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MAGHMATIKA.— Duality and Functional Representations of Cer-
tain Complete Algebras, by George F. Nassopoulos®. °Avexoi-

vy 070 tod *Axadnuaixotd x. Pk, Baocielov.

1. INTRODUCTION

The Representation Theory of commutative algebras in their
natural setting of function algebras, is certainly based on Gel’fand’s
pioneering work on complete algebras, and on those of Mazur and
Natmark. Since then, there has been formulated a number of relevant
Theorems (e.g., in [1], [4], [8], [10], [12] and [13] to mention a few),
in an attemipt to generalize and/or to enlarge the original results.
However, the treatment eludes to be always completely satisfactory in
particular, of the real algebras. For in this case, instead of the natural
spectrum of these algebras, a «carrier space» of the two -dimensional
representations of them is directly considered, with implication the
representation of real algebras to take, in general, place into complex
function algebras (cf. [5] and [2], p. 85). The ultimate reason of this
unpleasant asymmetry lies in a deficient utilization of the «complex-
ification procedure».

The objective of this paper is twofold: On the one hand, to present
dense and faithful representations of suitable (real and complex) alge-
bras, in particular of group algebras, improving thus considerably the
classical ones. This is achieved by inspecting more closely and studying
thoroughly the refined notion of an involutive, or a C*-complexification
of a given real commutative (Banach) algebra, and of course, that of the
respective natural spectra of the algebras involved. On the other hand,
to treat of in the same spirit the noble features of the duality and prin-
cipally, to point it out explicitly in the real case. Following recent
training, these are made by establishing convenient adjointnesses in an
initial stage and then firm equivalences of appropriately determined
subcategories.

* TEQPTIOY ®. NAZOMOYAOY, Avix6tng xal cuvaptnolaxal TapacTdcels WELoWE-
ywy TAfpwy GAYeRpdv.
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Among other consequences, another insight regarding to the struca-
ture of commutative C*-algebras is thus revealed, and a new realiz-
tion for the enveloping C*-algebra is offered, having a remarkable
application in group algebras. Furthermore, several significant results
on and around C*-algebras pass now to the corresponding real ones,
attaining to give an answer to certain open questions on them. Finally,
a generalization to the context of compactly generated topological alge-
bras is outlined.

It is worth mentioning, that the application of category theoretical
methods not only allows, as usual, to proceed to a concise exposition of
the subject, but mostly leads to the proper setting by illuminating and
clarifying the existent subtle distinctions. Moreover, the direct and
elementafy proof for characterizing intrinsically the real algebras corre-
sponding to C*- ones, in essence real function algebras, simplifies
essentially Arens’argumentation in obtaining representations of suitable
such algebras [1], an argumentation which is on the other hand, inde-
pendent of the one given herein.

For categorical concepts we refer to MacLane [9], and for basic
material concerning complete normed algebras to Bonsall and Duncan [2].
More details with the proofs of the results obtained so far, as well as

further applications along these lines will appear elsewhere.

2. NOTATION AND TERMINOLOGY

Concerning the categories we are dealing with in the sequel we
adopt the following: Alg, stands for the category of all (linear associ-
ative) algebras over J@ and < -algebra morphisms, the scalar field &
specified to be either R or C. The addition of the suffix C indicates the
restriction to the (full) subcategory of all commutative algebras, while
the index 1 is used for that of all unital ones and the unit-respecting
morphisms. The presence of the letter N or B means now that the cate-
gory is the one of all normed, or all Banach algebras, and the continuous
morphisms, respectively. The star symbol refers further to the corre-
sponding subcategory of that in question, consisting of all involutive
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algebras and the involution - preserving morphisms. Especially, A denotes
the full subcategory of CBAlg} of all C*-algebras, and I' that one of
CBAlg, consisting of all algebras satisfying the R - property below.

On the other hand, the complexification functor P: NAlg,—> NAlg,
is one of those which draw our attention to them. Given a real normed
algebra E, P(E) is, of course [5], the vector space direct sum E®E,
the multiplication being that of the complex numbers. It is further
provided with an algebra-norm, via the Minkowski functional p of a
suitably chosen subset Vc E®E (i.e., the absolutely convex hull of
UX{O}, U being the open unit ball of E), in such a way that, for all

x, y €EE, p satisfies the three conditions:

E,
(1) m<p(x,y)<2m, (2) p(x,0)= x, and (3) p(x,—y)=p(x5),

with m: =max(' x ., ||y/|). Note that the algebra P(E) is commutative,
unital, or even complete respectively if, and only if, this is the case for
the algebra E. Likewise, for any morphism h of real algebras, P(h) is
the consistent with the additional structure linear map h®h and in fact,
the effect of P is norm - preserving.

Denoting now by U: NAlg.—> NAlg, the evident underlying functor,
assigning to each complex algebra the underlying real one, the canonical
embedding K —> UP(E) is a universal morphism, so that we get:

Proposition. The complexification functor P forms a left adjoint
to the underlying functor U.

3. INVOLUTIVE COMPLEXIFICATIONS

From now on, we confine ourselves to the case of commutative
algebras. 'T'he main reason to do so, aims at making the natural vector
space involution, which is defined on 2 (E) as the complex conjugation,
compatible with the algebra structure of it. This having already been
established we denote henceforth, the resulting in the present context
functor by P*: CNAlg,—> CNAlg’, and we refer to it as the involutive

complexification functor, although the complexification procedure remains
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seemingly invariant. It is the manipulation of this (different!) functor
which turns out to be so fruitful .

To begin with, let us observe that the whole picture described in
section 2 is now radically altered. For in this replacement : a) The new
codomain category differs widely from the preceding one, because of the
presence of an algebra involution requiring the restriction of the morphisms
to those which preserve it. b) A second backwards functor, say the
Hermitian functor H: CNAlg:——> CNAlg, , appears in its own right. It
assigns namely, to each complex (unital, resp. complete) involutive
algebra A, the real (unital, resp. complete) algebra #(A) consisting of
all Hermitian elements of A, and to each morphism of involutive alge-
bras, the obvious restriction of it. ¢) The inherent canonical map
E——> HP*(E) offers in this case a universal (iso)morphism from the
real algebra E to the functor #, so that the involutive complexification
functor P* is actually, a left adjoint to the Hermitian {unctor A and not
to the associated here underlying functor.

The new point of view exhibits the deep significance of the invol-
utive complexifications as opposed to the customary ones. In fact, we
are now in a position to deduce the next result, the second part of
which by applying the Open Mapping Theorem to the counit & of the
adjointness just formulated.

Equivalence Theorem. The involutive complexification functor
P* and the Hermitian functor H provide an adjoint equivalence between the
categories of each of the four pairs: (CAlg,, CAlg’), (C,Alg,, C;Alg),
(CBAlg,, CBAlg") and (C,BAlg, , C\BAlg), respectively.

1. By the very definition of a functor this is a triple, say (4,P,B), with
A the domain, B the codomain category, and P the specified map of the mor-
phism classes. Nevertheless, it is sometimes convenient to use the same symbol
for denoting (different) functors defined of course similarly as maps, but between
several pairs of categories, whenever this abuse of notation is immaterial and
does not cause confusion as for instance, in the cited Equivalence Theorem.
However, this is by no means the case for the considered functors P and P*, the

distinction of which is, in fact, crucial.
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4. SPECTRA AND REPRESENTATIONS

Regarding to the concept of the spectrum of an algebra, it should
be observed that it is naturally realized by the set of morphisms of the
given algebra onto «the simplest one of the same typen, topologized appro-
priately. Hence, the spectrum of a real algebra E consists plainly of all
the real - valued characters (i.e., non-zero, multiplicative (and continuous)
linear forms), whereas the (Hermitian) spectrum of a complex involutive
algebra A includes precisely the involution-respecting complex-valued charac-
ters, which actually correspond to the individual structure of these alge-
bras. Although from the categorical point of view the empty set, being
the initial object, is not excluded, however it is interesting to know
when the spectra considered are non empty. Certainly, this is the case
for any (non - trivial subalgebra of a) function algebra, while the field ¢
considered as a real two-dimensional algebra K provides a counter-
example. Moreover, this question turns out to be equivalent to that of
the existence of a nontrivial enveloping C*-algebra for the algebra in
examination (see also § D).

These having so, we further remark that the spectrum just named
for an algebra A in CBAlg_ is a closed, in general proper, subspace of
the ordinary spectrum of the underlying A Banach algebra and in fact,
the two kinds of spectra coincide whenever A is in the subcategory A. Thus,
the said spectrum is still a locally compact Hausdorff space and in par-
ticular, compact if, and only if, the algebra A is unital. Giving now to
the spectrum of any algebra K in CBAlg, the corresponding Gel’fand
topology, it is readily seen that the latter is homeomorphic to that of
P*(E), by means of the adjuaction isomorphism established in Equiva-
lence Theorem. Let us therefore, denote by £ (E) either spectrum.

Under these circumstances, it becomes now clear that the right
range of the Gel’fand map of a given (real) algebra E, say @:
E—> H(C, (2 (E), C)), is the «real part» of the associate C*- algebra of
all complex - valued continuous functions on 2 (E) vanishing at infinity.
Likewise, its extension @: P*(E)——> C.. (R (E), C) provided by the uni-
versal property of involutive complexifications offers again, the very

Gel’fand map of the algebra 2P*(E), as it is a non-expansive *-mor-
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phism. The point is now that, by the Stone - Weierstrass Approxima-
tion Theorem, the so visualized Gel’fand maps ® and ® have always a
dense image.

Finally, saying that an algebra E in CBAlg, (resp. A in CBAlg() is
functionally semi-simple (resp. *-semi-simple), if the intersection all of the
kernels of its characters equals to the zero ideal, the functor P* sends
functionally semi-simple algebras on *-semi-simple ones, and the
functor A reversely, since both of them being equivalences preserve and
reflect monomorphisms (and epimorphisms too). All told, we deduce the
following strengthened form of the classical result of Gel’fand [5], giving
at the same time the proper setting for the case of real algebras (com-
pare with the situation appearing also in [2], p. 85).

Representation Theorem. Let E be an algebra in
CBAlg, (resp. A an algebra in CBAlg ) with spectrum £ (E) (resp. (A ))-
Then ¥ (resp. A) has a representation onto a dense subalgebra of C.,(2(E), R)
(resp. of C,(R(A), C)), which is faithful if, and only if, B is functionally

semi - simple (resp. A is *-semi - simple).

By specializing now to an algebra A in the subcategory A4, in which
case the Gel’fand map is of course an isometry, one obtains the clas-
sical isometric representation ([6], [13]) of A onto the function algebra
C,(2(A), C). On the other hand, the appeal to Theorem is mush more
effective for investigating the nature of group algebras. Given a locally
compact commutative group G, the group algebra L!(G) of it is an
object in the category CB’AIg with Hermitian spectrum homeomorphic
to the character group G of G, as every one of the algebra - characters
is involution - preserving. Besides, L' (G) being an A*- algebra is *-semi -

simple, so that we conclude the next of special bearing

Corollary. The group algebra Ll (G) admits a dense and faithful

representation on the function algebra C., ( ,Q‘)

The stated results are, in particular, valid for unital algebras.
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5. DUALITY THEORY

Categorically speaking, duality is expressed by means of an equi-
valence between convenient categories. More accurately, of the one to
the opposite (: dual) of the other Certainly, this is also the case for the

Gel’fand - Naimark duality (see [8], or [12], and references there). Our
attempt is here firstly to enlarge a bit the categorical framework for
this duality.

Let L stand for the category of all locally compact Hausdorff
spaces and their continuous maps, and K for the full reflective subcate-
gory of all compact spaces. Then there are defined two functors: The
spectral space functor & : CBAlg" ——> L°" assigning to each algebra A
its (Hermitian) spectrum £ (A) as previously, and the function algebra
functor Cy (—, C): L°® —> CBAlg} sending every space X on the indi-
cated C*-algebra of continuous functions and actually, there is no
problem with the evident by means of the functional composition,
correspondence on the morphisms. Besides, these data are connected in
the sense of the following T'heorem, the last part of which being well -

known (ibid. ref.), is merely recorded for the sake of completeness.

Complex Duality Theorem. The spectral space functor £
is left adjoint to the function algebra functor C.(—, C), the defining the
adjointness universal unit provided by the associated Gel fand map.

In particular, these functors establish a dual equivalence of the subcate-
gory A of all C*- algebras to the category L and by further restriction, of the
subcategory A, of unital ones to the subcategory K, respectively.

As a consequence, one gets an other «more constructive real-
ization» for the enveloping C*-algebra £(A) of a given algebra A in
CBAlg! [3]. Indeed, this is provided by the pair (®, C,,(2(A), C)) since
the Gel’fand map @ : A——>C, (2(A), ¢) is, in addition, an epimor-
phism (Representation Theorem). The given description makes now
straightforward the fact that «the (Hermitian) spectrum of the algebra A
is homeomorphic to that of the enveloping C*-algebra E(A)», and vice
versa. Put differently : A4 is a full epireflective subcategory of CBAlg.,
the reflector being the enveloping C*- algebra functor E = C (8 (—), ).



334 IIPAKTIKA THE AKAAHMIAE A@HNON

Hence, the function algebra C. (G, €) in Corollary before, is precisely
the group C*-algebra of G.

We can now derive further information for the structure of
(commutative) C*-algebras. To this end, consider the composite adjoint-
ness of the enveloping one with that of the involutive complexification,
and call the resulting then algebra EP*(E), the C*- complexification of the
given algebra E in CBAlg, . As the restriction of the equivalence H to
the full subcategory A remains of course, a full and faithful functor,
the composite counit ta: EP*H (A)——> A is still an isomorphism, but
now in A. That is, more explicitly, we have:

Structure Theorem. Every commutative C*- algebra A is iso-
metrically *- isomorphic with the C*- complexification EP*H (A) of the real
part of itself.

To supplement categorically the preceding result, it should also
be remarked that, by ([9], p. 91, Thm 1), the subcategory A is essen-
tially equivalent to the full reflective subcategory, say I', of CBAlg,
consisting of all algebras E for which there exists some algebra A in A
such that E=H/(A) within an isometric isomorphism, and that this
subcategory I' is plainly, the largest one. This being the case, we are
now led in a natural way to the following:

Intrinsie Charactesization Theorem. BHor any
algebra E in CBAlg, the following two statements are equivalent :

(1) The algebra E belongs to the subcategory I

(2) The algebra E fulfills the R-property : For all x,y in ¥ the inequality

x 2| 2+ ¥ | holds true.

Sketch of the proof. That (1) implies (2) rests upon standard properties
of the order structure of the algebra # (A). For the converse observe,
the R - property entrains a very simple and familiar description for the
C*- complexification £P*(E) of the algebra E : This is just the algebra
E®FE but renormed now with the well-defined, complete, algebra-norm
g, given (for all (r, y)) EE® E) by q(, y): = "2+ % '/» and thus, satis-
fying the C*-property. In other words, EP*(E) is that which we are
looking for. i
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In this concern, it is quite clear that I'is a proper (non-void)
subcategory of CBAlg, . Especially, for any space X in L the function
algebra C (X, R), in particulal J3 itself, belongs to I', but not the real
algebra €. On the other hand, denoting by Q: I'—> A the restriction
of the C*-complexification functor EP* to the indicated subcategory,
one obtains by composing the above stated two equivalences, the next
complete form of duality for real algebras, which in connection with

the above considerations extends and reinforces previous relevant results
of [1], [5] and [8].

Real Duality Theorem. The composite functors 2Q and
HC,(—, ¢) provide a dual equivalence between the categories I' and L and

by restriction, between the subcategories I'y and K as well.

More specifically, the Theorem means in essence, that :

a) Every space X in L is homeomorphic to the corresponding spec-
trum  (C, (X, R)), and

b) Any algebra E in CBAlg, is in the subcategory I'if, and only
if, it is isometrically isomorphic with the function algebra C,(R,(E), R),
where the spectral space functor £, : CBAlg,—> L’ defined here on
real algebras too, is naturally isomorphic to the composite functor £EP*.

The second result can also be extended to the case of «compactly
generated topological algebras» with the indispensable modifications on
the notation. Indeed, the same style of argument together with the main
result of [4] shows, that the «Kelleyfication» of (the underlying locally
m - convex algebra to) a real commutative multinormed algebra (E,{p})
which is further complete, unital and possesses the R - property, in the
sense that each of the algebra - semi - norms p satisfies it, is topologically
isomorphic onto the function algebra C(2(E), k) with respect to the
natural Kelley topology of the latter, where of course, the spectrum
£(E) is now a suitable k -space.

6. FUNDAMENTALS OF R-ALGEBRAS

We conclude with a brief discussion on several properties of R -
algebras (: real algebras satisfying the R - property before), which illus-
trate their significance. They are the real analoga of well-known

TAA 1981
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properties of C*-algebras to which otherwise, are more or less imme-
diately reduced, in virtue of the preceding Theorems. They also provide
an answer to certain open questions on real algebras.

(i) Divisibility. 'The functor Q respects divisibilily, so that every
division algebra D in I'} is isometrically isomorphic to R (compare with
[5] and [11]).

(ii) Automatic continuity [14]. Any algebra - morphism h: B——> E
with B in CBAlg, and E in I, especially a character ¢: B——> R, is
necessarily contractive, as the equality p(x,0) = ¢ (%, 0) holds true for
all ¥ in E. In the same vein, every positive linear functional w: E—— R
i.e., one satisfying o (%?) >0 for all xE E, is continuous, whenever E
is in I', because of the relevant preservation property of Q.

(iic) Norm uniqueness. On a given algebra E in CAlg, there exists
at most one norm turning E into an algebra of I'. For the algebra -
monomorphisms in I" are exactly the isometric omnes, as this is also the
case for those of A.

(iv) Categorical initiality. For each algebra E in I' the unique norm
is expressed by the formula | x| =sup{| ¢(x). :pER(E)} for all xEE.

(v) Semi-simplicity. All algebras in I' are semi-simple, in full
agreement with ad (7).

(vi) Nonexistence of derivations. The functor Q preserves properly
derivations, so that according to [15], there are no non -zero derivations
on any algebra E of I'. In particular, this is also true of JR.

(vii) Ordering. Every algebra E in I" possesses a natural order struc-
ture, that of a real function algebra.

(viii) Singleness. There is precisely one endomorphism of R in I'
the identity one, since its spectrum is the singleton.

(ix) Enveloping R -algebra. The functors H EP* and C,(82,(—), R)
are naturally isomorphic and realize the reflector in the subcategory I
of CBAlg,, assigning thus to each algebra of the latter its enveloping
R - algebra.

(x) Algebricity. The category I, is weakly algebraic over Sef, as
this is also true of its skeleton of all real function algebras [7], or
of 4,, etc.
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oxtoyoopeitar plo yevinevolc eig 10 mhalolov T@V «ovumaydS TUAQAYOUEVOY TOTO-
Loyw@v aAyefodv».
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