ΜΑΘΗΜΑΤΙΚΑ.— **More** on automorphisms of a finite order, by **D.** A. Anapolitanos*. ἀΑνεκοινώθη ὑπὸ τοῦ ἀΑκαδημαϊκοῦ κ. Φίλωνος Βασιλείου.

INTRODUCTION

In [1], [2] and [4] two quite different axiomatisations of the notion of an automorphism of order n, for given $n \in \omega - \{0, 1\}$, have been presented. In [3] it has been shown that the notion of an automorphism of order n, for given $n \in \omega - \{0, 1\}$ is not \sum_m -axiomatisable for any $m \in \omega$, for a very large class of first order languages. In the present paper we use the axiomatisation that we found in [1] and [2] and we characterise completely the existence of a model, for a given first order theory, admitting an automorphism of order n for every finite n. We also find a \sum_1 -axiomatisation of this notion for a language with only unary predicate symbols, constant symbols and no fuction sumbols at all.

In order to denote structures for a given first order language L we shall use the capital letters A, B, ... For their universes we shall use the notation |A|, |B|, ... respectively. For the rest of our model theoretic terminology see [6].

Given a structure A, an automorphism of order n on A is an automorphism f on A such that $f^n = I$ and $f^m \neq I$ for all $1 \leq m < n$ where I is the identity function on A.

Given a first order language we say that the notion of an automorphism of order n, for given $n \in \omega - \{0, 1\}$ is \sum_m -axiomatisable if there exists a set X of \sum_m sentences of L such that $A \equiv B$ for some B admitting an automorphism of order m iff $A \models X$, where A, B are structures for L.

Definition 1: Let L de a first-odrer language and $\overline{L} = k$. (By \overline{L} we denote the cardinality of L and by k the corresponding cardinal. The axion of Choice is presupposed). In case the language L has less than k variable symbols we extend the language L to a new one adding

^{*} Δ. Α. ΑΝΑΠΟΛΙΤΑΝΟΥ, Περὶ αὐτομορφισμῶν πεπερασμένης τάξεως.

k new variable symbols. We identify this new language with L, because there is no fundamental difference between them.

Now given an ordinal $\alpha < k$ we can define the notion of an α -sequence of variable symbols of L as a function $x_{\alpha}: \alpha \to U$ where U is the set of variable symbols of L. Given x_{α} let $x_{\alpha}x$ be $x_{\alpha}U\{<\alpha, x>\}$ where $x \in U$.

For given $n \ge 2$ we define:

$$J_{n,1}^{\overset{-}{x_{\alpha}^{1}}}, \cdots, \overset{-}{x_{\alpha}^{n}} = \{\exists \; x \; \phi \, (\overset{-}{x_{\alpha}^{1}}, \; \ldots, \; \overset{-}{x_{\alpha}^{n}}, \; x) \rightarrow \exists \, x_{1} \; \exists \, x_{2} \; \ldots \; \exists \, x_{n} \, \left(\; \phi \, (\overset{-}{x_{\alpha}^{1}}, \; \overset{-}{x_{\alpha}^{2}}, \; \ldots, \; \overset{-}{x_{\alpha}^{n}}, \; x_{1}^{1}) \wedge \phi \, (\overset{-}{x_{\alpha}^{2}}, \; \overset{-}{x_{\alpha}^{3}}, \; \ldots, \; \overset{-}{x_{\alpha}^{n}}, \; \overset{-}{x_{\alpha}^{1}}, \; x_{2}^{2}) \wedge \ldots \wedge \phi \, (\overset{-}{x_{\alpha}^{n}}, \; \overset{-}{x_{\alpha}^{1}}, \; \overset{-}{x_{\alpha}^{2}}, \; \ldots, \; \overset{-}{x_{\alpha}^{n-1}}, \; x_{n}) \} \, \Big| \; \phi \, (\overset{-}{x_{\alpha}^{1}}, \; \ldots, \; \overset{-}{x_{\alpha}^{n}}, \; x) \; \; a \; \; \text{formula of } \; L \; \; \text{with free} \; \\ \; \text{variables from} \; \overset{-}{x_{\alpha}^{1}}, \; \overset{-}{x_{\alpha}^{2}}, \; \ldots, \; \overset{-}{x_{\alpha}^{n}}, \; x \, \Big\}.$$

$$\begin{split} J_{n,\,m+1}^{\overset{\rightarrow}{\rightarrow}} & = \big\{\exists\,x\;\phi(\overset{\rightarrow}{x_{\alpha}^{1}},\,\ldots,\,\overset{\rightarrow}{x_{\alpha}^{n}},\,x) \to \exists x_{1}\;\exists x_{2}\,\ldots\,\exists x_{n}\big(\phi(\overset{\rightarrow}{x_{\alpha}^{1}},\,\overset{\rightarrow}{x_{\alpha}^{2}},\,\ldots,\,\overset{\rightarrow}{x_{n}^{n}},\,x_{1}) \wedge \phi(\overset{\rightarrow}{x_{\alpha}^{2}},\,\overset{\rightarrow}{x_{\alpha}^{3}},\,\ldots,\,\overset{\rightarrow}{x_{\alpha}^{n}},\,\overset{\rightarrow}{x_{\alpha}^{1}},\,x_{2}) \wedge \ldots \wedge \phi(\overset{\rightarrow}{x_{\alpha}^{n}},\,\overset{\rightarrow}{x_{\alpha}^{1}},\,\overset{\rightarrow}{x_{\alpha}^{2}},\,\ldots,\,\overset{\rightarrow}{x_{\alpha}^{n-1}},\,x_{n}) \wedge \Delta\big) \, \Big| \; \text{where} \;\; \Delta \;\; \text{is a finite subset of} \\ U \ J_{\overset{\rightarrow}{\alpha}^{n-1}},\,x_{n}) \wedge \Delta\big) \, \Big| \; \text{where} \;\; \Delta \;\; \text{is a finite subset of} \\ 1 \leqslant k \leqslant m^{\vec{n},\,k} \quad \overset{\rightarrow}{x_{\alpha}^{n}},\,\ldots,\,\overset{\rightarrow}{x_{\alpha}^{n}} \;\; \text{and} \;\; \phi(\overset{\rightarrow}{x_{\alpha}^{1}},\,\ldots,\,\overset{\rightarrow}{x_{\alpha}^{n}},\,x) \;\; \text{a formula} \\ \text{of L with free variables from} \;\; \overset{\rightarrow}{x_{\alpha}^{1}},\,\overset{\rightarrow}{x_{\alpha}^{2}},\,\ldots,\,\overset{\rightarrow}{x_{\alpha}^{n}},\,x\big\}. \end{split}$$

$$J_{n}^{\overrightarrow{x}_{\alpha}^{1}, \dots, \overrightarrow{x}_{\alpha}^{n}} = \bigcup_{k \in \omega - \{0\}} J_{n, k}^{\overrightarrow{x}_{\alpha}^{1}, \dots, \overrightarrow{x}_{\alpha}^{n}}.$$

Let
$$J_n = \left\{ \exists \ x_1 \dots \ \exists \ x_n \left(\sum (x_1, \dots, x_n) \land \bigwedge (x_i \neq x_j) \right) \ \middle| \ \sum (x_1, \dots, x_n) \right.$$
 the conjuction of any finite subset of $J_n^{\mathbf{x}_1}, \dots, x_n \right\}.$

Theorem 2: Let T be a theory in a first-order language L. T has a model A admitting an automorphism $f: A \rightarrow A$ of order n iff TUJ_n is consistent.

Prof: In can be found in [1] and [2].

Note 3: Given a theory T in L and models $A \models T$, $B \models T$ such that A admits an automorphism f_1 , of order m and B admits an automorphism f_2 of order n such that m < n and m does not divide n, it is not certain that there is o model $C \models T$ admitting an automorphism g of order n and an automorphism f of order m, as the following example shows:

Let T be a theory in a first-order language with only non-logical symbols a binary relation symbol < and a ternary one B₃, and let T describe models of exactly one of two sorts.

- (a) $A \models T$, contains an infinite linear ordering and exactly two elements which are not included in the range of the order relation, all the other elements being linearly ordered under <. Also $B_3^A = \varnothing$.
- (b) $B \models T$, contains an infinite linear ordering as well, and exactly 3 elements a, b, c which are not included in the range of the order relation, all the other elements being linearly ordered under <. Also $B_3^B = \{ < a, b, c >, < b, c, a >, < c, a, b, > \}$.

Now it is obvious that T has models admitting an automorphism of order 2 (case a) and models admitting an automorphism of order 3 (case b), but not models admitting both. Hence TUJ₂ is consistent, TUJ₃, is consistent but TUJ₂UJ₃ is inconsistent.

The problem now is: given a set $X \subseteq \omega$ can we have a set of sentences S such that given a theory T we can say:

« T has a model A which for each $n \in X$ admits an automorphism of order n iff TUS is consistent »?

In the sequel we answer the above question positively.

Lemma 4: Let L be a first-order language and A a structure for it. Then:

- (a) A is k-saturated for every k iff A is finite.
- (b) Suppose $\overline{L} \leqslant k$ and $\omega \leqslant |\overline{A}| \leqslant 2^k$. Then there is an k^+ -saturated elementary extension of A having cardinality 2^k .

Proof: See [5].

Lemma 5: Suppose T is a complete theory in a first-order language L, with a model B = T admitting an automorphism f of order 2. If A = T is saturated then it admits an automorphism g of order 2 as well.

Proof: In case $\overline{\overline{L}} < \omega$ the result is immediate because the notion of an automorphism of order 2 can be expressed as a Σ_1^1 sentence and it is well-known that if A is saturated then A satisfies every Σ_1^1 - sentence which is constistent with Th(A) (see [3]). Here by $\overline{\overline{L}} < \omega$ we mean the cardinality of the set of non-logical symbols of the language.

We will try to prove the theorem without putting any restrictions on the cardinality of L.

Let, $A \models T$ be saturated and $A \equiv B$ where A has an automorphism of order 2, f say.

We add a unary function symbol to the language of T which we intend to interpet as f in B, denoting it by f as well.

We now use Lemma 4 and we get a model (B*, f*) \equiv (B, f) which is $|\overline{A}|$ -saturated, and $|\overline{B^*}| > |\overline{A}|$.

We now well-order |A| and $|B^*|$ in such a way that the first element b_0 in the well-ordering of $|B^*|$ is sent to an element $f^*(b_0)$ by f^* such that $f^*(b_0) \neq b_0$ which is possible because as we have said $(B^*, f^*) \equiv (B, f)$.

We now use a back and forth argument as follows:

Let $\Gamma_{b_0}(x)$ be the type of b_0 (in the language L) and consider an element a_{b_0} in |A| such that $A \models \Gamma_{b_0}(\underline{a}_{b_0})$ (possible as A is saturated). So $(A, a_{b_0}) \equiv (B^*, b_0)$.

We now consider the element $f^*(b_0) \in |B^*|$ and its type in (B^*, b_0) , $\Gamma_{f^*(b_0)}$ say. Then there is an element $a_{f^*(b_0)} \in |A|$ such that $(A, a_{b_0}) \models \Gamma_{f^*(b_0)} (\underline{a_{f^*(b_0)}})$. (It is clear that $a_{b_0} \neq a_{f^*(b_0)}$). Then we get $(A, a_{b_0}, a_{f^*(b_0)}) \equiv (B^*, b_0, f^*(b_0))$.

We now get the element of $|A| - \{a_{b_0}, a_{f^*(b_0)}\}$ with the smallest index in the well-ordering of A, a_0 say, and its type $\Gamma a_0(x)$ in $(A, a_{b_0}, a_{f^*(b_0)})$. We find, by a similar argument as above, elements b_{a_0} , $f^*(b_{a_0}) \in |B^*|$, $a_{f^*(b_{a_0})} \in |A|$ such that

$$(A,\,a_{b_0},\,a_0,\,a_{f^*(b_0)},\,a_{f^*(b_{a_0})}) \equiv (B^*,\,b_0,\,b_{a_0},\,f^*(b_0),\,f^*(b_{a_0})).$$

We again pick up the element of $|A| - \{a_{b_0}, a_0, a_{f^*(b_0)}, a_{f^*(b_{a_0})}\}$ with the smallest index in the well-ordering of |A|, a_1 say, and we continue this way until we exhaust all elements of |A| (possible as $|\overline{A}| < |\overline{B^*}|$).

We now define $g:|A| \rightarrow |A|$ by $g(a_{b_0}) = a_{f^*(b_0)}$ and

$$\begin{split} g\left(a_{f^*(b_0)}\right) &= a_{b_0} \text{ and for } c \in |A| - \left\{a_{b_0}, \, a_{f^*(b_0)}\right\} \\ g\left(c\right) &= a_{f^*(b_c)} \text{ if } c \neq a_{f^*(b_a)} \text{ for any } a \in |A| - \left\{a_{b_0}, \, a_{f^*(b_0)}\right\} \\ g\left(c\right) &= a \text{ if } c = a_{f^*(b_a)} \text{ some } a \in [A| - \left\{a_{b_0}, \, a_{f^*(b_0)}\right\}. \end{split}$$

It can be clearly and easily shown now that g is an automorphism of A of order 2 because $a_{b_0} \neq a_{f^*(b_0)}$.

The above proof obviously works for any \sum_{1}^{1} sentence as well.

Lemma 6: Suppose T is a complete theory in a first-order language L, with a model $B \models T$ admitting an automorphism f of order $n \ge 2$. Let $A \models T$ be saturated. Then A has an automorphism of order n.

Proof: Similar to that of lemma 5.

Theorem 7: Given a set $A \subseteq \omega$ and a theory T in a first-order language L, the following two statements are equivalent.

- (1) $T + \bigcup_{n \in A} J_n$ is consistent.
- (2) T has a model A which for each $n \in A$ admits an automorphism g of order n.

Proof: (1)
$$\Rightarrow$$
 (2). There is a model $B = T + \bigcup_{n \in A} J_n$.

We then take Th(B) and let A = Th(B) be saturated. Then as Th(B) is complete by Lemma 6 we get that A is the required model.

(2) \Rightarrow (1). The proof comes immediately from Theorem 2.

Theorem 8: Let L be a first order language with only unary predicate symbols, constant symbols and no function symbols et all. Then the notion of an automorphism of order n, for given $n \in \omega - \{0, 1\}$, is Σ_1 -axiomatisable.

Proof: Let $\{P_i\,|\,i\in I\}$ and $\{c_j\,|\,j\in J\}$ be the sets of unary pre-

dicate symbols and constant symbols respectively, of the language L. We consider the following set of sentenses:

$$\begin{split} X = \big\{\exists \, x_1 \dots \exists \, x_n \Big(\bigwedge_{1 \leqslant i \neq j \leqslant n} x_i \neq x_j & \wedge \bigwedge_{1 \leqslant j \leqslant n} (\bigwedge_{k \in K} x_j \neq c_k) \\ \wedge \bigwedge_{1 \leqslant j \leqslant n-1} \Big(\bigwedge_{r \in R} \Big(P_r(x_j) \longleftrightarrow P_r(x_{j+1}) \Big) \Big) \Big| \, K \subseteq J \ \text{and} \ R \subseteq I \ \text{and} \ K, \, R \\ \text{finite} \big\}. \end{split}$$

We claim that the set X, \sum_{1} -axiomatises the notion of an automorphism of order n. That the set X is a set of \sum_{1} sentences is obvious.

We now suppose that A and B are structures for L such that $A \equiv B$ and B admits an automorphism of order n. Let $f: B \to B$ be such an automorphism of order n and $b \in |B|$ such that $f^m(b) \neq b$ for $1 \leqslant m < n$. Then for any sentence ϕ of X we have $B \models \phi$ because:

$$\begin{split} B & \underset{1 \leqslant i \neq j}{ = \bigwedge \left(\underbrace{f^i(b)} \neq f^j(\underline{b}) \right) \land \bigwedge_{1 \leqslant j \leqslant n} \left(\bigwedge \underbrace{f^j(b)} \neq c_k \right)} \\ & \land \bigwedge_{1 \leqslant j \leqslant n-1} \left(\bigwedge \underbrace{\left(\bigwedge \left(P_r \left(f^j(\underline{b}) \right) \longleftrightarrow P_r \left(f^{j+1}(\underline{b}) \right) \right) \right)} \right). \end{split}$$

Hence $B \models X$ and so $A \models X$ because $A \equiv B$.

We will prove now the opposite direction.

Let A be a structure for the language L such $A \models X$. We extend the language L to a language L' adding the new constant symbols d_1, d_2, \ldots, d_n . Given a sentence $\phi \in X$ of the form

$$\exists x_{1} \dots \exists x_{n} \left(\bigwedge_{1 \leqslant i \neq j \leqslant n} x_{i} \neq x_{j} \wedge \bigwedge_{1 \leqslant j \leqslant n} (\bigwedge_{k \in K} x_{j} \neq c_{k}) \right.$$
$$\left. \wedge \bigwedge_{1 \leqslant j \leqslant n-1} \left(\bigwedge_{r \in R} \left(P_{r}(x_{j}) \longleftrightarrow P_{r}(x_{j+1}) \right) \right) \right)$$

we shall use the notation $\Psi_{<_{K, R}>}$ for the furmula

$$\bigwedge_{1\leqslant i\neq j\leqslant n} d_{i} \neq d_{j} \ \wedge \bigwedge_{1\leqslant j\leqslant n} \ (\bigwedge_{k\in K} d_{j}\neq c_{k}) \wedge \bigwedge_{1\leqslant j\leqslant n-1} \Big(\bigwedge_{r\in R} \Big(P_{r}(d_{j}) \longleftrightarrow P_{r}(d_{j+1})\Big)\Big).$$

It is now abvious that for each $\Psi_{<\kappa,\,R>}$ there sxists a structure $A_{<\kappa,\,R>}$ for L' such that $A_{<\kappa,\,R>}=\operatorname{Th}(A)$ and $A_{<\kappa,\,R>}=\Psi_{<\kappa,\,R>}$. So to each $\Psi_{<\kappa,\,R>}$ we assing exactly one structure $A_{<\kappa,\,R>}$ and we consider the family of all such structures

$$\left\{ A_{<_{K,R}>} \mid \in P_{\omega}(J) \times P_{\omega}(I) \right\}$$

where $P_{\omega}(J)$ and $P_{\omega}(I)$ denote the sets of all finite subsets of J and I respectively.

We now consider the set $\Lambda \subseteq P(P_{\omega}(J) \times P_{\omega}(I))$ defined as follows, (where P(D) denotes the power set of D): $\lambda \in \Lambda \iff$ there exists an ordered pair $\langle k, r \rangle$ such that

$$\begin{array}{l} \lambda = \left\{ < K,\,R > \mid A_{<_K,\,R} > \stackrel{\text{l=}}{\underset{1\leqslant i \neq j\leqslant n}{\bigwedge}} d_i \neq d_j \, \wedge \bigwedge_{1\leqslant j\leqslant n} d_j \neq c_k \, \wedge \bigwedge_{1\leqslant j\leqslant n-1} \\ \left(P_r\left(d_j \right) \longleftrightarrow P_r\left(d_{j+1} \right) \right) \right\}. \end{array}$$

We can now see that Λ has the finite intersection property.

Indeed if by $\langle k_i, r_i \rangle$ we denote an ordered pair that generates $\lambda_i \in \Lambda$ according to the above definition, then considering a finite set $\{\lambda_1, \lambda_2, \ldots, \lambda_m\} \subseteq \Lambda$ we can see that

$$A_{\leqslant K,\;R>} \in \lambda_1 \cap \lambda_2 \cap \ldots \cap \lambda_m \quad \text{where} \quad \leqslant K,\;R> = \mathop{<} \bigcup \bigl\{k_i\bigr\},\; \bigcup \bigl\{r_i\bigr\} > 1 \leqslant i \leqslant m \; 1 \leqslant i \leqslant m$$

Hence we can extend J to a non-principal ultrafilter F and denote the corresponding ultraproduct by B'. We can now use -Łós Theorem (see (5) and (6)) and get that

$$\begin{split} & \text{B'} \models \text{Th}\,(A) \quad \text{and} \\ & \text{B'} \models \left\{ \Psi_{\leqslant K, \, R} > \mid \leqslant K, \, R > \in P_{\omega}(J) \times P_{\omega}(I) \right\}. \end{split}$$

We now define a function $f: B' \rightarrow B'$ by

$$\begin{split} f\left(d_{i}^{B'}\right) &= d_{i+1}^{B'} \ \text{for all} \ 1 \leqslant i \leqslant n-1 \\ f\left(d_{n}^{B'}\right) &= d_{1}^{B} \ \text{and} \\ f\left(b\right) &= b \ \text{for all} \ b \in |B'| - \left\{d_{1}^{B'}, \ldots, d_{n}^{B'}\right\} \end{split}$$

where $d_1^{B'}$, ..., $d_n^{B'}$ denote the interpretations of d_1 , ..., d_n in the structure B'.

Now it is obvious that the function f is an automorphism of order n. If we consider the structure B' restricted to the language L we get a new structure B such that $B \equiv A$ and B admits an automorphism f of order n.

ΠΕΡΙΛΗΨΙΣ

Εἰς τὰ [1], [2] καὶ [4] ἔχουν παρουσιασθῆ δύο τελείως διαφορετικαὶ ἀξιωματικοποιήσεις τῆς ἐννοίας ἑνὸς αὐτομορφισμοῦ πεπερασμένης τάξεως. Εἰς τὴν ἐργασίαν [3] ἐπίσης ἔχει ἀποδειχθῆ ὅτι ἡ ἔννοια ἑνὸς αὐτομορφισμοῦ τάξεως \mathbf{n} , ὅπου \mathbf{n} φυσικὸς ἀριθμὸς διάφορος τοῦ $\mathbf{1}$ καὶ τοῦ $\mathbf{0}$, δὲν εἶναι $\mathbf{\Sigma}_{\mathbf{m}}$ - ἀξιωματικοποιήσιμη, εἰς τὰς πλείστας τῶν περιπτώσεων, ὅπου \mathbf{m} εἶναι τυχὼν φυσικὸς ἀριθμός.

Εἰς τὴν παροῦσαν ἐργασίαν χρησιμοποιοῦμεν τὸ σύνολον τῶν προτάσεων μὲ τὸ ὁποῖον ἀξιωματικοποιήσαμε τὴν ἔννοιαν τοῦ αὐτομορφισμοῦ τάξεως n, ὅπου n φυσικὸς ἀριθμὸς διάφορος τοῦ 1 καὶ 0, καὶ ἐπιτυγχάνομεν νὰ χαρακτηρίσωμεν πλήρως, δεδομένης μιᾶς πρωτοβαθμίου θεωρίας T, τὴν ὕπαρξιν ένὸς μοντέλου της τὸ ὁποῖον νὰ δέχεται ἕνα αὐτομορφισμὸν τάξεως n διὰ κάθε n > 0, 1.

 $^{\circ}$ Επίσης ἀποδειχνύομεν τὴν ὕπαρξιν μιᾶς \sum_{1} - ἀξιωματιχοποιήσεως τῆς ἀνωτέρω ἀναφερθείσης ἐννοίας διὰ πρωτοβαθμίους γλώσσας περιεχούσας μόνον μονομελῆ κατηγορηματιχὰ σύμβολα ὡς καὶ σταθερὰ σύμβολα.

REFERENCES

- 1. D. A. Anapolitanos, «Cyclic Indiscernibles and automorphisms of finite order». Ph. D. Thesis, Manchester (1977).
- 2. D. A. Anapolitanos, «Automorphisms of finite order» to appear in «Zeitschrift für Mathematische Logik und Grundlagen der Mathematik».
- 3. D. A. Anapolitanos J. Väänänen, «On the axiomatisability of the notion of an automorphism of a finite order» to appear in «Zeitschrift für Mathematische Logik und Grundlagen der Mathematik».
- 4. J. Barwise, «Some applications of Henkin Quantifiers», Israel. Journal of Mathematics, Vol. 25 (1976), pp. 47-67.
- 5. J. L. Bell A. B. Slomson, «Models and Ultraproducts», North Holland, Amsterdam (1971).
- 6. C. C. Chang H. J. Keisler, «Model Theory», North-Holland, Amsterdam (1973).
- 7. G. E. Sacks, «Saturated Model Theory», Mathematics Lecture Note Series, W. A. Benjamin, Inc., (1972).