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ABSTRACGT

Multilevel iterative optimal design procedures, borrowed from the theory of structural
optimization by means of homogenization, are used in this paper for the optimal material
design of composite material structures. The method is quite general and includes materials
with appropriate microstructure, which lead eventually to phenomenological overall nega-
tive Poisson’s ratios. The benefits of optimal structural design gained by this approach, to-
gether with attempts to explain the task oriented microstructure of natural structures are
investigated by means of a numerical example simulating human bones.

1. INTRODUCTION

This paper deals with the optimal material design problem for composi-
tes and cellular materials by using distributed, multilevel, iterative optimi-
zation techniques. This appreach has recently gained on interest due to signi-
ficant developments in the area of topology optimization, based on numerical
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homogenization techniques. The link with classical effective moduli theories
and with cellular structures, extended also to materials with negative Pois-
son’s ratios, is developed in some detail. By considering the solution procedure
as a task-driven self-adaptation of the structure, a better insight in the adap-
tation and remodelling rules proposed for natural structures, mainly animal
bones and trees, is gained. The feasibility of the proposed method and the be-
nefits of using variable structure materials, as nature does, in structures and
structural elements is studied by means of representative numerical examples.

The optimal material design problem is formulated in a general setting,
by following recent developments in optimal shape and topology design by
means of numerical homogenization [1]. The stiffest structure is obtained by
maximizing the potential energy of the structure at equilibrium or, equivalent-
ly, by minimizing the complementary energy. The choice of the material at
each point of the structure, or at each finite element in the respective discre-
tized equivalent problem, is governed by the design variables of the optimal
design problem.

From the formulation of the problem and since an equilibrium configura-
tion makes the potential energy of the structure minimum, one expects that
multilevel techniques will be most appropriate. In fact, a multilevel splitting
of the problem into two subproblems is possible, where the first subproblem
is the structural analysis problem itself, and the second subproblem tackles
with the material adaptation, which is performed in a pointwise (or
elementwise) sense, by means of small-scale, decomposed subproblems (ada-
ptation rules). This approach has its origin in the optimality criteria methods
for the solution of optimal layout problems [1, 2], and leads to local adaptation
rules and repetitive solutions of classical structural analysis problems, which
are readily implemented in general purpose structural analysis problems of
open architecture.

The method has been applied to a series of porous, cellular materials [3].
Joth analytic solutions and look-up tables, produced by numerical techniques,
will be used to relate the design variables with the effective elastic moduli [4],
in order to treat also cellular materials with negative Poisson’s ratios. Thus,
without going into details which would arise in the case of topology optimi-
zation problems, we will restrict our attention in this paper in practically
realizable microstructural configurations, which include materials with nega-
tive Poisson’s ratios.
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2. FORMULATION OF THE OPTIMAL DESIGN PROBLEM

A distributed parameter, minimum compliance (or equivalently maxi-
mum stiffness) problem is assumed. Let the design vector be denoted by [o(x),
a(x)]T, where p(x) is the density of each point x of the structure and a(x) is
the set of design variables that describe the microstructure of the material.
For instance, in a composite material structure the fiber-volume fraction, the
elastic constants of the matrix and the fiber, the mesophase variables etc, may
be used as design variables in «(x). Analogously, for a cellular (foamy) stru-
cture a(x) describes the design parameters of the unit cell, as it will be dis-
cussed in detail with respect to concrete applications. Note also that in a dis-
cretized structure [p(x), «(x)]T is defined elementwise.

In a displacement based formulation, the minimum compliance problem
is written in the following form of a marginal function potential energy opti-
mization problem [1]:

max min { ﬁ(U»Pa“) = Il(e(u),p.a) —1(u) } (1)
[p(x), 2(x)] € Ayq,XEQ uEU

Here Aaq is the admissible set of the design variables which, on the as-
sumption that a structure with maximum mass V is sought, reads:

A = {p(x), (x), xeQ such that [pdQ <V, 0 <o <1 } (2)
o

The total potential energy Il(u,p,x) is composed of the energy density
I1(e(u),p,x), which in turn depends on the chosen design p, « and the loading
potential term 1(u). Finally, the admissible displacements set Uaa depends on
the nature of the analysed problem and on the boundary conditions.

For the case of linear elastic structures within the frame of a small dis-
placement and deformation theory, problem (1) reads:

e ol
e ;1(13):;6 - lrlréxgad { E'g Eijr(x,p(x),a(x)) =ij(u) exi(u) d€ -1(u) } (3)
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where Eju (x,0(x),0(x)) is the fourth-order elastic stiffness tensor.
The stress space problem reads analogously:

min min { I¢(,0,2) } (4)
[F(X)7 DC(X)] E Aad cezad

For the linear elastic problem considered here, it has the form:

. . 1
min min | L Pe.. ) 5
. S { : ng(x,P(X),a(x)) oij ox1 d } ()

Here Xaq is the set of the admissible stresses, which incorporates the stress
equilibrium condition.

dive + p =10

and the prescribed boundary tractions condition: on = t. Moreover, [1¢(s,p,)
is the complementary energy density and Gijin (x,0(x),%(x)) is the fourth order
elastic compliance tensor.

In principle, more general cost functions can be assumed in the optimal
design problems (1) and (4). Nevertheless, the marginal function form used
here, where the value of the minimization subproblem is either maximized in
(1), or minimized in (4), has certain advantages from both the theoretical and
the numerical point of view.

Without entering into details here we mention that continuity and, in
some cases, differentiability or convexity /concavity information for the mar-
ginal function (inner subproblem in (1) or in (4)) as a function of the design
variables (p(x),x(x)) can be extracted as established in ref. [5].

3. THE MULTILEVEL DECOMPOSITION

For the needs of the applications treated in this paper it is sufficient to
assume that the density of the structure at each point x € Q (cell or finite ele-
ment, for the numerical application) depends on the local design variables
a(x), le. p(x)=f(a(x)), ¥ x€ Q. In order to exploit the pointwise nature of
the above relation we decompose the optimal design problem as follows. For
problem (3):
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. 1
max max min ) [ Bia(x, : v q(u) dQ-1 6
. . UGUad{ S (5,630, 0() (1) ) <u>} (6)
For problem (5), respectively,
) . : 1
min min min }J_ [y ¢ s o1 dQ 7
o(x) € A, a(x) € A,(p) GEEad{2 iCJKI(X’P(X)’a(X))G’md } @

Here A; = {p(x): 0= p(x) < 1, fap(x)dQ =<V, xeQ} and A, = {a(x):
o(x) = given = f(a(x)),xeQ}. Obviously, the following relation holds:

Aaa = {p(x),0(x) : p(x) € Ay, a(x) € Ay(p)}-

Following [1], [6] we change the order of the second and third operators
in problems (6) and (7) and, by observing that the restrictions of set A,(p)
above can be assumed to hold elementwise, we get the following problems:

. 1
max min m — . - n -
o(x)€A, €U, {'z{a(x)s.t.p(g—f(oc(x)) 2E"“(X’"(X)’“(X))E”(u)m(u)dg} l(u)} ®)

and:

. . . 1
min min min ey s
e(x)€A, o€, {é{a(x)s.t-P(X)_—f(a(X)) g s oy ledﬂ}} -

From the above form of the optimal design problem a hierarchical itera-
tive solution strategy is straightforward [1], [6]. The inner maximization (res-
pectively minimization) problem is solved in a decoupled, elementwise form.
The second level minimization problem is solved at the structural level by a
general purpose finite element code. Both above-mentioned subproblems are
solved for a given density distribution p(x), which in turn is updated by sol-
ving the first level optimization problem in (8) (respectively in (9)) with res-
pect to the variable p(x).

A few remarks are in order here. If the relation Ejx («(x)) (respectively,
Cija(x(x))) is given analytically, then the lower level local optimization pro-
blem in (8) (respectively in (9)) can be solved also analytically. This is the
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case e.g. of optimal topology design problems through homogenization, which
is studied in detail in [1] and [6], among others. In this case the second level
problem can be formulated as a fictitious non-linear elastic structural analysis
problem, with a nonlinear and, in general, nondifferentiable strain-energy
density, which is given by the previously mentioned local optimization pro-
blem. For the solution of the latter problem the methods developed within the
theory of nonsmooth mechanics can be employed following ref. [6].

In this paper, since the above-mentioned relation is not given explicitly;
but it is produced from a complete analysis of a unit representative cell, or it
is interpolated from such solutions summarized in the form of look-up tables,
problems (8) and (9) have to be solved iteratively. Thus, the second level pro-
blems i.e. the nonlinear and possibly nondifferentiable structural analysis
problem are approximated by linear problems, which are defined by the cur-
rent values of Eju (respectively Ciju), as they are given from the solution
of the lower level (local) subproblems.

It is worthwhile noting that, in some applications, like the design of fiber -
reinforced composites, the mass distribution is approximately constant for the
whole structure, irrespectively of the values of the design variables. In this
case the previously formulated problems along with the corresponding solu-
tion algorithms are appropriately simplified. Alternatively the mass variable
may be kept in the formulation to measure the cost, associated with the
material changes performed in the course of the algorithm. In this case the
mass constraint should be interpreted as a maximum allowable cost constaint.

4. THE MULTILEVEL SOLUTION ALGORITHM

The solution algorithm for problem (8) is summarized as follows:
Step 0: Initialization
1=0, Choose pl(x), «!(x).

Step 1: Iteration
set iteration counter 1 =1 + 1.

Step 2: Local subproblem
for each finite element and for a given e!, solve the local problem:
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1
max 7 e‘, 1, = max 1 10
a(X)€A, (e) o a(miea oy 3 b)) i (10)

The solution a'; ! defines the current design (e.g. microstructure) of the finite
element.

Step 3: Structural analysts subproblem

solve the potential energy minimization problem:

min {.f m(e.pl,d +1)d Q- l(u)} milllj( {—;—g Eijkl(X,pl(x),oc'“(x))eijakldQ—l(u)} (11)

u€Uad Q u€ ad
with solution ul+!.

Step 4 : Density updating by the iterative formula:

01 e, mi {li 2 @pu] 1] (12)
Ae dp

where 7 is a nonnegative constant used for numerical efficiency and the La-
grange multiplier Ae, which acts as a scaling factor here, is determined by the
maximum mass constraint fo o!+1dQ = V.

Step 5: Convergence check
if no convergence, then continue with Step 1.

For the stress based formulation given by (9), an analogous algorithm
can be constructed.

The numerical realization of the above algorithm is done within the en-
vironment of an open, home-made finite-element programme. In the two-di-
mensional applications, which are presented in this paper, we encountered
checkerboard, parasitic, patterns in the results. This phenomenon is well
known in the specialized literature [1],[8]. In this paper we do not study topo-
logy optimization problems, where the optimal design of a microstructure
within the material is sought. Accordingly, we do not use a very fine finite
element discretization of the analyzed examples. The checherboard problem
has been suppressed by the simple element-to-nodal-density technique, des-
cribed in ref. [8].
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5. APPLICATION TO CELLULAR MATERIALS

Let us consider a cross section of a transversely isotropic material. A
plane-strain elasticity problem is considered, where the in-plane constitutive
law reads:

_ B

E(a) 0 ]
. B ¥ 13)
Ay =l sl gy
Txy v(a) Wi . Yxy
L 0 0 2(1-v(«))

where E(«) and v(«) denote the transverse elastic modulus and Poisson’s ratio
of the material, which both depend on the design variables « of the material.

Let us assume that this material is a cellular microstructure. For instance,
in classical cellular material theory, [9], [10], the following relation can be
used for open-walled cellular solids:

2
E(a) = Eki [ 4 ] (14)
Ps

where « = p/ps is the comparative density of the cellular material, ¢ is the
real density, ps is the density and Es the elastic modulus of the matrix mate-
rial and k, is a proportionality factor. Poisson’s ratio is usually taken equal
to zero. This model has been used for the mechanical behaviour of tissues in
plants [10]. A more complicated lattice continuum model can be extracted
from the Koiter general anisotropic model of [11], which has been used for
bone modelling and remodelling studies [12].

The method can be extended to apply for the above outlined model by
considering cellular structures with reentrant corner cells, which lead to overall
elastic properties with an effective negative Poisson’s ratio [4]. Since no analy-
tical formulae exist for this type of microstructures the results of a parametric
numerical investigation, by using numerical homogenization techniques are
used here (see [4] for more details). However, for comparison, a power law
type adaptive material is considered of the form introduced in ref. [14]:

E = o'Eg, 0 < a < 1, v = const. (45)
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6. A NUMERICAL EXAMPLE

An optimal (stiff or flexible) structure will be designed by the numerical
algorithm presented in this paper. We consider two models for the modifica-
tion of the internal (composite) material: the composite material with star -
shaped inclusions, which has been studied by the numerical homogenization
method [4], and the power law attributed to Mlejnek [14], where the elastic
constants of the initial material are simply modified by multiplication with
the scalar material variable in the power of four (15).

In general, the initial and the final deformed shape of the discretized
structure will be given for the graphical evaluation of the procedure. The dis-
placements are scaled with respect to initial plot. The history of the material
density, along with the history of the achieved modification of the stiffness,
document the iterative procedure in each case. It is assumed in this example
that a predefined upper (or lower) bound on the total density is determined,
as a function of the material modifications, which is chosen to be the
stopping criterion.

Moreover, the stiffness is measured by the square root of the sum of the
squares of all diagonal elements of the stiffness matrix of the discretized ma-
trix, which changes in each iteration of the algorithm, depending on distribu-
tion of the current design variables. This quantity is scaled by the initial stiff-
ness value. The optimal design is finally demonstrated for the problem. Here
the material (design) variable « ranges between zero and unity. For the com-
posite material considered here [4] and for the reference material (15), the va-
riation of the elastic modulus and the Poisson ratio with respect to the variable
o« are shown in Fig. 1. It is to be understood that, for the composite material,
the variable « can be physically explained as the internal angle of the noncon-
vex, star-shaped microstructure of the composite material [4], while for the
material of equation (15) it can be explained as a material density measure.
Fig. 2a presents a series of star-shaped void inclusions with re-entrant corners
representing unit cells creating negative Poisson’s ratios in the cellular mate-
rial, while Fig. 2b gives the variation of Poisson’s ratio of these unit cells ver-
sus the angles at the corners at the star-shaped inclusions for the cellular ma-
terial introduced and studied in ref. [4].

Let us consider now a plate structure, discretized by triangular finite ele-
ments, fixed at its left hand-side boundary and loaded by a compressive stress
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Fig. 1. Variation of the elastic modulus E, and the Poisson ratio, v, for the two materials used
in the investigations (comp is the composite material and adapt is the adaptive material).
16
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Fig. 2(a). Periodic fiber-reinforced composite with star-shaped inclusions of five different

angles of the re-entrant corners.
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Fig. 2 (b). The variation of Poisson’s ratio of the composite versus the angles
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of the corners of the inclusions.

distribution at the opposite boundary. The whole plate is thus subjected to
compression (or tension) and bending, which results from the total boundary
loading. This example could be seen as a first attempt towards the modelling
of a bone adaption process justifying the bone density variation existing in
trabecular and cordical bones. The real problem is, of course, much more com-
plicated than the simple models presented here. Figures 3a, b present the
forms and loading situations of the cantilever. This may be considered as an
attempt to study the mode of loading and the density arrangement of thin
plates sectioned from a human diaphysis sectioned at different orientations
lengthwise of a femur bone, as indicated in Fig. 4a. Figure 4b indicates a scan-
ning electron micrograph showing the cellular structure of a section of the fe-
moral head of the condyle of a human femur, indicating clearly the form of
the cancellous bone presenting a low-density open-cell structure.

First we consider a compressive loading distribution, linear along the
short boundary, with values between p and 0,5 p (Fig. 3a). Let us seek the
more flexible structure, by using the composite material distribution. For a
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A

(a) (b)

Fig. 3. Two modes of loading of cantilever beams representing sections of the

diaphysis of a human felur.

uniform (homogeneous) starting material with « = 1.0 and for stopping per-
centage of total material density equal to 0.50 the numerical procedure and
the results are given in Figs. 5(a-d). For the same support and loading confi-
guration let us seek the more stiff structure. Now the starting material design
paramater is « = 0.1. For stopping percentage of total material density equal
to 0.50, the numerical procedure and the results are given in Figs. 6(a-d).

As a next example we consider now the same plate, but loaded along the
whole of its transverse boundary (Fig. 3b). This loading case is now considered
with a larger applied bending moment. To this end a compressive loading dis-
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Fig. 4. (a) Schematic view of a human femur and mode of preparation of the specimens

from its diaphysis, (b) scanning electromicrograph showing the cellular structure of the fe-
moral head.
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Fig. 5. Percentage modification of the total mass and stiffness of fhe structure versus the
number of iterations of the algorithm, (b, ¢) deformation of the initial and final optimized
structure and (d) optimal material distribution for the most flexible structure of a cantile-

tribution, linear along the tranverse boundary is applied with values varying
between p and 0. Let us seek first the more flexible structure, by using the
composite material distribution. For a uniform (homogeneous) starting ma-
terial with « = 1.0 and for stopping percentage of total material density equal
to 0.50 the numerical procedure and the results are given in Figs. 7(a-d).

For the same support and loading configuration let us seek the more stiff
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structure. Now the starting material design parameter is « = 0.1. For stopping
percentage of total material density equal to 0.50, the numerical procedure and

the results are given in Figs. 8(a-d).

7. CONCLUSIONS

By using results of multilevel distributed optimization and optimal design
of structures and results of our previous work on homogenized elastic con-
stants of composite materials exhibiting extreme material values, as it is for
instance the negative Poisson’s ratio, we have proposed and tested in this pa-
per an algorithm for the optimal structural design by using composite ma-
terials.

The use of composites with variable material constants, and especially
the ones studied in our previous contribution [4], has been shown to be a fea-
sible alternative for the optimal structural design. It is technologically more
possible that materials with variable microstructure of the type used here
will be constructed by automated construction machines, than the micro-
structures proposed by analogous approaches based on numerical homogeniza-
tion techniques and multilayer materials [1]. The relevance of our approach
to problems arising in biomechanics has not been investigated in detail here.
However, the link has been mentioned within this study of composite and
the foamy materials, which exhibit extremal properties.

Note, that the same materials are used in the investigation of the present
paper and that stress- and strain- driven microstructural modification mecha-
nisms (either growth and densification, or microdamage) are believed to be the
basic components of bone adaptation strategies. This fact is only pointed out
here, without more discussion, since the problems considered in biomechanics
are certainly much more complicated than the academic, laboratory-tailored
models, which have been adopted here. For instance, it is conjectured that the
internal structure of the animal (and human) bones should lead to some kind
of optimal structural response, but, for instance, not a stiffer or more flexible
structure for one given loading case is an appropriate model. A case where,
for example, two loading cases are consideted may be more realistic. Then the
stiffer response, which leadg to more loading carrying capacity, is sought for
the one loading case and for the second loading case the more flexible mecha-
nical response, with enhanceld energy absorption characteristics, and thus
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greater fracture toughness, is considered. Extension of our investigation into
the previously mentioned directions are still an open area for further investi-
gations.
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NEPIAHYIX

olvfaBpmog dmoroyiopdg Pehtictonorioems KVyehOTOHV
KOTOoKEL®Y mpocoporalovedv npog Epfiovg dopdg, dra tijg
pedodov tijc aplpnrikiic OpoyevomoroEmg

‘H dvaxoiveroig adty) dpopd elg 70 mpbBAnua Pedtiomc xatavopiic Tob YAked
xoTaoxeviis, elte éx cuvbérwy DAy, elte &x xulehwTdy TowobTwY, Sk yeNoLuo-
TONGEWG TAY xoTavepowévwy TohuPabuiony teyvindy Behtictomoosws. ‘H pébodog
gmhdoewe adTdv THY TeoPAuaTwy Fyel TOyEL TeheuTaiwg peydhov Evdiapépovro,
A6y e peydhng wpoddov tév pelédwy Tomoloyiriic BehticTomoloews Bacilopé-
vov el Texvindg apuntindic dpoyevomorfsews. Aswpdvrag Ty Stadixactay adthy
Moewg 6¢ adrdpatoy, xabodyyovpévyy Hmod Tic xataoxreviic, dote adty) Vo dmoTelT
iy Badtiorny Sxpdppwsty Tne, muituyydvetar f xuAuTépa TPOGAEWOYY) T@Y GTOL-
Yetow Tijc xatacxeviig dux Ty BedtioTny cupTepLpopdy 6 cic EEwTepIxds KaTamo-
vijeelg, xal 3’ adrol Tod Tpbmov elvar Suvatdv va Oewpendi 67 avBpdmivan xota-
oxeval dpyilouy v& mpocopordlovy Tpds dvTiaToly0Vs XaTaGXEVAS TTiE QUoEWS, i8leg
oG adTog TAV uBlwy dvtwy.

To mpbBrnua tic Behriorng xaravoutic Tol VAol el Thy xataoxevnyv Suxtu-
molTaL elg THY Yevixny Tov popeny, Bactlopévyy Eml Tév Tedeutaiwy EEehifewy Pel-
TLETOTOLNGEWG ToD oy pwatog xal THe Tomoroyiug Tic O’ 8¢ty xartaoxeuvis, 7f Bon-
Ocia dpBunriniic dpoyevomomoeme. Obrw 7 dvlextiwrépa xataousvy) Emruyyd-
veta S0 peyioTomaroewe Tiig duvapiniig Evepyetuas Tiig xataoxevic év igopponiz, 7
looduvapens, 8’ éhayLoTomomoews Tig supmhnpwuatixic vepyeiag Tne. “H xardh-

3, \ e 8 e, 3 o o~ ~ L) ! kA A L)
Anhog &midoyi) ol GAuol elg Exaorov omuetov THg xaraoxeviis xabopiletar amd Tag
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petaPhnrdc Smohoyiopwod Gg adral mpoxdmTouy 2% THe Behriorng Msetwg Tod mpo-
BrAparog.

"Ex tiig Stapopodiceng 1ol mpoBifparos xal Sedopévon 87t 7 wopeh TiHg xaTa-
oxeuiig v looppomio EmBdihet Thy Suvapuxdy dvépyetay va yivetan EhayioTy, cuvdye-
T 61 1) wéodog Tév moALBabuiwy Teyxvikdv slvar 1 xaterhnhotéen péadag S Ty
¢nihewy 1ol mpoBapatog. Tooutotpbmne, 6 moruPdOptog Staywpetopos ol mpoBAY-
natog ele 8bo dmo-mpoBMuarta sivar duvatde, dmov T6 mpdrov Ymo-TEdBhnue elvar
76 wpdPAue e Sopinils dvahdcewe e xatacxevc, xal o debrepoy HrompoBAnuma
goyohettar g Ty ehpeoty xal Tov xalopiopdy Tig TeocapUoYTg TOD %aTaAAAACY DAL
%00 S Ty xatacxevy. To dehrepov Tolro mpdBAnue Emhbertar Tominde &mo 6v)-
uetou ele onpetov tic xataoxevis dia SraxexpLuéveov TEoPAnuaTOY wixpds %Alwexog
TP00JeVTINGG PeTalaihopévmy.

‘H 10080 2onppbaby clg Sudgpopa Shxd, Topddn, xudehmwra xal cuvlera Hhxa
elc TuTLRAG RaTRGHEVAG TTopadeLydTwY. Oewpoluey Tpog TOUTO, TEOBANMA peTaBal-
hopévng mapapéTpon, Tapouctdlovrog EAdytoTov Gplov TaVUeToD £vE66EMG, TepLypa-
popévon amd yapaxTneLeTXOV dvuepa petaBuilopévne évtdoews amd Bésewg clg
Oéoty nal 2Eaprpévon dmd TG YaPAXTNPLOTIRGG PETAPANTAC THG XaTaoXEVTS, ol
omoion xabopilovy Ty pixpodopiy Tob GAwxol Te.

To mpdPapa 2rayrieromooswe e évdboews Tob bAxol, GUVaETToEL Exppa-

szov Bacilopévay el Toe maprpopedoeLs, ExppdleTal GUVOTTTIXGG WG:

max min {ﬁ(uyp,“) =11 (G(U),P,“)—I(U)} (1)
[e(x),a(x)] € Ayq.xEQ u €Uy

6mov Aaa 8ide 7dg Emrpemopévag Tipdg TEY peTalAnTéY Ymoloyiowol, al émolal,
A 3 ) I 2 14 ~ \ A % ! ~ bl A
O7d Y wpobndleowy BT Lyreitan xataoueud) wi Ty peylotyy palav V, éxppdlovran

&g N oyéoug:
Aga = { p(x), a(x), XeQ Tor0bTov Hote fde <V,0<p=<1 } (2)
)

‘H ovvorunh) Suvapund) evépyeia T1(u,p,a) ouvrifertar dmd iy muxvéTyTa Evep-
vetag TT(e(u),p,0), %ol Tov Gpov 1(u), v Suvapuxiy Evépyetay éx tijc popricews, Evid
7N Uaa 8i8erar amd wipv @low 1ol #Eetalopévou mpoPrpatos.

Avd ypaupnds EhaoTindg naTro%eVdg %ol mxpdc petatoniosis 1 oxéoig (1)
YpbpeTaL:
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.o n;g;jm{ 2§ Biui(x,00x), a(x))e.,<u)am(u)dQ—I(u)} 3)

AvtioTolymg 10 TEbBAPYL THY TacEWY AdpBAvEL TV LopOhY:
v v p

min min 3 e o o 4
[o(x),22(x)1 € Ayg ceum{ 73 Cimix,p () 4() i o dQ} ®

e v ¥, \ / ~ )_ ! A U ) \ e
6mou Laq elvor 10 Gdvodoy TGV EmiTpemouévey Tdoewy xol loydet, i whdov, ) cuv-

O#»n toopporing:
dive +p =0 (5)

Awg v émiduaty Tob mpofinuarog dmobéropey 871 9 munvbTNg T xaTacxevic
Eapriron GTd The TomIXAS TIdG TV GUVONXREY T xaTaonevTic, fror p(x) = fla(x)].
A v Egappoyiy Tob meoPMuatog, T Bonbeia TévV Tomindy Tipéy TV ou-
vapThoewy adTtéhy drocuvdéopsy T0 Te6Rhnua, AapBdvovree Sid v oyéawv (3) Thv

svbhovbov oyéouy:

max min E; 3 (1) & =
- S - UGUM{TS 1 (%,6(x),2(%)) i(0) zia(u) AQ l(u)} (6)

vl 1 Ty ooy (5) THv dvricToLyov:

min min min (G 5 61 dQ 7
p(x) € A «(x)€A,(p) Ge—fad{ S e el } g

né Tog xataAhArovs Tipag i Tag petafBhnTag A, xal A, dvrieTolync.
>ANaGovrag Ty Sadoy iy ol Seutépou xal Tpltov TedeaTol cig Tag oyéaeig (6)

rob (7) Eyopev tag dxohovliovs dplotines oyéozig:

. 1
max  min max —Ejja(x,p(x),0(x)) sij(u) e(u)dQl —1(u } 8
o(x)€ A ueUaa{g{ams to(x)=f(a(x)) 2 ki e e } e

min min {({ ( min -};Cijkl(X,p(X),a(X)) Gij Gkl dQ}} (9)
QO Yy )St

p(x) €A, o€Zyq |0 ly(x o(x)=f(x(x)) <
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*Ex 7ij¢ tedevtatag Sapoppmdoemg Tob wpofMuartos Pehtiotns Aoewe cuvdye-
TaL ) &pecog iepapyind) Emavakymrind) oTpatnYid) Aoewg Tou. ‘H dowtepunn peyr-
oToToineLg B GvricTolywe EhayLoTomolnsls TGV cuvapTHoEwY civar Suvatov va Avfoly
OO TNV popiy TAV dmocuvdedepévwy oTolystmdBy meproydy. ‘H Seutépa Babuic
7ol mpoPAfparos EhayLeTomonoens EmhdeTat el v otaluyy Tig xataoxevie, TV
Borbely ororyetwddy memepacuévev xmdmdy Yevixiic ypficewe. TAppdrepa T& Gver-
Tépw OmompofMpara Emhbovrar i Sobeioay Suxvopmy muxvétnTog p(xX), f bmoln
mposapubdleral xataAAgAwg Sid tHg dmhdceme Tol ExdoToTe HompPoPALaTOS TRM-
¢ Babuidoc.

Ave Thy mepinTmoty Tév Emvopévey meolAnuatwy elc v Epyactay adthy Yi-
vetot Sextov 6Tt 7 petaforh Tob tavuetod Ejji (a/Xx) 8tv elvar dvahutinde yvoory.
A v TNy Enthuciy Tob mpoPApatog xaboptleTar povadirta dvrimposwmeuTiny
xugelle Thg omotag elvar yvworal al pnyaviral i8tdryreg, xal 76 mpoBAua EmhdeTor
S mwapeBohijc Evdiapéowy TIdY peTaBoAdv TEY AvTiaToly WY TapapéTewy Th Bon-
Ocie mwvaxomonuévey petafordv. *Ev cuveyela, Td SeutepoPdfuia mpoxdmrovra
OmompofMparta dxppdlovrar Gc wi yeaupixal xal mbuvov wi Sxpoptonuor Tipal,
al 6eolat TEOXVTTTOUY &% THG GVTLETOLY OV YPALULLOTIOLGEWS TEHY CYETIRGY TEPLTTM-
oewv, elg TpémoV hote va Tpoodioptluvrar ol Exdetote Tipal Tob Tavueted Kk @
708 Gk, G¢ adral mTpoxdmrovy &nd Ty Exactore énilucty Tol mpwToBadptov Tomi-
%00 TpoPAnpaTog.

‘H &xgppasic tol diyopiuov i moruPaludwtiic Moeswg dvamticoeTar he-
nrousp@e elg Ty Epyactiav. Av éxdotny Babuida EravarPewe dptletar orolyelddng
pIxp& To66TNG TG cuvapTicews EMéYy oy, 1) dmola bptlel TO Tépag TAY EmavaknPewy
xal TV 60YxMow Tig Moewg mpds THY dAnBF TRy e

‘H épuppoyn tic nedbSov yiverar eig xudehdwrae xataoxevds, ai émolat wpo-
copotalouy u tag Sopas &Y EuPlwy vty elg Ty pdaw. Av’ Eyxapctws lobrpomoy
OA6y, Omd ouvbixag Emnédov mapapoppmoewe, 1 xatacTaTinl cYéotg LeTakd TGV

TAGEWY %ol TUEAULOPPHGEWY didetar de dxorotfuwc:

- E(x) —%:)) 0 o
a || B s s & (10)
Txy (o) Yxy

0 0 2(1-v())

Mepartépem Seybuclo Bre 16 Ghxdy Eyer xudehdwty pixpoxatacrevny, &x-

ppalopévyy Omd Tic oyéoewc:
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E(a) = Egk, {i}z (11)
Ps

émov a = p [ps Exppalel THY oyeTIRIY TUXVOTYTA TOL OAtxoD.
Awg xudedwta YAk ut Quoahidug opeiic cloduousdy ywviéy, T& ot Sidouy
oovleta DAud pe dpvyrixodg Aéyoug Poisson, 7 mponyouuévy oyéorg (11) Stderar

OO TNV TPOGEYYLOTIXNY LOpPPNV:
E=aE; 0 <a=<1.0 v= g7af. (12)

To Shxa adro elvoe Aav Evdapépovra bt dvrioToryoly el xataonsvdg pé
apvnTIndy Adyov Tob Poisson, 6 6molog dmavrdtar yevindis elg v Ay 16y EuBlawy
VTV,

Qg mapdderypa Epapupoyiic Tis ucBédov O Emrvby croiyerddec mpbPANpa Beh-
tlotg Suonduntov ¥ edxdpmrov xatacxeviic, ti) Bonbele Tod dryopiBuov Tl elcu-
xBévrog =i 76 &pbpov. Ado yapaxtnproTinal TepinTdoels TpoTiTWY GAéV Oewpobv-
Ton S Ty Sepbppwory Tob xaradihon HAuxod, Htol, elte ohvBeta Dk p dove-
poedelc poppag xeviv pe eloeyobong yoving, T& oot elvor eidued Gk mapovoid-
Covta dpvyrinode Aéyoug Poisson, elre HAua dmaxobovra el Ty oyéow (12). Eic
TAG TEPITTAOGELG AdTRG T& &PYLkd Xl TEMXA TTopaL0pPULEVE GY AT TEY TPoBAY-
paTey TV Siaxexpiuévev xatacxevdy didovrar f Bonbely ypapundv Siadiascidv.

Al peratorioelg xhpaxolvrat oxeTinde mpds T dpyindy oyFiua, vé 1o ioTopixdy
e petafoliic T TuxvéTTOS THG XaTAoKEVT G peTd ToD ioToptxod THe peTaBoldic
g duoxapding xabopiler v émavadymruay Swdinasioy 8’ éxdotny mepinrwow.
Ei¢ ta mapadelypata adra amhal Soxol elg éninedov tdow poprifovrar &nl Twvog TGV
ouvbpwy TV xal xafopilovrar éx Téy mpoTépwy Td dve 7 xdTw Spre peTaBoliig T
AXPAXTNELETIRGY TwY O’ Exdatny TepinTwow, O¢ cUVapTHces TGY dplwy petafo-

AGV TéV {StothTey TAY HAEV.
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