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oY=IKH.— The Concept of Entropy in Quantum Statistical Infor-
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Information Theory was born in the fourties as the science of
handling and transmission of information data. Since then important
developments have been achieved in various directions of the theory.
An area which will probably be very important in future for Informa-
tion Theory is the set of problems on the quantum level related to the
production of the information data and the influences to which they are
subjected during the above mentioned processes of handling and trans-
mission.

Of course, the idea of quantizing the output of an information
source is not new in the Information Theory [1] but the rigorous appli-
cation of the principles of quantum theory throughout the areas of Infor-
mation Theory where this is purposeful and physically feasible is still
an open problem. Also the mathematical tools have not yet been worked
out. For the sake of definiteness and to clarify the ideas let us mention
the following examples where Quantum Physics is in fact an inseparable
ingredient of the Information Theory processes:

(i) It is a generally accepted fact that the visual receptors can be
activated by the absorption of a single quantum and thus they can
be considered as single quantum counters. For example, at
night time a receptor might catch the light quanta at the rate
of about one per hour and when playing on the sunny summer
beach of Patras the photon registration rate might reach hun-
dreds of counts per second [2].

(i) A photomultiplier has the possibility to produce an observable
output if it is excited by a single photon.
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(iii) A Geiger - Miiller tube detects usually single y- quanta or single
charged particles entering its active region.

(iv) The Josephson contacts constitute another important example of
electronic devices in which quantum effects determine largely the
output of the information source [3], etc.

All these devices constitute sources which by means of known pro-
cesses give rise to a more or less well defined output which
may be the subject of the main interest of Information Theory in many
instances. The words «more or less» above have been stressed. This is
not accidental: while the usual information theoretical quantisation of
the output of a random source is a useful mathematical technique, the
quantum nature of a physical information source output is fundamentally
crucial to the mathematical analysis and to the interpretation of the

information about the phenomenon.

It is, therefore, clear that Information Theory on the long range
will have to adapt at least a part of the required mathematical tools to
the conditions imposed by the quantum behavior of the ultimate consti-
tuents of the information sources when they cannot be described by clas-
sical Statistical Mechanics.

To make this statement clear it is sufficient to realize that the
fundamental equation of Information Theory:

I(x)=— %Pn (x)1n P, (x) (L. 1)

will acquire a new dimension when the probability, P, (x), for the event
x is subject to the principles of Quantum Mechanics.

Moreover, since P,(x) is directly related to the entropy of the
system under consideration there will be needed sufficient clarification
as to what sbould be the meaning of entropy of a quantum system com-
posed of a small number of particles.

The present paper is organized in 6 sections. In section 2 the
Uncertainty Principle is used to calculate the entropy of a system of
given degrees of freedom. Section 3 gives the properties of the calcu-
lated entropy. The entropy production in a system interacting via a
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complex Hamiltonian is given in section 4. In section 5 the theory is
further elaborated for the calculation of the internal and external entropy

productions. Finally, in section 6 some remarks and conclusions are given.

2. UNCERTAINTY PRINCIPLE AND ENTROPY

Let us consider a system producing information by means of the F
degrees of freedom of u particles. By this we mean, for example, the
information produced by the appearance of a number of particles in an
elementary volume of the phase space.

It will be supposed that each of these particles possesses a certain
number of degrees of freedom. We shall factorize, therefore, the total
number of degrees of freedom, F, in the form:

F=2vNu 2.1)

In (2. 1) v is the dimension of the physical space, N the number of
possible quantum mechanical degrees of freedom per dimension and
particle.

In contemplating the application of the Uncertainty Principle for
the calculation of the entropy we have to specify completely our under-
standing of the uncertainties of the relevant physical quantities.

First it is assumed that the Uncertainty Principle applies experi-
mentally to directly observable quantities.

By this statement the fact is expressed that every time in experi-

ment is measured the total momentum uncertainty. This uncertainty, Ap,
can of course be made identical with any projection Ap_ | Apy, Ap,,
provided the appropriate axis rotation has been done, but even then Ap
does not cease to be the total uncertainty of the linear momentum, the
projections on the other axis being equal to zero. This can be made even
clearer by considering the gedankeuexperiment of fig. 2.1:
Assuming that the resolving power of the lens is the same in all
directions, the observation point of the scattered photon at P will be
found inside the sphere of radius Aq~ A/sin [3], ¢ where A is the wave
length of the photons scattered.

On the other hand the uncertainty of the momentum is calculated
from the relation p = h/A, where the wave length A corresponds to the
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total momentum but not to a particular component. The result is, of

course,
Ap - Ag>h. 2. 2)

The hypothesis of the statistical fluctuations leading the formation
of dissipative structures as those proposed by Prigogine [6] is used in
connection with the Uncertainty Principle to calculate the entropy of a
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Fig. 2. 1. The resolving power of the lens, L, is Aq and equals the
radius of the uncertainty region. The shape of this region depends
among other parameters on the resolving power of L, along the z-axis.

quantum mechanical system of particles. The first assumption made here
is that the physical mechanism according to which ordered motion
energy is generated in a particle system consists of the cooperative addi-
tion of the statistical fluctuations in position and momentum coordinates
of a sufficiently large number of particles.

The second assumption is that the uncertainties Ap, Aq in the
coordinates of the various degrees of freedom of a particle appear after
each collision as a consequence of the Uncertainty Principle indepen-
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dently of whether the system is being observed or not. This is in
accordance with the fact that to a given eigenvalue of, e.g., the
momentum operator is associated a root mean square deviation which is
calculated with the help of the density matrix of the system. The
uncertainties are independent of p, q. The third assumption is that the
uncertainties, as mentioned above, appearing in the relation Ap-Aq_>h
correspond to the absolute value of the vectors to which they refer.
This expresses the fact that the uncertainties are isotropically distribu-
ted around the point of collision.

Let the system consist of s particles. The phase space, Rf, has the
dimension f = 2vs, where v is the number of dimensions of the physical

- -
space. If p,, q; are the momentum and the position vectors of the i-th
particle, then the statistical weight AI'; is given in the classical case by

S N

ATy = TTTT (Ap,- Aay /). (2. 3)
The quantity AI'; to be calculated on the basis of the Uncertainy Princi-
ple is usually called the statistical weight of the system of the f degrees
of freedom.

Since the visual receptors interact with single quanta in the same
way as in the case of any other macroscopic systems of degrees of
freedom, the present situation may be considered as a macroscopic
system. This fact justifies using AI'; as the macroscopic statistical weight
of the corresponding state of the f degrees of freedom, although Ap, Aq
obey the Uncertainty Principle.

In the quantum mechanical case the space R? has the dimension
Q = 2vsN, where 2N is the number of quantum mechanical degrees of
freedom corresponding to each dimension of the space (for classical
point particles 2, for quantum mechanical particles 2N). T'he statistical
weight, Al'g, in the present case will be defined in polar coordinates by

SN p‘i"j‘ q'~1 v—1 . . F—
AFg = T <— - TT (sindy sing;)’ " A¥; Ag; - Ap, Aq,/ h) (2. 4)

i=1 h =

The space R? is generated via the prescription for the definition of
the Wigner functions. To proceed, the distribution function of the par-
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ticle system in the space of the uncertainties is needed. In contrast

to the classical case, in the quantum case the distribution function,

- - - -
0, (P, -+ Qi 1, -+ asx) Will depend not only on {pi, qi} but also on

the fluctuations {Api - Aq, = h—}—ai}. This fact emerges naturally from
the relation:

> h = - h >
-¥le+sk). .. Yla+=k)|,
2 2
I = ; ol . .
where 5 ks ( can be visualised as the uncertainties in question, if by

a slight change of the above definition the k-integration is eliminated.

The distribution function will in general be defined on R?® R,
where R2?' is the space of the action uncertainties, ai=Api-Aqi/h.
Obviously, Ei>0 for all i. For the present only the &’i-dependent part
of the distribution function is of interest to us.

- >
Let g(p,, ...p,) represent the probability for the event that from
a sub-set A = R2® of the fluctuations a macroscopically observable
cooperative phenomenon emerges. Since the fluctuations are stochastic

=» ~ ~
and o,(p,, ... Qg3 %1, ... asx) is independent of the polar angles, g will
be assumed constant on A.
Next the relation o g - AI'g=1 is used from which it follows that [4]
sN =]
g- Tl (p:_l qiv_l/hv_l' d;
= —=1 (2. 5)

05 s
m (Ap; - Ag;/ h)

In (2.5) the factor g accounts for the fact that a much larger ele-
ment, Al'g, of the space R? is required in order that the cooperative
fluctuations be included in this space element,
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The Uncertainty Principle is written down for each pair of degree
of freedom. According to the definition of the Uncertainty, «;, the

equality i
Ap,- Aq,=h-+aq, (2. 6)

results from the Uncertainty Principle.

3. SOME PROPERTIES OF THE ENTROPY

Taking the product of all the equalities with respect to i the
expression is obtained

SN

T, dai/b) = TT (14 a); a0 = /b 3. 1)
Therefore, {ai} is for the present physically more relevant than
{Ap,, Aqi} and o, is normalised to the unity on RY® = RY"|h, where h
is Planck’s constant.
From (2.5) and (2. 1) it follows, after normalisation in the cell
o < A;, that

0 = {ji [In(14 A)] (1 +0h)} : (3.2)

Since o, is approximately equal to the distribution function of the
uncertainties {ai} according to (2.5), the density distribution, S(ay, . . . asx),
of the entropy in A92' can be expressed as usual through the relation

S(ag, ... asx) = —o,lng, =

=1

= —;S%m [(1 4+ ) ln (1 -+ A)] {ji(l + a)In (1 + Ai)} . (3. 3)

It can easily be shown that S(o;, ... asy) has an extremum. The
sufficient and necessary conditions for this
0S oW oW )_ 02S

- (0011 o W= 0, 0 (3. 4)

6(11 1

-1

where W = {f[(l + i) In(1 -I-Ai)} ’
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lead to the equation

'ij(1+ai)1n(1+A;) Sk (3. )

The quantities {ﬁi/i=<sN} determine the position of the
extremum in A9*. This is indeed a maximum since the condition

2
0W> > 0 for all 1. The
dal

entropy, S, of the system is obtained by the integration in A% and mul-
tiplication by the number of dimensions, v, of the physical space,

0%S/0a? is satisfied as it is seen from (

A, Asn
S=vf al...fdasNS(al,...asN). (3. 6)

v

Assuming that A;= A for all i< sN, we get the expression

Q|2 , 1 exp(@Q il
b——?[Q—f-Z*l_*_a In (14 3) 3. 7)

The entropy, S, as it is seen from (3. 7) is not an additive quantity,
if the number of degrees of freedom, Q, is such that 2vQ—!=£0.
The entropy of the system has in general a minimum whose posi-

tion and value are functions af a. For a = 0, it follows that
(0S/6Q) =0,  (82S/0Q%) > 0. (3. 8)
From (3. 8) it follows that for one particle
© = 2v: (s = 1) (3. 9)

and consequently, N =1 for a=0.

The physical interpretation of (3. 9) is that the maximum order in
nature is observable for Q = 2v, because at Q = 2v the entropy attains
its minimum value.

For a classical point mass particle the space must be observable
as three - dimensional,

Q=2-3=6. (3.10)

In relativistic quantum mechanics new degrees of freedom appear
in addition to those of classical mechanics. The corresponding variables

are, e. g, (¢° d', ¢% @® and (p% p', p? DP%).



94 IIPAKTIKA THIZ AKAAHMIASE AGHNQN

In other situations in which the particles’ identities become also
variable and, therefore, the particle acquires internal degrees of freedom
the number of degrees of freedom increases, e.g., spin, magn. quantum
number, space parity, helicity and isospin, charge, charge conjugation,
strangeness. This gives in total 16 degrees of freedom per particle but
it is not clear that these are all.

S
4

3 A=0

| L
>
1]
(9]

0 q 2 3 4 5 o

Fig. 2.2. A plane cut of the entropy distribution density in the action
uucertainty space, AQ/v, as function of a. The flat maximum implies high
probability for fluctuations. The action a; is measured in h units (Planck’s
constant). The larger the uncertainty @ determining the maximum position
the larger the expectation value of the fluctuating physical quantity.

Under physical conditions in which only the first 8 degrees of
freedom appear, the number of dimensions of the physical space must

equal four
Q=2-4=38. (3. 11)

The assumption that the value 3 =0 has been considered, is
supported by the fact that the probability density distribution introduced
by Einstein

Pag, ... asx) =~ exp [S(og, ... asy)] (3.12)

exhibits the sharpest maximum at a; = 0 for all i <sN.
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Fig. 2.3. The entropy for a =— 0 exhibits an absolute minimum if the

number of degrees of freedom equals 2v. For larger uncertainties, a, the

entropy minimum diminishes and its position shifts toward larger numbers
of degrees of freedom. v is the dimension of the physical space.

It follows from (3. 7) that for Q— large number, the entropy becomes
additive. Macroscopically S is clearly additive taking the form

g - %sz, (3.13)
where vsN is the total number of quantum mechanical degrees of freedom.

By relating the entropy to the temperature the relation
il
AE = ?szkT (3. 14)
is obtained.

In another treatment the entropy appears as the imaginary part of
the expectation value of a non-hermitian Hamiltonian.
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4. ENTROPY PRODUCTION IN DISSIPATIVE SYSTEMS

The way for calculating the entropy used in section 2 is based on
a number of well known assumptions. The most important from the
point of view of the present section is that the degrees of freedom do
not interact considerably with each other. By the term «considerable
interaction» is understood that the action of the force of one on another
degree of freedom is very small compared to the uncertainties of the
actions.

When the interactions are not negligeable in the above sense, then
the statistical weights cannot be calculated as in section 2. Moreover,
there is no general method for calculating the probability of each
quantum state in the density matrix.

Since the probabilities in question are related to the entropy pro-
duction during a dissipative process there is considerable interest to have
a method for calculating them. To make this statement clear let us con-
sider a quantum mechanical system of N particles described by the

Liouville - von Neumann equation
io =He—oH, h=1. (4.1)

H is the Hamiltonian of the system and o(xy, ... xn, t) the density

matrix.

Let us suppose that the Hamiltonian has the form
H = H—u(ty—t) Hy+iu(t —tg) Hy—iu(t; —to) Hy; ti>te, (4.2)

where u(t) is the unit step function. From this definition of H for time
t<t, the Hamiltonian is hermitian, H = H*. For t>t, the Hamiltonian
ceases to have the property of hermiticity since the part H; of it be-
comes imaginary and Ht £ H, t>t, and t<t;.

It is clear from the definition that for t >t, the eigenvalues of H
are complex and the energy is obviously not conserved. The gain or loss
of interaction energy by means of collisions with other degrees of free-
dom of the system has as a consequence * the production of positive or

* See Prigogine, ref. 5, p. 24.
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negative entropy. As an illustration, Prigogine mentions the «Bénard
problem» in classical hydrodynamics: when a horizontal fluid layer is
heated uniformly from below the so called adverse temperature gradient
is created. For small values of the temperature gradient the fluid
remains at rest. As soon as a critical value is reached there is an abrupt
inset of macroscopic motion (thermal convection flow).

Before the inset of the macroscopic motion the whole energy was
in the form of thermal motion. This corresponded to a definite entropy
of the system. After the beginning of the thermal convection a part of
the energy was in the form of ordered macroscopic motion. If this energy
is Eu, then the negative entropy production is AS=—Ey; /T, where T
is some appropriate temperature.

We shall now try to give an approximate description of the entropy
production on the basis of Quantum Mechanics.

Let us suppose that the thermal convection sets in at the time t=t,.

The system is described by the equation
io = Ho—oH'; H's£H. (4. 8)

It has been shown [7] that if H is hermitian then the system is in
a steady state because the expectation value of any dynamical quantity
is constant. However, when entropy is produced this cannot be the case
anymore. On the other hand, production of entropy is connected with
energy flow from or to the system. This can be described by means of a
non-hermitian Hamiltonian.
To show this fact let us write the density matrix in the form
(t=1to=0)
o(x; X, 0) = R™'S 4, (x) ¥, (x), (4. 4)

where R is a normalization constant and {wn n €1} is a solution of the

Schrodinger equation
iy = Hy, (4. 5)
for the many-body problem.
The summation is taken over the elements of the index set, I, in
the indicated manner.

144 1980
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Next we develop o(x; x’,t) in a Taylor series

© t¥ N
e(x; x, t) = 2 o™ (x; x, 0) —. (4. 6)
v=0 i
This series converges for all t < @, because the derivatives o are
all bounded from above. This is a consequence of (4.3) and the bound-

edness of H. It is easily verified that

V.

Mmoo = S (—)l(;:) B el (4. 7)

A=0
From (4.6) and (4.7) it follows that
0 X', t) = RS Y (x) iy, (x) €160 I Ent S0t (g g

where -
¢én = Re Ky, &n = ImE, . (4. 9)

Equation (4. 8) gives the density matrix of which the diagonal ele-
ments are time dependent in contradistinction to the case of the hermi-
tian Hamiltonian. Nevertheless, the expectation values of all real dyna-
mical functions are real.

Obviously, the expectation values are time dependent, a property
expressing the fact that the system is not in equilibrium and hence
entropy production ocurrs.

Were the imaginary parts {eN,,IneI} of the energy eigenvalues all
equal to zero, then no entropy production would be possible. It is to be
expected, therefore, that en should be directly related to the entropy
associated to the particular state of the system described by the many-
body wave function v _(x).

Of course, the set {’En | nEI} may contain both positive or negative
parts and consequently o(x; x’,t) would tend to infinity in some cases
if t—> o0 . This is, however, not possible in actual systems which pro-
duce entropy. Due to energy conservation in energy closed system the
subsystem gaining energy and the subsystem losing energy will eventu-
ally come to an equilibrium such that their temperatures T; and T,
will attain the same value, T.

The time
== tl — to (4. 10)
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in which equilibrium will establish itself is related to the common
temperature, T'.

To make this clear let p; and o, be the density matrices of the two
sub-systems of the system. If H; and H, are the Hamiltonians of the
sub-system, then the common temperature T is given by

2
kN,

T = 2= Tr (o Hy) = T2 Tr (@ Hy), (4. 11)
2

where k is the Boltzmann constant and N;, i =1, 2, is the number of
degrees of freedom of the i-th sub-system. Since o;, 0, are time depen-
dent, (4.11) is a condition from which the relaxation time, t, can be
determined. After equilibrium is established the Hamiltonians become
again hermitian and the traces of the corresponding density matrices
become again time independent.

It should finally be pointed out in this connection that it is in
principle possible to get, instead of one, more relaxation times
{tu/A=1,2,...A}. This is the case if more than one equilibria exist.
Also it is possible that (4. 11) has no root at all.

Now we are ready to calculate the produced entropies in the sub-
systems. According to (4.2) and (4.11) the imaginary parts

E, = ImTr (0, Hy) and FEp, = ImTr (03 Hy) (4.12)

represent the missing parts of the real eigenvalues of the Hamiltonians.
Since the motion towards equilibrium is a macroscopic motion the above
energies El, Ez are missing from the thermal motion.
According to Prigogine * we should have for the entropies
- kN; Im'Tr (o; Hi)

AS =By [ @1 = L (4. 13)
2 Re TI‘ (QiHi)

The total entropy production is, therefore, given by

_ kN; Im Tt [(0y Hy) + (02 Hy)] .

AS = AS,+ AS,

2 ReT H
e r (Ql 1) (4- 14)
. kN, ImTr [(91 H,y) + (02 Hz)]
9 ReTr (Qg Hz) ’

* See ref. &8, p. 24.
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Using the above results we can write the complex energy of the

, @ Sl 8 )] .
itan <kN1AS ] (4. 15)

total system in the form

E = |E| exp

5. CENTER OF MASS MOTION AND ENTROPY PRODUCTION

In the foregoing section a first description was given of the way
the sub-system can produce or lose entropy. In the present section some
more details are to be elaborated. As it was repeatedly stated negative
entropy is produced if random motion energy goes over to ordered
macroscopic motion. By conveniently choosing the spatial extension of
the sub-system to be described by Quantum Statistical Mechanics it is
not difficult to identify the macroscopic motion with the center of mass
motion of the sub-system under consideration. To this end let us
consider again (4. 5) and suppose that it describes a sub-system with s
degrees of freedom.

Next we introduce the center of mass coordinates and (4. 5) takes
on the form [3]
11{! == (Hma+H111i+Hl) L (5 1)

In (5. 1) the Hamiltonians are all hermitian and the indices ma,
mi, I signify the macroscopic, the microscopic and the interaction
Hamiltonians, where by the center of mass motion is to be understood
as a wave macroscopically observable like in scattering experiments.
We next factorise the wave function such that

Wiy, - oReasn Xy Xay X 6)

(5. 2)
W(Xl, s Xs—8 t) Cp(Xlt XZ) X33 t)-
We again split H; in two parts
HI = (1~ei"’) HI + ei“’H[ 3 (5 3)

The phase ¢ has been introduced in view of (4.15). The necessity
for the complex splitting is clear from what has been said in section 4.
If the interaction splitting were real, the sub-system would not evolve
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because the density matrix to be constructed in this case would have
time independent trace.

From (5. 1) - (5. 3) we get the equations

Huma@+(1—e®) HI ¢ = Ema @ (5. 4)
and _

Hui v+ e®H ¢ = Emi ¥, (5. 5)
where

H™ = (v, Hiv), (6.6)

H{" = (¢, Hi o) (5.7)
and

E = Ema + Emi (5 8)

is the total energy of the sub-system and is defined as the above sum.

In (5. 4) and (5. ) the interaction Hamiltonians are not hermitian
and the equations describe the internal production of entropy.

From the solution of (5. 4) and (5. 5) two sets of wave functions
can be obtained {‘Pn In€ Im;} and {cpm |lm =€ Ima}. The wave functions
Yy, and @, are so combined in the density matrix that the condition is

satisfied.
Re Eum = ReE, + Re Epn . (5. 9)

Since the entropy of the system cannot decrease the sum of the
imaginary parts as functions of n and m may be constant or not.

If the sub-system is not closed, then the Hamiltonian, Hya, in (5. 4)
has to have an imaginary part Hia for the description of the external
production of entropy. The internal entropy production is given accor-
ding to (4. 14).

2 Im Tr o, (Humi + H")
kSmi ReTro (Hum+ HI)

AS = (5. 10)
The external entropy production, AScy, can then be written in

the form
2 ImTr QmH:;

Asext = mi
kSma Re l'r 0. (Hmi 1=y )

, (5.11)

where Sua. is the number of degrees of freedom of the macroscopic
motion and Smi + Sma — S.
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6. REMARKS AND CONCLUSIONS

We have analyzed the concept of the entropy in the case of quantum
mechanical information systems. It has been shown that in systems with
few degrees of freedom the concept of entropy can be well defined
of the basis of the Uncertainty Principle. This is in fact physically
possible and meaningful because degrees of freedom with zero uncer-
tainty in the variable of action have very small probability and the
entropy becomes equal to zero. Similar is the probability behavior
also in very large uncertainty values, where the entropy vanishes
again.

This result is very important from the information theoretical
point of view, because it shows that information theory can vyield
reliable conclusions even in the case of information systems of very
small number of degrees of freedom obeying Quantum Mechanics.

This conclusion is underlined by the fact that the information is
so closely related to the entropy as to obey the same equation (1. 1) as
the entropy does. On the other hand, the fact that the concept of entropy
and the Uncertainty Principle are so closely related implies the possi-
bility to give an expression of the entropy on the basis of the density
matrix obeying the Liouville equation.

The use of Quantum Mechanics enables one to show that the
influence of external forces can lead like in the Bénard problem to the
production of entropy coupled with the motion of the center of mass of
the sub-system.

Finally, it has been found that the imaginary part of the energy
plays a very important part both in the evolution of the systems and in
the determination of the entropy, thus establishing a firm link between
Quantum Mechanics and Thermodynamics.

HEPTARYIZ

‘H doyn tig épefardtnrog éxonotpomonjdn mog timoloytouov tig évroomiag
gvog ovotnuarog xfavrounyovindy Badudv élevdeoiac. *Ex tdv edoedévrov dmo-

redeopudtmv mooxvmtet, Gt dud wixeov aouduov Padudv Elevdeoiag 7 8vroomia dev
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dmorelel mpoodetinov uéyedog. *Enlong drav 6 dorduog faduav éhevdeotag icov-

Tar weog OV GeLduov dwaotdosmy Tol @uowkol yweov, tote 1) Evigomio AauPdver

ghaylotny tiwijv. *Axorovdwg &tetdlovrar al ocuvdixal magaywylc »al xatava-

Adoewg évrgomiug elg ®favrounyavixd cuotipare TEQLYQU@OUEVO VIO U1 EQULTLO-

vov dmpatdomwv Hamilton eig 10 mhaiotov tiig 8Eloddoeme Liouville von Neumann.

6.

RE'F'E'R EN CE'S

R. G. Gallager, Information Theory and Reliable Communication. John
Wiley and Somns, Inc. N. Y., 1968.

M. A. Bouman, Quantum Noise and Vision. Theoretical Physics and
Biology, Ed. M. Marois. North-Hollanc Publ. Co., p. 246 - 249, 1969.

L. I. Schiff, Quantum Mechanics. McGraw-Hill Publ. Co. London, p. 81,
1955.

L. D. Landau and E. M. Lifschitz, Statistical Physics, Pergamon
Press, p. 22-28, 1970.

For the description of the Einstein method see for example ref. 4, p. 341.

I. Prigogine, Structure, Dissipation and Life. Theoretical Physics and
Biology, Ed. E. Marois, North-Holland Publ. Co , p. 23 -52, 1969.

C. Syros, A New Description of Dissipative Systems in Quantum Stati-
stical Mechanics. Phys. Lett. 64 A, p. 17-18, 1977.



