(d) =+ (z—p) m= 5 a,b,(~1)&£0.

I

1

This condition is not in reality very restrictive, because we may be
able to multiply (1.2) by a non-vanishing in (—1,1) Hdlder - continuous
function g, such that gb is a polynomial b, of degree m (see [23]).

We denote now by :

W) =W(t+i0) te(—1,1) (4. 16)

the limiting value of W from the left and from the right. Thus, follow-
ing Muskhelishvili [1] we will have :

wi(t)={a()ib(t)JW(t)/r(t), r*(t) = a’(t)+Db*(t)  (4.17)

In order to be in a measure to demonstrate the theorem 4. 5, which
follows, it is necessary to remind the following lemma [23]:

Lemma 4.4 : Let Q,R be functions such that :
(i) OX-—R is analytic in the deleted complex plane and zero at infinity.
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(ii) on (—1,1) Q7 (t) = Q7 (t), R (t) =R (t) and the functions
aQz/r—R, bOz/r are in H*. Then, for —1<t< 1, it is valid that :

QM2 4 _ a2
“f th) r—¢t) dt = — ) + R (t) (4. 19)

Theorem 4.5: Let b=b_,L =1 and @, is a polynomial of
degree < n. Let Q_ _ _  denote that polynomial of degree n-+x—m such
that llm{ (z) W(z)/b, (2) —Q,_._., (z)] =0. Let R _, be that polyno-

mial of degree m—1 such that :

dj
P O @AW )], B.&[—1,1] .
i, &’ [a(t)rp,,(t)W(t)] o '
dzs r(t) oy el
for j=0(1) (a,—1), i =1 (1)u. Then, for —1<t<1, it is valid :
t t
() 2o, W+ ”j S0 -
=R, )+9Q,_ . ()b, (t) (4. 20)

and
(ii) F_ has (n—=) roots in the whole complex plane.
Proof.: If in Lemma 4.5 we choose Q=¢, /b  and R =
R, /b, —I—Q relation (4.20) follows by substitution. By
choosing ¢ = x_ in the last relation and taking into consideration

(2.12) and (4.2) we see that :
m()F () =R, _,(©)+Q,_,_, ()b, (t) (4. 21)

Nt —m9

that is = F  is a polynomial of (n—x) —degree. Taking into consider-
ation (4. 2) and the fact that a zero of n_(t) does not coincide with a
zeto of ¢ (t) we conclude that F has (n—x) roots.

In the case where L, =1 and p,v real numbers we have proved,
in a recent paper [7], a number of more precise theorems and corolla-
ries. For question of completeness of the paper we state them here
without proof :
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Theorem 4.6: Let a,b be Holder - continuous, w,v real numbers
and 1,=1. The function F ., defined in (3.2), has in the -interval
I,=(x,,x. ), k=12 ...n4+m—1:

i) An odd number 21+1, (I =0,1,...) of real zeros, if b(x) has 2p,
=012,...), rootsin I_;

ii) An even number 21, (l=0,1,2,...), of real zeros, if b(x) has an
odd number of real roots z;. In particular, it has at least two real zeros, if

there is a z; for which :
b(x,) a(zj) <0, z€l,. ' C(4.22)

Theorem 4.7: Let the preassigned nodes coincide with the limits
+1 and W be defined by (2.3) with 1.=1. Then, if uw >0 (or v > 0),
theorem 4.6 holds for the interval (x , 1) (or (—1,x;)). If © <0 (or v <0)
function ¥ _ has in the interval (x_, 1) (or (—1, x;)):

i) An even number 21, (1l =0,1,2,...) of real zeros, if b(x) has 2p,
(p=20,1,2,...) roots in the prescribed interval. In particular, it has at
least two real zeros in (x, 1) (or (—1,xy)), if there is a z; for which it is

valid respectively that :

b(l)a(zj)<0; z, €(x. . 1) (4. 23)
b(—la(z) <0; zE(-1,x (4. 24)

ii) An odd number 2141, (I=0,1,2,...), of real zeros, if b(x) has
2p+1(p=0,1,2,...) reots in (x_,1) (or in (—1, x,) ).

Corolary 4.8: Ifb has no roots in (—1,1) and I, =1, then
E | has at least :

i) (n—1) zeros, if n < 0 and v< 0O

ii) n zeros, if w.v<O0

iii) (n--1) zeros, if u >0 and v>0

All the zeros alternate with the zeros of PY"" (x).

Corollary 4.9: If n+v=k, where k is a negative (> —2)

or positive integer and u,v complex numbers, then :
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1

- a(1)
Q(x) PP (x)

B “a(x)—b(x) m] W (x) P4 —

I'w) I (1— o
9k (w) n( u) Pf,.ﬁ; )} (4. 25)
and in the particular case where a, b are constants, F (x) has (n--k) roots,
which coincide with the roots of Py and for k = 1,0, 1 alternate with
the zeros of P! (x).

Last corollary may also be proved by using Theorem 4. 5.

5. ALTERNATE METHOD OF SOLUTION

We propose now another way to reduce the functional equation
(4. 1) to a linear system of equations. If a n -point quadrature formula
is used, we select at the beginning as collocation points t,, the (n+p)
zeros of the polynomials x , (x) (where p is an integer = 0), sub-
sequently, we usea (n-+p) - point quadrature formula and we select as collo-
cation points t_the zeros of x (x). We obtain by this process from the
integral equation a linear system of (2n+4-p) equations with (2n-+p-m)
unknowns. To these equations the N (N = 0 or 1) equations (4. 3) may be
also added. It is evident that, in order to obtain a number of equations
equal to, or greater than, the unknowns, solely for x>0, one and only
one preassigned node is permitted. '

It is obvious that the size of the final system of linear equations
obtained by the previous process is approximately twice the size of the
system obtained by the method described in section 4. The increase of
the size of the system is not followed by any increase in the degree of
accuracy. But, on the other hand, it is simpler to select as collocation
points the roots of the polynomials x (x) and zru+p(x), instead of the
roots of F (x). Moreover, the present method has the advantage to be
applicable for any functions a(x) and b (x).

Consider now case where a; or lij are complex :

a; = a} +ia (6. 1)

144 1982
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B, = B+ ify (5. 2)

In this case the polynomials =z (x), orthogonal with respect to W(x)
and the function F(x), as it has already been proved, do not have real
roots in the interval (—1, 1). It is perhaps preferable for this case to
consider a non - Gaussian quadrature formula. In this way, we are free
to select arbitrarily the nodes x,((j=1,2,... n), where we interpolate
@ (x). If = (x) is expressed by (2. 4) and by using the same procedure as
above (relations (2.5) to (2.8), see also [6]), we arrive at the same qua-
drature formula, as the one defined by (2.9) to (2.13). In this case ), (z)
is not an a priori known function and it does not satisfy a recurrence
formula, but it is possible to calculate it. The error of this integration
formula is:

E,imq; =0 foreveryg(x)€EZP .. .,

Intuitively, we select as a the polynomial, which is orthogonal
with respect to the weight function :

W, (%) = (1—3) % (143 5 Q (x). . 3)

The methods described in this paper may be applied also to a
system of generalized - Cauchy singular integral equations, where a and
ﬁj are not given by (1.4) and (l.D), but they are, in general, the roots
of a transcendental equation. Such systems of integral equations appear,
for example, in problems of the theory of elasticity, where angular
points exist. Thus, we arrive at such systems of gemneralized - Cauchy
integral equations in the cases of branched cracks, of contact problems
with friction between bodies presenting angular points, of composite
dissimilar materials meeting at angles [24] and so on.

Finally, the demonstration of the convergence of the method may
be found in a recent paper by the authors [16].

HEBRLAHWILS

‘H magoloa goyacia dvagégetar elg v dvdatvEwy véag uedédov dotdun-
uxils dmlioeng ovomudroy dopdoguv Groxkngotindy EEedoswy ue uerafin-

to0s ouvreheotas xal pyadinilv cuvdernowy Bdoovs. Al Bdoeic Tiic yonotpuomolon-
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uévig pedodoroyiag Erédnoav 1dn ano tod 1976 ¢ig 10 *Eoyastijoiov *Avroyiig
Yhudv tod E.M.IIL. zai épnoudednoav ue Emrvyiav eig mv énllvowy peyding
nowihiag ovvogLaxdv meofAnudtav tiig mnédov hactindrnroc.

To neog Exidvowy ovotnuo Wiondopwv 6AoxAnomtindy Eledoewy elval yevi-
rdtatov, evoloxel O& Bpaguoyny eig cvyxexouéva meofAiuata tiic modtewe, Gmwg
7,2 10 ®EOPBAnua tijg draxhadilopévig pwyuiic, 1) T0 medBAnua tiig Emagpiic dvo
i| TeoLeo0TEQLY cwudtmy petafy t@v 6moiwv veiotavrar duvdueg tofig 1) To
mooPfMjuata tig Emmédov ‘Elactuxdinrog, dgoodvia owuata, OV 6moimv 1O
oUvogov gival onuetaxds dGovveyés, mapovotdler dmradl ywviaxe omuelo Gov-
veyetag %. d.

At mv athvowy tol ovyxexowévov ocvotiuatog EEl6doE@Y LOQQPOVETAL
nodtov xotdhinlog xavov aorduntixiig 6AoxAnoncems tdv Wdopdopwy xata Cau-
chy 6hoxhnomudrov tod meofAquatog, S T0 Tvyov cvotnua dedoywviov Tolvw-
viuov I, . *EfevdCetar 8v ovveyxele 1 woopn tdv mootewvouévmv timmv da v
eWduv meolmrwoy xata v 6moiay g cvotnua dpdoywviov mohvwvinwv Aap-
Bdvovrar Tt molvwvuua Jacobi PP Af moonvntovsal Gvolvural Exgodoelg
oyydvouy  yevixilc dqapuoyic xal ovumeothaufdvovy (g eidikdg meQuTTM-
oelg tovg xavovag dotdumtixilc Ghoxhnodoesws Gauss, Radau xai Labatto -
Jacobi.

’Ev ovveyela edolorovrar ail giCat {Xj};:l v wohvwviuwy Jacobi da
wyadinde tinae  tdv detxtdv tovg | oxal v. Al ofCal adtal yonotwomototvrar Mg
onueia Epaopoyiic (nodes) v tinwv dorduntxilg 6hoxknodoews Gauss - Jacobi.
*Anodetnvietar 6t i offat adral elvat g’ £vog uev Gvalvtinal cuvagrtioelg TV
dett@v 1, v, ag’ Eréoov 8¢ xelvran 8vrog radwoiouévov tetpaywvixol ywoiov, Tob
6molov tmoloyilovrial al yswueroural diactdostg.

Kat® arolovdiav mooodiopiletar 10 xardAinhov clormua onueiov tafrdé-
otag, S ta 6moia elval duvary) 1 dpaguoyl) tig uedddov aotduntixils dmhvoews
idioudopov 6roxinowtindv éEicwoewy xara Gauss - Jacobi.

Aw tiig eloaymyiic tiig dvvolag @V wyadmdy onusiwv tabdesiag Emitvy-
ydveral aodunminy énthvoig 1@V ovotnudtov dopdogwy dhoxkngwtirdv  EEom-
cewv O Bpaouoyiistdv timmv dotduntiniis 6hoxinodosms elg onuela mov ®elvrat
gnt0c tob Staotinarog 6hoxinodeews. Tolovtotrednwg, radictavral aroBéore-
oot of dorduntizol Hmoloyiopol eic megloyag 8Eatoetinil ouyreviodoewg TdoEWY,
Gmov %ol dmotteitar die Tode Vmohoylowovg ueydhn muxvétng onuslwv  GhoxAn-

0MOEMS.
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Téhog, yivetar pekétn tiig cvyxhiocwg tdv mootewvopévav tinwy dotdunrixdig
Shoxdnowoeme xal, xat’ dxolovdiav, d° amodeitemg Gt To BgLov Tilg cuvaoToENS
tetvel elg 10 undév, nadag 6 dotduog tdv onueiwv 6Aoxhnodoemg avEdvet.

Ta mheovertipata tig mootewvopévne aouduntnilc nedédov Emhioews ov-
omudrov WOopdegov 6hoxknowtindv EElcdoswy 8v ovyxglost pé tag 10n vmae-
yovoag mEooeyyLoTIXdS HeVddovg Bmlioeme T@V Wdiwv cvotnudTwy elval onuavrikd.
Adt0 Gmodetnvietan dAAmote xal Gmd O yeyovog Ot 1 uédodog avty telver va
gxtomion tag mpoimapyovoag uedodovg eig diedviy xhilnaxa.

Meoizd éx t@v mheovertnudrov mod duqaviter 7 énilvog tol dvagegopé-
vou eig 10 dodoov cvotiuatog idoudopwv Ghoxhnowtindv EElcdoswv elvar Ta
anrohovda :

1) "Emrvyydveral meglopiopdg tob godvov, 6 omotog drarteitar S thyv émi-
Auoty cuyxexouévmy cuvoplox®v meofAnudrwy tijg Aactikdtntog Gmd TOV MAex-
TE0VIXOV VrohoyloTiv.

2) Tevixevovrar xai yivovrae duéows épaoudaipor ai uédodor aorduntinig
6hoxdnowoewg natd Gauss, Lobatto xai Radau - Jacobi.

3) Aldetar 1} duvarding va xadogiadotv ue anoifeav ol ovviedeotai ovy-
XEVIOWOEMS TdoEMV £ig TO onuelov darhaddoeme Sraddouévav cwypdv. Eidinde
10 medPAnua tolto eival duayegts xal dév depiotatar uéyoL oUEQOY IxavomoLy)-

T Gordunmring 1) weapating Adotg Tov.
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