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ABSTRACT

A general method to construct path-independent integrals (P.I.1.) for the
case of a plane body weakened by a number of collinear cracks is presented in
this communication. The path-independent integrals are classified in three clas-
ses, which satisfy some well-defined restrictions. Using this classification a table
is prepared containing a number of path-independent integrals related to the
solution of the elastic problem of a single crack. The extension of these results
to the case of several collinear cracks, or an infinite number of periodic cracks
is also indicated. Besides, it is further indicated how to proceed in the case of
a crack between dissimilar media and in the case of a star shaped symmetric
crack. It was also derived that the form of the proposed P.I.I. integrals is more
simple than the already known integrals. This fact will facilitate their use in
conjunction with finite element or experimental methods

A number of illustrative examples is also presented.

INTRODUCTION

The concept of path-independent integrals (P.I.1.) was proved
[1-8] to be an efficient tool for the evaluation of stress-intensity factors
(S. I. Fs) associated with notches and cracks. The method based on these

integrals bypassed a detailed solution of the corresponding boundary -
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value problem and yielded directly the value of the respective S.I.F.
Path-independent integrals were also used in many circumstances in
connection with the finite-element method (see for example ref. [4]) for
the calculation of S.I.Fs. The same integrals were also used for a
closed-form calculation of S.1.Fs (2,5, 7,8,12]. This was done by shifting
the path of integration to two «convenient» positions, e.g. to infinity
and along the lips of the crack. By equating the values of the two
integrals the value of the respective S.I.F. may be readily derived
since the integral was path-independent. The analytic calculation of
these integrals was obtained by using Cauchy’s residue theorem.

Generally for the establishment of the path-independence of an
integral the Green-Gauss theorem and the Cauchy equation of equilibrium
(or motion) was used. But, in the case of plane problems, it is also pos-
sible to proceed by using Muskhelishvili’s complex potentials together
with the Cauchy theorem concerning analytic functions. A first tentative
for the demonstration of some complex P.I.I. is made recently [8].

In the present paper a general procedure for the construction of
path-independent integrals in plane elasticity is given. Another general-
ization is that we are concerned with the problem of a finite or infinite
plate with not only a single crack but a finite number of collinear cracks.

Using this general formulation the integrands of the P.I.I. are
classified into three classes. Each class satisfies some well - defined
restriction. In this way it is possible to comstruct an important number
of path-independent integrals. However, we limited ourselves in this
paper to give the path-independent integrals valued only for the case
of a single crack. In the table containing the above path-independent
integrals we give ‘also their values, if the path is shrunk to the crack.
The extension of these results to the case of several collinear cracks is
also indicated.

The above results are generalized for the case of a crack between
dissimilar media, as well as either for the case of a star-shaped sym-
metric crack, or for the case of an infinite row of collinear cracks.

It is also interesting to note that the proposed integrals have the
advantage when compared to the already known integrals that their
form is simpler and, therefore, more suited for a combined use with the
finite-element method or other experimental methods.



ZYNEAPIA THZX 16 OKTQBPIOY 1980 443
2. DEFINITION OF THE PROBLEM

We suppose that the crack, or cracks, have their axis coinciding
with the Ox-axis of the complex z-plane and they are defined by the

intervals (agk—, asx), k=1,2, ..., n with:
—oo<a1<32< ----- <a2n—]<a2n<w

Following Muskhelishvili [9] we can define the holomorphic function
o (z) by :

o (z) = 2¢°(z) + ¥ (2) (1)
from which we derive :
Oyy — 10xy = @ (2z) + Q(2) + (z —2z) D'(2) (2)
where :
D(z) = ¢'(z), ° V(z) = v(z) (3a)
Q(z) = 0'(z) = P(2) + 2®(z) + ¥ (2) (3b)

We suppose further that a force (X,Y) acts at the point C(c,0) of
the upper crack lip of any crack (ask—i, asc). On the other hand, let Nj,
N, be the principal stresses at infinity and a the angle subtended by the
direction of N; and the Ox-axis. Then, according to the refs. [9] and [13]
we have the following asymptotic behavior:

(1) At the left crack tip, am (m = 2j—1):

Sl < @il —217 (Ri,, — iKus, ) [27(z—am)]

2 1 - 4)
Q(Z) ~ — ?i(K'm_*—iK”m) [2n(z—am)] %

(ii) At the right crack tip, a; (I = 2k):
O(z) ~ Q(z) ~ % (i, — iKu, ) [20la—aa)] "
. 1 - (5)
Q(z) ~ 5 (Ki, +iKu,) [2n(z—aw)]

where in both cases (K —iKyu, ) is the complex S.I.F. of the cor-
responding m-tip of the crack considered.
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(ii1) At the point C:

X41Y
— for I 0
Blg) ~ | Talu—g) T WD (6a)
0 for Imz<0
0 for Imz>0
Qz) ~ i 6b
= X+i for Imz<0 o)
2n(z —c)
X 41y
0 — for I 0
Q(z)NI 21 (z —c) or Imz> (6c)
¢ 0 for Imz<0
(iv) At infinity :
(Ny+Np)  X+i¥ 1
*e 4 (I 4% z (7a)
il 1 g oS08 IE) 1
Now, let /x (k=1,2, ..., n) represent a smooth Jordan path sur-

rounding only the crack (ask—i, asc) in the counterclockwise sense (Fig. 1),
all other cracks lying outside of /.. The curves /. shall not mutually
intersect. We denote by L the union of all these paths:

L=UkLk (8)
k=1

The Jordan path % taken in the counterclockwise sense and
containing all the cracks in its interior, may be considered as a degener-
ate case of the path L. We denote by gw the infinite path, which
may be considered as a particular case of the path Q

By shrinking the path I, in such a way to coincide everywhere
with the lips of the cracks except on the tips, where the path is com-
posed of circles of radius ¢ > 0 centered at a, (Fig. 2), we obtain another
degenerate path, the path Lo = U Ii. It is to be noted that, if a force

k=1

acts at the point C then the path L, contains a semi-circular identation
(Fig. 2).
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3. THE PATH -INDEPENDENT INTEGRALS

It is well known that all the complex stress functions @ (z), ¥ (z),
Q(z) used in elasticity are sectionally holomorphic functions [we recall
that «sectionally holomorphic» is a function, which is holomorphic in each
region not containing points of the cracks (asx—1, as) (k =1, 2, ..., n),
but continuous on (asc—_;, ax) from the left and from the right with the
exception of the points as—; and as, where it satisfies conditions like
relations (3) and (4) above].

We consider now any function F of z and of ®(z), ¥(z) and Q(z),
which is holomorphic and has no poles in the interior of the region
enclosed by the paths L, and <. By using Cauchy’s theorem of complex

analysis we may obtain:

fF[z, D(z), ¥(z), Qz)] dz = fF [z, D(z), ¥(z), Q(z)] dz (9)
1y

&

The same relation is valid, if I, is replaced by Lg and 55 by QZOO.

This result, which is not surprising, gives the more general form
of a path-independent integral. But, it is to be noted that the term
P.1.1. has been attributed to integrals which satisfy a relation analo-
gous to Eq. (9), and in addition the integral on L, can be evaluated ana-
lytically. This analytical expression is a function of the stress-intensity
factor. In the particular case where a closed form calculation of the
S.I.F. is possible the integral on I, may also be evaluated by using the
asymptotic expansion of the integrand at infinity and the residue theo-
rem. Consequently, only a limited number of functions F satisfy the
above requirement.

Another class of path-independent integrals may be obtained, if the
real or the imaginary part of a relation of the form (9) is taken.

It follows, therefore, that there are three classes (f, (f, and O,
of admissible functions.

Class (f, contains the holomorphic functions in the entire complex
plane with at least one simple pole at one tip of one of the cracks or by
sectionally holomorphic functions with known discontinuity across the
cracks and possessing also at least one simple pole at one tip of one of

the cracks.
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Class (f, contains the holomorphic functions, which have either
pure real, or pure imaginary values at the crack lips and in addition
they possess at least one simple pole at one tip of one of the cracks.
If F is real we take the imaginary part of relation (9) and vice-versa.
In this class of functions the corresponding integral along the upper or

Fig. 8.

lower lip of any crack is zero. Thus, the path I, may be replaced by the
open path y and the path §£ by the open path I' (Fig. 3). These paths
do not intersect one another and terminate at the same crack.

Another restruction is that these paths must not contain in their
interior any other crack. Indeed, if:

C=TUL} U (—v)ULs

where Lbg, Lyc are segments of the upper and lower edges of one of
the cracks respectively (the positive sense being indicated in Fig. 3),
then F is holomorphic inside and on C, and besides, it is real or pure
imaginary on Ljr and Lrs. Thus taking into consideration Cauchy’s
residue theorem we have respectively :

ImfF [z, ®(z), ¥(z), Qz)]dz = ImfF [z, ®(z), ¥(z), Q(z)] dz (10)
TURL UL . Y
of
RefF [z, D(z), ¥(z), Qz)] dz = RefF [z, D(2), ¥(2), Qz)] dz (11)
PULE Ul ¥



448 IIPAKTIKA THE AKAAHMIAE AGHNQN

But, as F in relation (10) is reallalong the crack line and in rela-
tion (11) it is pure imaginary the integrals along L3z and Lpe vanish
and relations (10) and (11) take the form:

Im l Im
or fF[z, D(z), Y(z), Qz)]dz § = or fF[z, D(z), ¥(z), Qz)] dz (13)
Re I P Re |y

Class (f, contains the holomorphic functions, whose sum of dif-
ference at the upper and the lower edge of the crack is a pure real or a
pure imaginary quantity.

The functions of classes f Gf, (f, may possess simple poles at
other isolated points than the tips of the cracks. In this case a circular
identation must be added to the path % or 5&0 to avoid the pole.

The integrals of the elements of the set (f ~Gf, and ¢f, along L
(or ') constitute the set &, £, and &P, respectively of the path-inde-
pendent integral.

The first class Gf, is a combination of the following functions:

= P Yol (14)
fa(e) = - fi(2) = () + Qo) (15)

The second class (f, is a combination of the functions:

SV E = vl £ e 3 ) (16)
A TR S R —— 17)
() = - fy(2) = D (2) + () = 20(2) + 20 () + V() (18)
fole) = < fule) = Qo) — @ (2) = 20'(a) + ¥ (o) (19)
f,(2) = f5(z) — fi(2) = 4D (2) Q(2) (20)
fg(z) = @ (2) + iQ(z) (21)

fo(z) = @ (2) —i1Q(2) (22)
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Indeed, if the crack edges are unloaded we have from rela-
tion (2) that:
@ (x) + x@’(x) + v (x) = 0 (23)

®(x) + @(x) + xP(x) + ¥(x) = 0 (24)
for xE (agk_,, azk), k= 1,2,3, .o

Using the last relations we obtain:

f(x) = ¢(x) — @ (x) X € (agk—1, ) (25)
f(x) = — [0(x) + ¢ (x)] X € (age—, az) (26)
f5(x) = O(x) — P(x) X € (ask—1, a%) (27)
fo(x) = — [@(x) + 2()] X € (as-1, an) (28)
fr(x) = — 4P (x) P(x) X € (agk—1, asx) (29)
B = fo ) fo() + 25 x € (s, an) (30)
B = f00 00 — 8 e ey, aa) (31)

It follows that fg, f5, fi, fa have pure imaginary values and f,, fg, f,
have pure real values for x € (as—1, as).

The third class (f, contains a combination of the following func-

tions :
fio,u1(z) = [BP(z) + ¥Q (2) I + [BP (2) + vQ (1) |° (32)
fi5,15(2) = [BP (2) +vQ(2)]* + [BD (2) + vQ (2) ] (33)
fi,15(2) = [BP (2) + v@ () ]° + [BQ (2) = vQ(2)]* (34)

where 8, y are complex numbers.

Using the above ideas it is easy to comnstruct a number of path-
independent integrals. For reasons of simplicity we consider here only
the case of a single crack of length 2a instead of an array of collinear
parallel cracks. The path-independent integrals corresponding to such a
case are presented in the table I. In the same table we give also the
ITAA 1980
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TABLE I
Number Class Explicit form of e calaion 3o
of s the path independent Path the circular j_dentf‘:tionng
Pl Pl integral surrounding the crack tips
(1) (2) (3) (4) (5)
T 2 Ry 25 - 2
1 ?1 Jf2(z)dz L 1(}\11 lKILI) l(KIZ J_KIIZ)
)
2 2,4 3 2 .
T, (}11 J(z -a“) 'ifz(z)dz L 1(2) [(KI1_1KII1)+
r}' +(K12-:LKII2) ]
P % )" 5 i
3 1 z+a 2i ( ) /an
Kz—a) £,(z)8z KI2 lKII2
e (; T . e
4 L [(z+a)f2(z)dz Zla(KI J'KII)
2 2 2
. . 2
Ty T J(z—c)fg(z)dz L ol
+ @) (K ~iKpy )
T = L L[ 4 -
6 (T‘l I(z-—c) (zz—az) lﬁfz(z)dz Na [ @) (Klz J'KIIZ)
v =(atc) (Kry-iKriy)l
5 4 zta)? % 1\F (a-c) (K; ~iK ;)
J(z-c)<ﬁ> fz(z)dz a I, I,
T 1' = I i | -3
8 I(z-a) 32 (2)az 1\j; o )
L f L= ’
& (}1‘ K@)z 1 g = z p 24v/ma Ky -1y )
z-a zra 2 2
T T £.(z) i 30 ]
10 1 1 Sl L& = )+
J'ﬁzz—az):; 5 dz 2a\a K12 1K112
+i (KI,I—I'KII1) ]
T11 qﬁ ff(z) L LK =i )
J az Ty, Ay
’3! (z—a)2 2 2
T 2 = ,
12 1 J f; ‘Z; . & 2 (Kp,ikrr,) %
a i
o ,}a (z"-a") o ‘(KI1—i.KII1 )&
L 1 J Gea) 2o 1/4a2[ (a-c) (K ~iKyp) %+
)’ | *{arc) (Kpq~iKr1q)? ]
5 L kg -Kf
14 T Imjfg(z)dz { &
K
T 12
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Table I (continued)

(1) (2) (3) (4) (5)
2 D
¥ L '(KIIZ"KIn)
Tis 5 Im{ (z)dz 4 2
=
e T RleS (2)f (2)dz {L B
i -1&21%12
N ’}2' 1me7 (z)dz {L -3, +K%I1 )+ (K481 ,)
2
- r K12+K112
T Ref (z)dz E 20 2
18 2 {r 7(K11—KII1) z(KIz‘KIIz)
= Z(KI -KIIZ)
T T R j (2)a ¢
19 A e| £, (z)dz {L —%(KI1+KII1) +5 (KI2+K112)
T LRy +K11,) 2
T20 ’3; Imj<z+a) £ (2)az 2( el
LorT 21(I /ra
T (}‘ £, (2)d ;
21 5 ImJ(Z-a) (z)dz r KI o
T, r}jz ImJ( 2_2)7 f (@)dz {L M—‘(KI1+K12
r K12 a
T23 '—fz ReJ(Z+a) (z)dz Lol -ZKII Jra
2
.k =
T, q"z Re[(z a) " r an/—Zn
rJ: 2 L - (Kygy +K112)\]§
Tos 2 ReJ( -a) f (z)dz n
g —KIIZ ’a-
2
Tyg q:z ImJ(f (z)/(z-a) } 23z T enett 4KI
L (—KI +K12)/a
m| (£, (2)/ (P-a)Va { d
L r}; mJ 2/ : r K12/ a
: ’Tz ImJ{f4(z)/(z—a)} az e
{L (K%I'] —K%Iz) /a2
T -
29 '}; ImJ{f (2)/(z2%-a) Y24z 4

3 .2
—KII2/ -
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Table I (continued)

(1) (2) (3) (4) (5)
£ (=) Y
T30 (‘FZ ImJ : <z_+_a_) LierT 4K_ vVan
z-a Z=a 12
T34 r}; Ime3(z) (z—a)—3/2dz i ZKI V2n
2
T (K, +KT )/a\[E
22 -3/2 I Y
T32 (}; Ime3(z) (z7-a%) dz {r‘ KI e
2
£, (z) Y
4 2+
By T, ReJ - (—z_—:) LorT -4K112/a—n
Tay i 78 Hle 4(2) (z-a) 22 r —2/?11(112
7o) L § ;_(KII Ry )\E
T i 7 Reff‘l(z) (z°-a") "/ “az { i
P = n/axnz/a
2
n, T, o J (0 2 ()t {L (a=c)KZ,+ (a+c) K,
r (a—c)K%2
. 2 2
Ty 3:‘2 ImJ (2-c) £ (z)dz {L {fo-ajif, +(aeiigy, )
i -(a-c)lL_zLI
2
T3g 3‘2 Rej (z-c) f5 (z) f6 (z)dz {L = (a+c)KI1KII1+(a—c)K12K112}
(F T (a—c) K1 K119
: . ImJ (z-c) £, (2)dz & (atc) (K, +Kgy, )+ (ac) (KE,+KEry)
(1" (a-c) (K%zﬂ(%lz)
2
B ’3’2 ReJ(z—c)fB(z)dz -1 (ae) (g, Kz %
2
. ‘3, {: +(a-c) (KIZ—KIIZ) ] 3
” 2 -1/2(a-c) (K12—K112)2
Ref (z—c)fg(z)dz L 1/2[ (a+c) (K7q+K11q) “+
(a-c) (K1p+K1I3)2]
T42 (}; - z T 1/2(a-c) (K12+K112)
I”'Kﬁ) (z=c) £ (z)dz Lerrl 2(a—c)KIZ/rE
Ty3 f}; ImJ(z—a) _!i(z-c)fS(z)dz P (a-c)/ma K,
& T \‘E [ (@)K, -(atc)K. ]
T ‘}'2' ImJ(zz—az) % (z-0) £ (2)dz {F P 5 T

n
LJE (a-C)KIZ
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Table I (continued)

L) (2) (3) (4) (5)
B g ReJ(z+a> (z=c) £ (2)dz LorrT -erE(a—c)tz
B ':E ReJ (z-a) !i(z-c)f (z)dz r —(a—c)xnz/z—n
L { (a+c) -(a-c) l\]—i
Ty7 ITZ ReJ( -a ) 52(z--c f (z)dz { KII1 = KHZ 2
;o -(a—c)KII 5
2
T48 3; ImJ{f (z)/(z-a)} (z—c)dz Lorr 4(a—c)K§2
L a+_gK2 Ui a-gKZ
Tyo Tz Im|{fy (2)/ (22-a?) 1% (z-c)az { a?'l,
. a-c 2
e
T ¥ ImJ{f (2)/(z-a)}2(z-c)dz | Lorr -4(a—c)K2
50 2 4 II
2 2 2
L ~{ (atc) +(a-c) }/a
Ty A ImJ{f4(z)/(z -a%) 1iz-c)dg { ?11 2 e
T -(a—c)KIIZ/a
f3‘2) z+a)?
Tg, ’fz Imf el c)( ) dz L oer'R 4(a—c)K12/a_n
. T Ime3 2) (z0) (z-a) %3z | 1 2(ac)K_ V2m
B
L {-(atc)K, +(a—c) }/aslE
T 4 Ime3(z) (z-¢) (z%-a?) >/ %4 { o " %a
T a—c , Jn
¥ = Kr)a
B 2 Rle o= ;’:) az LorrT -4 (a—c)KIIZ/a_n
. ‘}; Rle (2) (z-¢) (z-a) /?q F —2./£(a—cmn2
1 n
L —[ (atc) -(a-c) =
-3/24) Kom Kyr ]\J—
. 5 Reff4(z) (z-0) (z%-a?) {r " sl 2a
al\a KIIz
T58 / F3 Im[f1 (z)dz L -Im{ (B +Y )[-(KI1-iKII1)2+
+(Kr,—iK1T)) 21}
Ty f}’ Re|f,, (z)dz L 2472) [= (Rp—iKr14) 2
3 1 Re{ (B“+Y?) [~ (K11-1K114

+(Kp,~iKrrp) 21}
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Table I (continued)

)

(2) (3) 4) (5)

60

61

62

63

R

(£ a2 L e

~[ @K, - (VK 1%}
2 2
et (2)dz L el BRKL =5 B0y P

2!

- (BHK, -1 (B-VK 1%
—2 o
Ime14 (z)dz o Im{[ (B+Y)KI1 -i (B-Y)KIIZ]Z—

-

~LEDE, +B-DK 13
2 2

=

Rejf15(z)dz L -Re{t(a-?)KI1—i(e+?)KII112-

- e 2
-[(B'Y)sz"'l(B*'Y)KIxz] }

values of each integral along the circular identations centered at a and
—a, if the path is shrunk to the crack. This evaluation is made by
using Cauchy’s residue theorem.

4. DISCUSSION

From Table I, one can observe that the integrands of the integrals
Ts to T;, T3 and Ty to T, may be obtained respectively from the
integrands of the integrals T, to T3, Ty, Ty to Ts by a multiplica-
tion of the last integrand by the factor (z—-c). Another number of
integrands may be obtained by a multiplication by (z—a), (z+ a),
(z—a)'t, (z—|—a)1/2 etc. Consequently it is obvious that table I is not
complete and we can comstruct a great number of other elements by
multiplying the integrands of the integrals presented in this table by a
factor, which does not alter the nature of the integrand.

Thus, the integrands of class (f, may be multiplied by any func-
tion, holomorphic. or sectionaly holomorphic, but continuous on (—a, a)
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(i. e possessing branch points at the crack tips), which has real values in
the interval (—a,a). In contrast the integrands of classes Gf and (f,
may be multiplied only by holomorphic functions, which may take any
value in the interval (—a, a). It should be noted that, if a closed form
solution is desired the integrand must not grow faster than 1/z at
infinity,

In our previous paper [10] we have demonstrated that the complex
potentials ®,%,¢p, and v along a line L, are given by:

o) = ¢'), (t€L) (85)
W(t) = { 0 (t) — ioe (t) — q'(t) } % % —1tq”(t), (t€L) (36)
o) = q(), (tEL) (87)
v = [lo ) —in@lde ~ T~ L) 69

where :

i) on, o¢ are respectively the components of normal and tangential
stresses along L.

ii) the last integral is taken along 1. from an arbitrary point
to€ I, and

iii) q(t), q’(t) are defined by :

q(t)={f[on(rwriot(r)]dr—zu[u(t)+iv(t)]}/<u+1) (teL) (39)

a® = {ou() i) — 20(25 +i20) /e 1) (tel) (1)
with [9] :
3 —4v for plane strain
e ?_—,_Vv for plane stresses (41)

and v Poisson’s ratio.

If the last relations are substituted in the integrands of Table I,
we obtain new expressions of the path-independent integrals in function
of the normal and tangential stresses and also of the displacements along
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the line of the path considered. It is obvious that the expressions
obtained are more simple and more convenient, when compared to the
expressions of the integrands of the classical path independent integrals
J, L, M. Thus, a number of the proposed integrals are more suited for
an application in conjuction with finite element method or classical
experimental (i. e caustics, photoelasticity etc).

Another observation is that some of the prososed integrals are
better suited for the one or the other loading condition. Thus, the
integrands containing a factor (z—c) are more suited for cracks loaded
by a concentrated force at the point C.

Although this statement is not immediately obvious, some of the
prososed integrals coincide with the well known J, L, M integrals.
Indeed, the integral Ty, taking also into consideration relation (20) and
(3b), may be written in the form:

Ty = Im [4 j [D%(z) + 20"(z) D(z) - V(2) D(z)] dz} (42)
r
After an integration by parts we obtain :

By = Im[‘lf[lp(z)‘"zq"(z)]@(z)dz+4[Z(I)2(z)]g] =

=Im [Qf[fb(z) +-2W(z)] D(z) dz + 2 [zqﬂ(z)]‘;] (43)

But the last expression of Ty coincides [6] with the J-integral divided
by Young’s modulus E.

Let now consider the integral T'3; which, by taking into consid-
eration relations (20) and (3b), may be written as:

Ty =Im [ 4][?@2(2) + 220°(z) D(z) + z®(z) V(z)] dz] (44)

r

or, after an integration by barts, it is valid that :
Ra=1m [4fz®(z) WY(z)dz + 2 [22(172(2)]%} (45)
r

And the last expression of T'y; coincides [6] with M-integral divided by E.
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5. APPLICATIONS TO THEORETICAL PROBLEMS

In this section the above developed theory was applied to some
particular examples in order to show the extreme shortness of the
calculations, as well as the possibility to construct a large number of
path independent integrals. The examples considered concern a single
crack of lenght 2a. In particular we study:

i) A crack whose upper edge is loaded by one compressive con-
centratet load P acting at a distance c from the midpoint of the crack.

ii) A crack loaded at the point C by two opposite compressive
concentrated loads of intensity P.

iii) A crack, whose upper edge is loaded at the origin by a couple M_

iv) A crack loaded at its opposite lips by the same surface tractions:

p(x) = Oxx (x)"ioxy(x)

5.1. A crack whose one lip is submitted to a concentrated
compressive load P.

For the solution of this probem it is possible to use a number of
P.1.1. given in table I or a number of integrals which do not figure in
this table. Thus we can use the integrals T, T;, Ta, Ty or the
following ones :

To— ]rnf(z —¢) (z 4 a) f(z) dz (46)
Lorl"

Tos = Imf(z+ a) (z —c) fi(z) dz (47)
Lorl

Tes = Imf(z ~+a)(z—c) f?(z) dz (48)
LorT

Il — Ref(z + a) (z—c) fi(z)dz (49)

Lorl"

The integrals T3, T, give the complex stress intensity factor, the
integrals Ty, Te the crack opening S.1.F. (Ki), whereas the integrals
Te, Tes the shear S.I.F. (Ki,) at the right crack-tip. Finally, the
integrals Tg and T's; give a combination of Ki, and Ky.
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We consider the integral I's. By shrinking the contour into the
crack houndary, as shown in Fig. 2, we can evaluate the integral, if the
asymptotic expansions (4) to (6) and Cauchy’s residue treorem are taken
into conideration.

Thus, the integral along L, becomes (see also table I)

e s
T, = 2i (K1, — iKuy,) Van —iP( a+°) ; (50)

Y

Because of relations (7) the integral along ggw gives :

f v—1 "
7y = if -
and consequently :
P (a—l—c)l/2 (n—l) 3
[ Gii= — : Ky =— — 52
I 2Vra a—¢ ! w1 2Vaa e

The last results are identical to those obtained by the closed-form
solution of the problem. It is easy to obtain the same results by using
the other proposed P.1.Is and the asymptotic expansions (4) to (7).

5.2. A crack with opposite compressive concentrated loads P.

For the solution of this problem we can use anyone of the integrals
T3, T5, T1e, Tao, Ts6, Ta7, Tes and Teg, Ter
We consider, for example, the integral Tg A simple residue cal-

culation, using asymptotics expressions (6), (7), gives :

2
%(c——a)—KI(a—}—c)a=0 (53)
and consequently :
1
/
KI:P(_I_ a+C>2 (54)
ma a—¢

‘T'he same result may also be obtained by using the following
integrals which do not appear in table I:

Tes = Ref(z +a) (z —c) fi(z) dz (55)

e, = Ref(z “+a) (z—c) f;(2) dz (56)
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5.3. A crack loaded with a couple M applied at the origin.

Problems with couples applied at any point C of the plane domain
may be solved by considering the P.I.I. integral T Similarly, we can
use the integrals arising from a multiplication of the integrand of the
previous integrals T, T', Tao, Tes, Tes to Te; by (z —c).

In our particular problem the couple M is applied at the origin
(c =0) and thus the asymptotic behavior of the complex potentials at
this point and at infinity is:

iM
®(2) ~ 35— (57)
iM
Tl 5 (58)
Thus, we have
at g . 1M
T12 = [&[ﬂa [(KIZ IKUZ) T (KII_IKHI)] i “”a—‘] 0 (59)
But
K;, = —Ki, and Ky, = Ky, = 0 (60)
and consequently (59) gives:
M
&, e ol 61
" 2a Vro -

This result coincides with the theoretical result obtained by Erdogan [13].

It is worthwhile noting that this is the first application of a path-
independent integral for a closed form calculation of the stress intensity
factor a cracked body loaded by a couple.

5.4. A crack loaded by an arbitrary surface traction p (x).

The integral Ty is more convenient for the calculation of the
complex stress intensity factor. In this case, the integral along the edges
of the crack is different from zero. Thus the integral along Lg gives:

Ty= 2i(Ki,— iKis,) Yam—i f ( a+“> [0 (x)+ Q1 (x) + O (x) +Q (x)]dx (62)

=@
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But taking into consideration relation (2) and the boundary, con-
ditions, we have:

®F(x) + Q7 (x) = p(x)

(63)
™ (x) + Q¥ (x) = p(x)
Consequently, from relation (52) we find:
2i (K1, — iK1r) Vam — 21f( atpe ) p(x)dx = 0 (64)

~—~a

This result is derived by taking into consideration that the integral
along ggw is zero. Then, it follows that :

a

NN f ( s ab. )11/:(x) e (65)

Vaa a—Xx

=

If a separate calculation of the opening- mode stress intensity
factor Ki, and the shear stress intensity factor Ky, is desired, the
integrals Ty and T,; may be used.

Let as use the integral T',. Taking into consideration that in this
case, the right hand side of relation (24) is equal to p(x), we have:

fs(x) = p(x) + @(x) — P(x) xE(—a,a) (66)
Thus, by taking into consideration that the integral along is zero,
we obtain :
latx\h
Im[?iK;, V:Ta—2if<:_z>p(x)dx]=o (67)
or °
g =00 f(aﬂ)‘/a v -
n S o T ) Pr(x)dx

—a

where p;(x) = Rep (x).
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6. FURTHER APPLICATIONS TO COMPLICATED PROBLEMS

6.1. A crack between dissimilar media.

We consider now two dissimilar elastic half-planes S; and S, bonded
together along the Ox-axis except over the interval (—a, a) where there
is a flat-line crack. We suppose that the upper half-plane S, is charac-
terized by the elastic coefficients p; and %; and the lower half-plane S,
by the elastic coefficients p, and %, and, further, that both lips of the
single crack on y =0, [x|< a are subject to the same load (concentrated
force, couple, or distributed surface tractions). This problem was studied
previously several times in papers by Rice and Sih, England, Erdogan,
Willis, Theocaris etc. (An extensive bibliography on this subject is
given in the paper by Theocaris [11]).

From these investigations or directly from the analysis it follows
D, (z) + Q4 (z) and @, (z) + Q. (z) are sectionally holomorphic functions and
continuous along the bonded interface. Thus, for the solution of such
problems the functions f;(z) and f;(z) = @;(z) + Q; (z) = D, (2) + Qs (2)
may be used. In particular, the function f,(z) presents the behavior
for |x|<a:

f3 (x) + afz (x) = vp(x) (69)

where the parameters o and y stand for:

— + Ue % o | (e + 1) g 4 (1 4 1) pp (70)
Mg 1 Mg %g (M1 + ueng) (ue + 1y %)

and p(x) is the given surface tractions (p(x) is a generalized function).
Moreover, fy(z) presents in the vicinity of the crack tips the asymptotic
behavior:

1fy—ip

fa(z) ~ cy(z—a)” for z—a

f2(z) ~ Cz(z—f‘a)_l/2+it3 for z—»>—a
B= o1 (72)
= 5 lna

where ¢; and ¢, are complex constants.
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[t follows, then, that the function :

o (7) = (ﬁ—a—)_fﬂz) (13)

Z —'a&

has the same behavior as the function f,(z) of the previous paragraphs.
Thus, the complex stress intensity factor K® at the right-hand tip of

the crack is given by :
K® = lim [(x*— 2%/ fe (2)] (74)

X-—sat

Another consequence of the previous remark is that the integrals
valid for the function f,(z) remain also valid for the function fe(z).
In particular for this problem we can use among other P.1.1. and the

following :
1y
Ty = f( Zj:: ) fer (z) dz (75)
Te =f(22—a2)‘1/2 fea(z) dz (76)
B =ff52(z)dz (17)
e =f(z+a) foo(z) dz (78)
1, = f (z—c) foa(z) dz (79)
Tes = f (z—c) (z +a) fi(z) dz (80)
1y
B = f(z —c)( zi:. ) feo(z) dz (81)

Te = f(z— c) (zz—az‘)_llg feo(z) dz (82)
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If the crack is loaded only by concentrated forces, then path-inde-
pendent integrals like T\, T, T and T may be used. If the crack is
loaded only by couples then P.I.Is like T, T, may be used. If,
finally the crack is loaded by continuously distributed surface tractions
p(x), then integrals like T, Tc, Te7, Tee may be used.

We consider now the continuously distributed loading condition
and the integral T',. Taking into consideration relations (6) and (69) to

(73) and using the residue theorem we obtain:

a

L)y —ip
(e 1a) ¥ f (:fij ) p(x) dx + 27iK® = 0 (33)
and consequently :
Y el
&) = ——— = .
K o (“1M2+M1)f<x_a>13(x)dx (34)

A particular case of this investigation was studed recently in a
note by loakimidis [12]. Specifically he derived an integral analogous to
T., and he calculated the stress intensity factor in the case where a pair
of opposite compressive concentrated loads acts at a point along the
crack. But, contrary to his assertion, it may be shown that it is not
possible to extend the above results for the case of cracks along circular

interfaces.

6.2. A number of collinear cracks.

Up to now a single crack was considered. But the same process
may be applied to the problem of a number of collinear cracks. Special
attention is to be made to integrals whose integrand contains factors
like X;(z)= (z—a)t'e (2 —}—a)il/2, (z +a), (z—c). All these integrals are
to be reconsidered.

Thus X, (z) is to be replaced by X, (z) = (z—a2)il/2 .. (z—an )illz.
It is obvious that, if in the previous expression of X, (z) the factor
(z—aj) has a negative exponent, then the P.I.I. has a pole at the crack
tip a;. Consequently, if the P.I.1. is evaluated along L, the result
would a function of the stress intensity factor at the tip a;. The factors
(z +a) and (z —c) may be modified in the same way. Thus, for example,
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(z — a) may be replaced by a product containing one or more factors of
the form (z—a;) (!=1,2,...,n). Here it is worth noting that, if a
closed-form solution is desired, then the integrand must not grow faster
than 1/z at infinity. Consequently, the sum of the exponents of the
function X, (z) must be less than, or equal to zero, (or to one, if the
crack is loaded only by couples), and only one factor, either (z—ay), or
(z—ck), is allowed.

6.3. A periodic array of collinear craks of length 2a spaced at
a constant interval d.

By taking into consideration the formula :

I <1 4 ) i 85
zk'I;T1 — ) =sinz (85)
the function X, (z) (described in the previous paragraph) for n—w takes
the form :
. wn(z4+a) , . n(z—a) s
Xe tla = [sm d / sin q (86)

In the same way the terms (z—c) are to be substituted by terms
of the form sin n(z—c)/d etc. Thus, we can extend the integrals
T3, Ts, Ta, Tos and T to Tg; [relations (46) to (49)] as follows:

Ty, = [XOO(Z)fg (z) dz (87)
. @(z—c) .2

Ty, = fsmT fa(z) dz (88)

Ty, = Imeoo(z) fa(z) dz (89)
Lorl

To, = In f s “(Zd_c) dha “(Zja) £(z) dz (90)
Lorl’

Ty, = Imfxw(z) fo(z) dz (91)

Lorl’
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Ty, = Im f sin “(Z(;C) sin “(Z;”a) £2(z) dz (92)
Lorl’

Ty, = dm f sin “(Z:a) sin “(Zd" S i (93)
LorIl’

Ty, = Im f sin “E2) i TE29) 3 g, (94)
LorDl

In order to illustrate this case we suppose that the upper and the
lower lips of the cracks are loaded regularly by the same surface distri-
bution p(x). We suppose also that p(x) is a periodic function with a
period d. If the integral ’I‘p1 is considered and by taking into consider-
ation relation (6) we obtain :

— (Kp, — IKIIZ)V si 2ma —I—f pil)idx = (95)
and consequently :
K[z = iKuz = fX p(x) dx (96)
d sm

The same result may be obtained by using Bueckner’s investigation [14].
6.4. Cracks with cyclic symmetry.

The only problem with cyclic symmetry considered is the problem
of a star-shaped crack with n-equal arms. If we denote by a = 2x/n the
angle between these arms we have :

Y (ez) = 82V (z) (97)
D (ez) = D(2) (98)
where :
=gt (99)
Thus, if the integral T4 is considered we have :
0 Imfsz(z)‘P(z) dz = Imfszq)(sz) W(ez) d(z) (100)
L I,

and consequently this integral is suited for this particular problem.
ITAA 1980
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HEPIAHYIZ

Al pédodor mov ctmoilovrar eic v yofiowv tdv GveEdotntwv Tod doduov
ne S TNV XoM I
ohoxAnowudrwv, Exovv dmodeiydi Wdiaiteoa dmoreesuatizal due tov Hmoloyiopody
00 cvvteheotod évidoewg tTdoemv. ME tag uedddovg avrdg
glval duvatdg 6 duecog Hmoroyiopnds tol cuvrehestol Evrdoswe TdoEmV, YWOIS VA

~ \ ’ ~ - ) ’ ’ [ ~ ~ f \
moonyndi] Aemtopeonc Avoig tol dvriotoixov moofAfmatog Solaxdv tiwdv. Tao
S 7 ~ ’ < ’ a7 3. ~ S A A S \
aveEdotnta tob dgépov GhoxAnoduata Exovv Epaouocdiy Gmo moldovg BpsuvnTag
o€ ovvdvaopd ug v uédodov tdv memegaouévoy ororyelmv. Ta (o 6hoxknoduara
gxovv E@aguoodi) xal adtoteAde i TOV duecov Gvalvtixov Hmoloyloudv tod
ouvteAeotol Evidoews TV tdoewv eig haoTina meoPAuara owyudy.

To modtov aveEdormrov tob Spbmov Ghoxhijpwua, TO Yvwoetov xai ©Og
J-0hoxhiompa mooetddn Gmo tov J. Rice [1] 10 1968 S va dxokovdnon év
ovveyeleg 10 I-06hoxkigoua mov dév elvan timore Ao Gmd 0 cupTANOWUATIROV
avticToLyov ToU TEONYOUUEVOL.

Ot Knowles xai Sternberg [2] anédeitav v tnagtv t@v L- xai M-6Ao-
xAnowpdrwv. ‘O Carlsson [3] #dwoe yevixov toémov xataoxeviic 6hoxAijowudrwy
aveEaomtov tod dobuov xal xareoxedace tola 6AoxAnoduata, ta 6moia Grote-
Aodv yevixevow tdv 1idn yvwordv J, L, M- 6hoxinowudtav. Kateoxebaoe dniong
%ol To ovumAnowpatixd Gviiotouga t@v meonyouvuévayv. Télog, uerd Gmod yoouut-
%0V oVVOVAOUOV TV GvtioTolymv 6hoxAnowudrov Enéruye tola véa 6Aoxknoduarta,

‘H anédeibigc 6lov adtdv tdv 6hoxhnowudrov #Baciodn eic 10 edonua
tdv Green - Gauss ol elg v dagoouxnv éElowotv xviicewe 1) iooppomiag TdHV
oORATOV.

Eivat duwg dvvatov elg v nepintoory Emmédov moofAnudrov Elactins-
mrog va yonotpomomPolv xal T myadxe Suvvapixe tod Maskhelishvili 2v

~ \ \ 7 o ~ ’ ’ EY
ovvdvaou® pe 10 Yedonuo Cauchy meol dvalvnindv cuvaprioewv. ITodtn Epao-
\ ~ 3 ~ 2~ £ 3 by N € ~ 0 \ o 8 15
poyn tijg aoyiic avtig Eytve Gmo tov Suholvta xal tovg ouvepydrag Tov [8], [15].
Eig tv nagotoav doyoaosiav dmodeixvietar yevixn uédodogc Sic v xata-
A\ -1 4 -~ ’ c ’ o £ ’ - / \ ’ ’
oxevnv aveEaotijtwv tod dpduov 6hoxinowudrwv, 1 6mola toydel dia tuyaiay did-
’ ~ 3 b 3 A k3 \ \ £ -] A\
o xapavdov goypdv. Eidudrteon éqaoumoyn eivar duvatov va yivny elg v
TEQIRTWOLY N-0VYYQapuux®dy evdvyodunmy omyudv.

IMeol v tuxoloav k- gwyunv, % omola Goiletar Gnd 10 didornua

(agk—1, asc), @égouev OV Spardv xatd Jordan xaumdrov dgduov L (By. 1) eic
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106mov Wote 6 I va pn Swamepd dAAmv owyuvv. “Eoto §ti of doduor adrol
{lk }E=1 dev téuvovrar uerakl tovg xail tovg cuuPorilouev us v Eupoaoty :
n
B o= ks (E. 1)
k=1
’EE édAhov, 6 6uardog watd Jordan doduog 6 6molog megifdAher Ghac toc
Qwyudg oupPoriletar ue Q SvuPoriCopev Emiong ué {l?{ };=, (Zy. 2) Tovg deb-
uovg oL meoxvTovy drav ol dvrictoryol dgduot {lk }Z=1 ovumécouy ue to Yeldn
s owynilg 8xt0g Gmo T dxEa TNG as—; %ol as, 6mov 6 doduog Ofv cuuminmtel
ue avtd, GAa Gmotekeltan Gmo dvo winhovg ué névioo ta onuelo as—; %ol asg
avuiotolyws xal axtiva € — 0. SvuPoriCopsy téhog ue Ly v évétnra:

I (E. 2)

1

Loz

k

=

Eav F elvar ovvdommog tadv z, ®, W, Q, 6Aéuogpog eig 10 ywolov mov
meguheletal Gmo tag xaumviag I, xnal g, t6te O Epaouoyiic tod deworuatog

tob Cauchy meol Gvahlvtx®dv ovvagtijcewy, Fyxouev :

fF[z, ®(z), ¥(z), Qz)]dz = fF[z, ®(z), ¥ (z), Q(z)]dz (E.3)
L

&

Eis v avortéow ayéoarv 10 dowov L tiig 6hoxdnodosmwe pumogei va dvuratactadi
amo 10 Lo, doxel 1) ouvdotnowg F va magauévn 6hopogpuxy) eig 1o yxwolov mov
6olletan amo tag wapmvrag Lo nal

‘H yvwoty oyéoig (E. 3) nadog xail ai oyéoeig mod mpoxvmrovy Srav Adfo-
uey 10 meaypatind i) pavractixd péeos tiic (E. 3) amoredodv v yevizevuévny
gxpoacty tod avefagrijrov tob dodpov Groxdnoduatoc. Svvidwg Sumg 6 Fooc
«@vefdotntov 1tod dobpuov 6roxAfowmar» Gmodideral elg 6ho-
xhnodpata T 6mola ixavomoolv oyxéowv twvd, Gmwoc 1y (E. 3), ala 2xi mhéov
xal ) T Twv elvar yvoot) avalvtixdg. “H tpl) adt) elvar ovvdotnolg tév
ovvTEAeoTOV Evidoeng Tdoewy el ta duoa Tiic myUiic. TAmO 1O YEYOVOS adtd moo-
wmree zal 1) gonoétng t@v dhoxhnowudrav avtdv. ‘Ogilouev elc ti)v Royasiayv
abty Teelg TdEelc cuVaQToEMY TG Fi, (}2, Fs.

‘H modtn tdkic GF, meoihaufdver tdc cuvagriocsls i tumpatinde 6ho-
HOQQOVS UE YVWOTNY Govvéyelav xatd uijxog tig ewymdic. “H tdfig F, meothap-
Bdver tag 6loudepous ouvagtiioels, al 6molar Aaufdvovv pdvov moaymatirdg i)
QAUVTOOTIXAG TUHaG €lg Ta etk thg poyuts. “H teity tdki f , meghaufdver Tag
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ohopdogovg cuvaptiioelg, T ddootoua 1) 1 diapood TAV TMdV TdOV 6molwy eig
Ta xelhn tiig ewyuis elvar nadagdg moaynatinog i) gavractindg Gorduds. Befaing
Ot va elvar duvatog 6 Hmoroyiopdg T@Y GhoxAnowudrov adTdv xkotd pijxog Tob
dpouov Ly eivon dvayraiov Gmwc GAar of ovvaprioeg dadérovv Eva dmhodv
aéhov gig Ev Tovhdyiotov dxgov am widc Gmo Tog owyude.

Al draitioelg adtal ixavomotodvrar S Ty medtny tdEw GF Dmd thv

OUVOQTYCEWY :
f1(z) = 9(2) + o (2) (E. 4)
() = o fi(2) = D(2) + Qo) (E. 5)
67tov :
Qz) = 0'(z) = ®(z) + 29 '(z) + ¥ (2) (E. 6)
Q(z) = ¢'(z) (E. 7)
A v devtégav tdEw GF, ol xdrwd ocuvvapmicels ixavomowolv tdg tedeloag
ovvinrog :
f3(2) = @(2) + 0 (2) = @) + 20'(2) + v (2) (E. 8)
fa(z) = 0(2) — @(2) = 20'(z) + v (2) — ¥ (2) (E. 9)

B (2) =~ f3(0) = () + 0(2) = 20(0) + 29(2) + ¥(a) (E. 10)

d

fo(z) = , fale) = Qz) — @ (2) = 20°(z) + ¥ (2) (E. 11)
f7(z) = fi(z) — fi(z) = 49 (2) Q(2) (E. 12)
f3(z) = ®(2) +iQ(2) (E. 13)
fo(z) = D(z) —iQ(2) (E. 14)

Ev®, dua miv toltyyv tdEwv Gf, al éEfig ovvaerfoelg mhnoolv tag dvageodeloag
ovvinrag :

f1o,11(2) = [BD(2) + vQ(2)]* + [BD (2) + vQ(2)]* (E. 15)
f10,15(z) = [BP(2) + v2(2)]* + [B®(2) + vQ(2)]° (E. 16)
fu,15(2) = [BD(z) = v®(2)]* + [BQ(2) £ vQ(»)]* (E. 17)

omov B xal y elvor puyadinol Goiduof.
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Xonotwwomowdvrag tag ovvagrijosis f,(z) Eog fi5(z) elval dvvatov va oyy-
wotioouev uéyav Gorduov davetapritov tod doduor 6hoxAnomudrmv. Aud Adyoug
amhétnrog dEetdlopev udvov Tty meplmtwoy uds svdvyedupov owyuiis unrovg
2a.. Eig tov nivaxa I 8idopev pegind amd to mhéov odowddn O6Aoxdnodpara dud
my aadijv evddyoaupov guypiv.

[Taga tov peydrov douidpov t@v ohoxknooudrowv tdv negihapfavouévov eig
v wivaxa I gival duvatov vo xataoxsvdoopey xoal dAka, doxel v molhomha-
owdowpey tdg OAoxAnowtéag moodtmtag mov Bugavilovrar eig tov mivaxa I pe
doovg tiic pooeiic (z—a), (z+4a), (z—=c), #| ué¢ dilag xarariirove 6hopdopoug
GUVAQTYOELG.

Ta 6roxdngopata wov megthaufdvovral gig Tov mivaxo toitov éxgpodlovral
ue v foRdeiav @V wyaddv ovvapriceov @, ¥ xai Q. Eilg tag paouoydg
gival aragattnrov ta 6honkneduara adta va Exgpodlwvral ocuvagtioel TV Tdoewy
xal peratonioemv 1od mpofAfuatog. Tobto elvar duvatov &av AdBopev v’ Sy
tag &xgodoels T@®V pyadudv Suvapundv il tuygodong xapmiing L, tdg émolag
Exouev 1dm amodeiter &ig moomyolpevov d&odoov [10]. “Otav yivouv ai medEeig
avtal al meoxvntovoal éxpodosic 810 ueQIrd GO TG TQOTEWGUEVK OAoxAnoduaTa
glval ol dmhovotegor nol whéov natdAAndol di tag Epapuoyds.

*Amodenvietar, téhog, 1) clumtwolg peQux@v GAoxAnowudtov e T 1idn
mootadévta J xai I, 6hoxknoduara.

Ta 6hoxdnodpara adre dpaguolovral eig téocapn Jewonrina moofiuata,
‘Ex t@v épaguoydv adtdv xadiorarar @avegov Gt td mootelvéueva 6AoxAnom-
HoTo TQOoMEQOVY Extog amo T dAka mAsoventiiuora xal dmAovotegov xai ovv-
Topov 10OV dtd TOV Gvalvtxov Bmoloyioudv tol cuviedeotod Evrdoewe tdoewvy
eig moofAiuara pwyudv. Ta moofiinata ta 6moia EEnrdodnoav dgogoty dmAfiv
ebdvyoaunov pwypnv @ogrilopévny xatd Eva tdV xaT0Téem TEOTWY :

i) A ovyxevroouévov goptiov P elg 10 dv yeihog tiic owyuiic.

1) Awe 8Yo avridérov duvduswv P gig o yeldn tiic owyuiic.

iii) Awi oonfic M Epaguolouévig elg 1o uésov Tod dvo yethovs tijg owyuiic, xal

iv) Aw xaravepunuévov gootiov p(x) Epaguolopévov eic td yelAn Tiig
ewypiic.

"Atwonueiwtov tuyydver dti dua medtmy ooy Eaoudletar elg TV mepi-
~ /’ ’ ’ 3 ’ ~ ’ £ £ Ay
atwoy v do tedevtalwy gopricewy dvetdotntov tob doduov Shoxrtompa Sud

TOV dueoov Hrohoyiopov tob ovvtedeotol Evidoewe tdoemy.
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*Ev cuveyelq dmexteivovran ta moomyolpeva dmoteréopara eig HEQIKG GULV-
Herdreoa mooPfMinara dmmédov Ehastindnrog, Gmwg 1 ewyw) petatd dvo diapo-
ost®y péowy, mhiidoc cvyyoaupuxdy ewyudv el lodroomov uécov, cuyyeauural
neotodizal pwypal 6poime eic iodroomov péoov xal, Téhog, wuxhinds ovuueTowral
owypal glg 0 adtd péoov. A 1o moonyovueve moofAuara didovrar peguxd
ohoxAnodpata xadog xai 1 yevixy pedodoroyla dud v xatacxeviyv meQIoo0TEé-
owv xatalkihav 6hoxdnewudtav. Eig v meplntwowy tdv Vo dragogetixdv
uéowv, xadog xal elg Ty megintwoly OV TEQLOdK®Y QwYM®Y, 1) duvamxdtng
i sloayonévne nedédov dmodenvierar tf Pondeie Yewontinod magudelypatos.
*Ev cvpumeodopatt xataliyouev gig 1o yeyovog ot 1 mootewvopévn pédodog, Extog
100 Yewontinod g dvdiagépovtog, magovardlel nai T Grérovda mheovertinata:

i) Elvar duvatov 8¢ adriic va wataoxevacdodv dveEdotnra tod dedpov
6hoxhnodpara St v meplntmowy  gopticewg tig owymic ne Cedyog dvvdnsov,
7o6BAnua mod v fito duvardv va avripetomediy pg ta Hdn yvoora 6hoxin-
ODUATOL.

ii) *Enctetddn 7 &vvola tdv avetapritmv tob Sedpov GhoxAnomudrov eig
v TeplmTmoY OV TEQLOGOTEQMY GUYYRAUIIXDY QOYU®Y, T®Y neQtodindy, nal
TV goyudv petakd dvo péowv. ‘H Bpaguoyn tdv 6hoxingwudrav avtdv eis
towadto moofijuare yiveral dnlong Su modtny ogdy.

iii) *Enetetydn 6 tayve vmoroyonos demontixdv mooPAnudrwv dvev Tig
avdyxne mhifoovg Meswg t0d meofAjuarog.

iv) ‘Emruyydvousy dmhovotéag xgodosls TOV 6AoxANQOTEWY TOGOTHTMY.

v) Al 6hoxhngotéar moobtyreg, dedopévou Gru dev elvan teTQaywviral wog-
@ai G¢ medg Tac tdoes, dnnoedlovral dAydTegoy Amd TLYOV cpdAinata Dmohoyt-
ool Td®v tdoswv, tav ta aveEdotnra tol deduov Ghoxdmaduate cuvdudlovral
ué dAhag Gorduntixog 1) selpapatinag nedédovg . . ué v uédodov tdv meme-
paouéveov otoyeimy, tag Pevdoravotindg, ™V @otosdactixdtnra % Am., Gmére
al tdoeig xava uijxog tod dpdpov I, HmohoyiCovrar amo tag uedddovg avrdg.

vi) Avvduedo va yonotmwomoricousy 6hoxingduatra té@v 6moiwv 1| 6Aoxin-
owtéa moadTNg dvatar va eivar 6AGHoo@og cuvdotnoig 1 6mola va didn cvviotw-
cag TV TAoEWV Xl TaQUU0QPAoENMY, ai 6rolal v dtagpéoovy xata GveEdotnTov
petafAntiy Gwo tig tdoeig 1) petaromicelc tod meofAfuaros. Olrw, dia xatah-
Mlov &mdoyiic Tiic tehevtalag ouvaotioewg eivatl duvatov va gmrayuvdil i va
gmBoaduvdi) 1 ovyxhioig wxtdv YewonTrdv 1| meanatix®@y usdddwv eig TV
weolntwowy Gmov ta avetdotmra tob dpduov 6hoxAnowuara Epaguélovrar &v ovv-

EA

dvaocu® pe mewpanatindag 1 dhkag dorduntindag uedodovs.
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