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MAOHMATIKA.— More on automorphisms of a finite order, by
D. A. Anapolitanos*. *Avexorvdddn Um0 tob *Axadnuainod x. Pilwvog

Baoiheiov.

INTRODUCTION

In [1], [2] and [4] two quite different axiomatisations of the notion
of an automorphism of order n, for given nEw——{O, 1}, have been
presented. In [3] it has been shown that the notion of an automorphism
of order n, for given nEw—{O, 1} is mot >, - axiomatisable for any
mEw, for a very large class of first order languages. In the present
paper we use the axiomatisation that we found in [1] and [2] and we
characterise completely the existence of a model, for a given first order
theory, admitting an automorphism of order n for every finite n. We
also find a 3;-axiomatisation of this notion for a language with only
unary predicate symbols, constant symbols and no fuction sumbols at all.

In order to denote structures for a given first order language L,
we shall use tha capital letters A, B, ... For their universes we shall
use the notation [A], |B], ... respectively. For the rest of our model
theoretic terminology see [6].

Given a structure A, an automorphism of order n on A is an auto-
morphism f on A such that f"=1 and f™ 51 for all 1<{m<n where I
is the identity function on A.

Given a first order language we say that the notion of an auto-
morphism of order n, for given nEw — {O, 1} is Sm-axiomatisable if
there exists a set X of S sentences of I, such that A =B for some B
admitting an automorphism of order m iff Al=X, where A, B are

structures for L.

Definition 1: Let I de a first-odrer language and i= k.
(By L, we denote the cardinality of I, and by k the corresponding cardi-
nal. The axion of Choice is presupposed). In case the language L has less
than k variable symbols we extend the language L to a new one adding
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k new variable symbols. We identify this new language with L, because

there is no fundamental difference between them.

Now given an ordinal a < k we can define the notion of an

-
a-sequence of variable symbols of L as a function xq:a—>U

- -
where | is the set of variable symbols of L. Given x« let x«x be

-
xaU{<a, x>} where x €U .

For given n>2 we define:

1

n,1

n, m-+41

ar "

a?

—
2 — - - -
L

s ={Ixg(x!, ..., x", x) > Ix; Txa ... Ixn (@ (x2, x2, ...,
— - - — - - -
g2 aa) A @lxd, k2, . . .0 %3, 2L, BedA ... AplED, X1, 25, 0
— — —

21, xn))lfp(x;, ..., x", x) a formula of L with free
. - - —
variables from x!, x2, ..., x2, x}.
-
’Xn = = —2 -

* {BXCP(le-~.,X2yX)_‘>3X1 3X2---3xn((p(xé_axi)"'y
- - - - - - - -
X(‘:,Xl)/\fp(xﬁy Xi,.-.,XE,X;,Xg)/\.../\CP(X:,X‘ll,Xi,...,
o
x"1 x,)AA)|where A is a finite subset of
o

- - -
Xl X2 Xn e ->
U aESee *Te and @lxl, ..., %2, %) a fermula
l€kem M
. A - - -
of I, with free variables from x!, x2, ..., x2, x}.
- — >
1XE U ]X;,...,XZ‘
keu)—{()} =
s {3X1.--3Xn(Z(Xl,m,Xn)/\/\(Xs%Xj))|Z(X1,---,xn)

the conjuction of any finite subset of ]:{1’ Y X"}.

Theorem 2: Let T be a theory in a first-order language L.
T has a model A admitting an automorphism f: A —> A of order n

iff TUJ_ is consistent.

Prof: In can be found in [1] and [2].
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Note 3: Given a theory T in L and models Ai=T, Bi=T
such that A admits an automorphism f,, of order m and B admits an
automorphism f, of order n such that m<n and m does not divide
n, it is not certain that there is o model C (=T admitting an auto-
morphism g of order n and an automorphism f of order m, as the fol-
lowing example shows:

Let T be a theory in a first-order language with only non-logical
symbols a binary relation symbol < and a ternary one B;, and let T
describe models of exactly one of two sorts.

(@) AI=T, contains an infinite linear ordering and exactly two
elements which are not included in the range of the order relation, all
the other elements being linearly ordered under <. Also By = &.

(b) BI=T, contains an infinite linear ordering as well, and
exactly 3 elements a, b, ¢ which are not included in the range of the
order relation, all the other elements being linearly ordered under <.
Also B ={<a,b,c¢>, <b,c,a>, <c,a, b,>1}.

Now it is obvious that T has models admitting an automorphism
of order 2 (case a) and models admitting an automorphism of order 3
(case b), but not models admitting both. Hence TU]J, is consistent,
TU]J,, is consistent but TUJ,UJ; is inconsistent.

The problem now is: given a set XS w can we have a set of
sentences S such that given a theory T' we can say:

«'T has a model A which for each n € X admits an automorphism
of order n iff TUS is consistent»?

In the sequel we answer the above question positively.

LLemma 4: Let I, be a first-order language and A a structure
for it. Then :

(a) A is k -saturated for every k iff A is finite.

(b) Suppose i< k and o <<[A]<{2%. Then there is an k+- satu-
rated elementary extension of A having cardinality 2k.

Proof: See [b].
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LLemma 5: Suppose T is a complete theory in a first-order
language I, with a model BI=T admitting an automorphism f of
order 2. If AI=T is saturated then it admits an automorphism g of
order 2 as well.

Proof: In case i(m the result is immediate because the notion
of an automerphism of order 2 can be expressed as a Z: sentence and it
is well-known that if A is saturated then A satisfies_every 2: - sentence
which is cinstistent with Th (A) (see [3]). Here by L<® we mean the
cardinality of the set of non-logical symbols of the language.

We will try to prove the theorem without putting any restrictions
on the cardinality of L.

Let, Al=T be saturated and A =B where A has an automorphism
of order 2, f say.

We add a unary function symbol to the language of T which we
intend to interpet as f in B, denoting it by f as well.

~ We now use Lemma 4 and we get a model (B¥, {*) = (B, f) which
is |A|-saturated, and [B*| > Iil.

We now well-order [A]| and |B*| in such a way that the first
element by, in the well - ordering of [B*| is sent to an element f*(by)
by f* such that f*(by)=~b, which is possible because as we have said
(B*, i*) = (B, f).

We now use a back and forth argument as follows :

Let [, (x) be the type of by (in the language L) and consider an
element a in |A] such that A= Vi (:_1b0) (possible as A is saturated).
So (A, a, )= (B*, by).

We now consider the element f{*(b,) € |B*|] and its type in
(B*, bg), [ty say. Then there is an element awm@w, € |A] such that
(A, any) 1= T 1wg) (arpe). (It is clear that ap, % appe). Then we get
(A, avo, ar(vo) = (B*, bg, £*(bo)).

We now get the element of IAI——{abo, af*(bo,} with the smallest
index in the well -ordering of A, a, say, and its type [ap(x) in
(A, aby, at(vg)). We find, by a similar argument as above, elements
bag, £*(bay) € IB*|, ar@,)E[A]| such that

(&, dbgy gy Afr(bo)y af*(bao)) = (B*, by, bay, *(by), I* (bay) ).
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We again pick up the element of |A| — {abo, 49, At(by)) af.(bao)} with
the smallest index in the well-ordering of [A|, a; say, and we continue
this way until we exhaust all elements of |A| (possible as |A| < |B¥|).

We now define g:|A]— |A]| by g(an) = asmm, and

2 (asm(by) = an, and for cE|A| —{abo, ap‘(bo)}
g (c) = appy if cs<apw, for any a € [|A] — {abo, af.(bo)}

glc)=a if c=apwp, some a€|[A]|— {abo, ap‘(bo)} .

It can be clearly and easily shown now that g is an automorphism
of A of order 2. (of order 2 because ap, 7= as(by))-
The above proof obviously works for any Z: sentence as well.

Lemma 6: Suppose T is a complete theory in a first-order
language I, with a model BI=T admitting an automorphism f of order
n>2. Let AI="T be saturated. Then A has an automorphism of order n.

Proof: Similar to that of lemma 5.

Theorem 7: Given a set A w and a theory T in a first-order
language 1., the following two statements are equivalent.
(1) T" 4+ U J. is consistent.

neA
(2) T has a model A which for each nE A admits an auto-
morphism g of order n.

Proof: (1)=(2). There is a model Bi=T + U]J,.
neA

We then take Th (B) and let AI=Th(B) be saturated. Then as
Th (B) is complete by Lemma 6 we get that A is the required model.
(2) = (1). The proof comes immediately from Theorem 2.

Theorem 8: Let I. be a first order language with only unary
predicate symbols, constant symbols and no function symbols et all. Then
the notion of an automorphism of order n, for given nEm—{O, 1},
is 3;-axiomatisable.

Broof: Iet {PiliEI} and {Cj [ jE]} be the sets of unary pre-
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dicate symbols and constant symbols respectively, of the language L.
We consider the following set of sentenses :

X={3X1---3Xn< N xiEx; A N (A xj5Fc)
1I<i=kj<n 1<j<n kekK

/\1<jgn_l(ré\R(Pr(x,-)<——> Pr(xj+1))))|KE] and REI and K, R

finite}.
We claim that the set X, 3,-axiomatises the notion of an auto-
morphism of order n. That the set X is a set of 3; sentences is obvious.
We now suppose that A and B are structures for L such that
A =B and B admits an automorphism of order n. Let f: B —> B be
such an automorphism of order n and b & [B| such that f=(b)=s£b for
1<<m < n. Then for any sentence ¢ of X we have Bi=¢ because:

B = A(f(B) #FM)A A (AF(b) #c)
1iz£i<n 1<j<n keK

AN (A RAED) <> P AEH (1) .
1<j<n—1 reR
Hence BI=X and so AI=X because A = B.
We will prove now the opposite direction.
Let A be a structure for the language I, such Al=X. We extend
the language I to a language 1’ adding the new constant symbols
dy, ds, ..., du. Given a sentence @ € X of the form

w3 A xEx AN (AxiFc)
I<is£jn 1<j<n kekK

A A (A (Pelx) o= Pisn))

1<jg<n—1 reR

we shall use the notation ‘I’<K, 25 for the furmula

Adikd A N (A#) A A (A (Puld) < Peldsin)).
l<izEjan 1€<j<n keK 1€<j<n—1> reR

It is now abvious that for each ‘I’<K'R> there sxists a structure
A<K, > for L” such that A<K' > I=Th(A) and A<K, > I=‘IJ<K,R> ‘
So to each W, .~ we assing exactly one structure A, .~ and we
consider the family of all such structures

{Aci x> | <K, R> E Py (]) X Po (D)}
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where P,(J) and P, (I) denote the sets of all finite subsets of J and I
respectively.

We now consider the set A & P(Po(J) X Po(I)) defined as follows,
(where P(D) denotes the power set of D): A E A «= there existS an
ordered pair <k, r> such that

A={<K,R>|Agpes= AN di#=dA A diFaA A
1<izkign 1<j<n 1<j<n—1
(Pr (dj) <>y (dj+l))}'

We can now see that A has the finite intersection property.

Indeed if by <k;, r;> we denote an ordered pair that generates
A € A according to the above definition, then considering a finite set
{11, Aoy .., km}EA we can see that

A EMNAN...NAn where <K,R> = <Uikis, Uirig >
<g,p> = W5 1<i<{m }1<i<{m}

Hence we can extend J to a non-principal ultrafilter F and denote the
corresponding ultraproduct by B’. We can now use -E6s Theorem (see
(5) and (6)) and get that

B’I=Th(A) and
B={W o o> | <K, R> € Po())xPo(D)} .

We now define a function f: B’—> B’ by

£(d7) = d, for all 1<i<<n—1
f(ds) =d; and
f(b)=b for all be|B|—{a’, ..., dy}
where d;, ..., ds denote the interpretations of dy, ..., dun in the
structure B’.
Now it is obvious that the function f is an automorphism of order n.

If we consider the structure B’ restricted to the language 1, we get a new
strtucture B such that B=A and B admits an automorphism f of order n.
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NEPIAHYIZ

Eic ta [1], [2] ®al [4] &ovv magovoiaoti dvo tedeing dragogetinal diw-
potxomowoelg thg évvolag €vog adtopop@iopol memepaouévig tdtewg. Eig tv
goyaotav [3] Eniomg Exelr amodeiy i Gt 1 Evvolo €voc adromopglopod tdfewe n,
6mov n uoxdg Gotduog didgogog Tob 1 nal tol 0, v elvar Sm - GElwpatino-
noujowum, €ig tag mAelotag T@V meoumtdoewv, Gmov M EIvOL TLOY QUOLKOG
S5 ’
aouiuoe.

Eig v magotoav 2oyaciav yonciuomototuey 10 6UVOAOV T@Y TOOTAGEMY
ue 1o Gmotov Gfiwpatwomonicape TV Evvolay ToU adtopmoo@lopod TtdEewe n,
omov n Quotxds GoLduog Sidgpogog Tod 1 xal 0, xal Emitvyydyouey Vo yaooxTNOl-
oopev mAnowg, dedouévng wdg mowtofaduiov dewoiac T, v UmagEwv évog wov-
téhov g 10 Gmolov va Séyetal Eva adropog@oudv tdEewg n S xdde n >0, 1.

3 P 3 &, N <’ ~ 9 ’ ~ 5

Eniong dmodeinviopey thv Umagbv uidg 3 - aElopatinomonioews tig dvo-
téow avageodeiong vvolag S mowtoPfaduiove yAdooac mepieyovoag Hévoy pnovo-

ueAij xatmyoonuatine ovuBora d¢ xai oradeod ovupora.
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