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MAO®HMATIKA.— Actual Mathematical Solutions of Problems Posed
by Reality, II.(Applications)*, by D. G. Magiros**. >Avexowvddn

Um0 tod CAxadnuaixod x. “Io. Eavddxn.
INTRODUCTION

In the previous paper 3(a), we discussed a classical procedure for
finding actual mathematical solutions of real systems in many physical

or social fields. The main phases of the procedure were:

A. The creation of a theory of the system, which helps its
modeling ;

B. The selection of a «well-posed-model» of the system, which
gives a well-posed mathematical problem, and

C. The construction of the solution of this problem, which is the

«actual solution» of the system.

In the present paper we give some applications of the above clas-
sical method, by which we can see the difficulties of its application and
its advantages in case this method can be applied. We select the appli-
cations from thermodynamics, astrodynamics, non-linear mechanics,

biology, etc.

1st Application Problem of Thermodynamics: (4)

Forward and Backward Heat Flow Problem.

The Step : «S. = M>» of the classical method characterizes the whole
study of the problem. The problem is: «To study the heat flow in a given
mediumy. T'o make this physical problem correctly stated, one accepts for
the medium to be homogenious and isotropic with respect to the heat
flow, and that the heat flow is towards the decreasing temperature. Based
on these hypotheses, the mathematical idealization, the model, is the
partial differential equation :

* A. F. MATEIPOY, Aextol pabnpatival Adcelg uowmdy mpofAnudtwy, II.
(CEcpappoyal).

** Consulting scientist, General Electric Company (RESD), Philadelphia,
Pa., U.S.A.



2 IPAKTIKA THX AKAAHMIAE AGHNQN

Uxx + Uyy _l_ Uzz = Ut (1)

where: u = u(x,y,z,t) is the temperature in the x,y, z -space and t-
time. In the equation (1) there is a coefficient depending on density,
specific heat, and thermal conductivity and this coefficient is here taken
equal to unity.

In case of a «one-dimensional medium», if the «data-initial condi-
tion» is:

u(x, 0)=n.sin nx, n = integer (2)
one can check that the solution of equation (1), satisfied by (2), is:

u(x,t)=n.e "t sin nx (3)

and it is unique, when the first two Hadamard’s restrictions are satisfied.
We distinguish here two cases :

a. It t>0, when one has the «forward heat problem», the solution
(3) > 0 and the condition (2) = o, as n —> o, then the solu-
tion (3) satisfies also the third Hadamard’s restriction, when the
function (3) is accepted as an «actual solution» of the «forward
heat problem», which is a «well-posed-problem».

b. If t<0, when one has the «backward heat problem», the solu-
tion (3) and the condition (2) > o, as n—> o, then the solu-
tion (3) violates the third Hadamard’s restriction, when the
function (3) is a «formal solution» of the «backward heat prob-
lem», which is a «non-well-posed-problem».

2nd Application Problem of Orbital Mechanics: 3 (b)

An artificial celestial body is moving under
the influence of a central force obeying the in-
verse square Newton’s law toward the attractive
center. A general force is applied, acts for an
interval of time, then it is removed. Find the
motion of the body during the action of the gen-
erall fTorece.
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A model of this problem is:

'_I_:_: - r:}"(.[) _1‘_(1’) + T(r)

I(O) = _r_o ’ 1(0) =_r:o +_I_o
Dt ()] <M, [r|<M,

’

(4)

D 0 vk

where T the general force, t the radial vector from the attractive center
to the center of mass of the body, I, the impulse, which is given by:

to
L,:f T()dt, t=t—t,. (4. 1)
0
If we take the function:
() = a,() 10+ a,(v) sy + a, (v) T (5)

. . * & * . .
as a «trial solution», where 1o, sy, Ty are special unit vectors, the

coefficients a,, a,, a, must satisfy the following conditions in order that
the function (p) is a «formal solution» of (4):

51"{'%31:'1‘1; 31(0)=fov 5;1(0):0

st wa="T; 40)=0, a0=st (6)

53"*_-:733:’1‘3; 33(0):0x 53(0):0

If T,, T,, T, are differentiable, T',, T,, T, continuous, r 0; a, , a,, a,
twice differentiable, and 4,, 4,, 4, continuous, we see that equations (6)
satisfy the Hadamard’s restrictions, when the functions: a, (1), a,(t), a,(z)
can be uniquely determined from equations (6), and are continuous func-
tions of the initial conditions of (6). Therefore, the solution (5) of equa-
tion (4), after the above restrictions of the force T' and its derivative, is
unique and depends continuously on the initial conditions of (4), then it
can be accepted as an actual solution of the equation (4).
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3rd Application Problem of Non-Linear Mechanics: 3 (c)

The Problem of Principal Modes of Non-Lin-
ear Systems.

The concept of «principal modes» of linear systems plays a predom-
inant role in the analysis of the oscillatory systems of many fields.

The principal modes in linear systems are, by definition, the fun-
damental set of solutions of which a linear combination gives the general
solution of the linear system ; or, physically speaking, they are the spe-
cial modes of oscillations of the linear system in terms of which we can
discuss any kind of oscillations of the system.

Since the «principle of superposition» does not hold in non-linear
systems, the concept of principal modes, as given above, is meaningless
in non-linear systems, and the following problem may
arise: «Has the problem of principal modes of non-linear
systems a physical meaning ?»; or (How one can make the
problem of principal modes of non-linear systems a well-
posed problem ?»

The writer has publisched some papers in conne-
ction with this important problem, and transfers here
some appropriate thoughts, techniques and results in
order to give this problem as an example of the clas-
sical approach of the preceding paper.

We can find a new definition of the concept of
principal modes for both the linear and non-linear systems, and such
that the known definition in linear systems comes as a result from the
new definition. The writer gave two new definitions which, under

Figure 1.

some conditions, are equivalent.

After that we try to make the physical problem correctly stated
and the mathematical idealization well-posed.

We take a trial solution and make it formal, first, and then actual.

If we restrict ourselves to a «two-degrees-of-freedom» mechanical
non-linear system, as shown in Figure 1, the equations of motion of the
«two-masses-three springs» non-linear system are :

}.c.—l—wfx——l,y—{—?tlxs——:O}
§—i—m§y—7y3x=0

(7)
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where :

e R e - e IR Y

(O ’ jr= )
m, ., m, m, m,

and p characterizes the non-linearity of one anchor spring.

By using the transformation :
KE=T XK, Y XSy e (8)
the system (7) can be reduced to its normal form :

Xi=fi(X,,X,,X3,X‘), i=112)314 (9)

2 3 2
fi=x,, fi=—mx,+Lx,—Ahxi, f,=x%x,, Li=Ax —0:x,

valid in a region R:
Ry Iml<h, i=1,9284 (9a)
The appropriate initial conditions for «principal modes» are in R :
x0)=x,, =z0=0, =x@=zx, =) =20 (9b)

where x,, and x,, are appropriately related to each other.

Now we remark that the nature of the functions f; of (9) are such
that all Hadamard’s restrictions are satisfied. These functions f; are
continuous in R, then bounded; they have continuous partial deriva-
tives 0f; / dxi in R, when they satisfy Lipschitz conditions with respect
to x; in R for a Lipschitz constant s=1.u.b /df; /[ dxx/. The above
properties assure the unique existence of the solution of (9) and (9b) in
a region R’cR. As the initial point x,,, i=1,2,3,4 varies in R’, the
solution satisfies the three Hadamard’s restrictions, and the problem is

«well-posed».

4th Application A Problem of Underwater Warfare:

The Problem of Domes. 1

The problem of domes arose in the winter of 1942 - 1943 in connec-
tion with «underwater warfare». As is known, underwater sound ranging
depends on sending out a sound beam in water and, attached to a fast-
moving ship, the water steaming around the plate causes serious disturb-
ances. For elimination of these disturbances, the projector is closed in
a so-called «dome», Figure 2, which is a convex shell of metal or other
material filled with water. Such domes interfere only slightly with the
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formation of a concentrated sound beam. During 1942-1943, a large
number of small submarines chases were built and equipped with sound
gear similar to, but smaller than, the gear used before. While the manu-
facture of domes to fit this smaller gear was underway, it was discovered
that these smaller domes led to an intolerable
., \ diffusion on the sound beam. At that time, a
quick remedy was imperative, and a mathematical
analysis of the problem was needed to support
and speed-up experimented work.
The mathematical problem, related to the
above physical problem, was to solve the differ-

ential equation :

V'P + K!P =0

Figure 2.
(1) Axis of beam sound g 8 0? 0? (10)
(2) Projector NT= ox® + oy* ¥ oz

S Surface of Dome
in which K= w/c, w the frequency, c¢ the sound

velocity and K has for our problem, unfortunately, different values within
the shell of the dome and outside.

This matbematical idealization was not a suitable one for the
problem.

They found the suitable mathematical idealization by the following
process. The actual dome of small finite thickness was replaced by an
extremely thin surface, then the influence of the dome was simply
replaced by conditions for jump discontinuities of the disturbance q of
the beam across the surface.

These conditions are :

Py op
p,' ©On

99| _ P 2 2 _( po><a
6nJ—p(K°—K])p 1_?

[a] =

1

l (11)
' Q)
on’ ARG on !

where the symbol [.] means jump of the quantity of the symbol across
the surface, q is the disturbance of the acoustic pressure p caused by

ETI 0
the dome and the normal derivatives rFr are to be evaluated on the sur-

face S of the dome. The quantity H is the mean curvature of S, i.e. the
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average of the curvature of any two normal plane sections at right
angles to each other. In addition to conditions (11) to be satisfied by q
on S, q should be a solution of the equation :

Vg4 Kiq=0 (12)

same behavior as P at «. This problem possess the unique solution :

q=—4inff[—32—] effr'ds+;—nfsf[q1—(;%(e"f,”')ds (13)

The quantities in the brackets are given by conditions (11), r’ is the
distance from a fixed point (x,y, z) at which q (x,y, z) is to be deter-
mined to the point of integration on S. This formula yields the distur-

bance as the effect due to a layer of point sources and a layer of dipoles
disturbed on S with intensities which are known as soon as the original
pressure p is known, since the quantitites in brackets are fixed in value
due to conditions (11). The relative directional disturbance :

’ﬂ—lR.c.h<i—&>
P Dy Po
would, finally, be obtained from (13). ‘T'he solution (13) is valid for a
shell of constant thickness, but it could be extended without essential
error to cases in which the dome shell is made up of a not too large
number of pieces, each of which is of constant thickness. All that would
be necessary would be to insert a numerical factor d in the integrands
on the right-hand side of expression (13), which would be precise constant
on S. By this formula, one can analyze the contribution to the distortion
of various factors, such as the curvature of the dome and the density
and sould velocity within it,

The above kind of mathematical idealization, even without detailed
numerical computation, proved helpful to the designing engineer.

5th Application Biology, Ecology, Economics: 2, 5

The Problem of Mixed Populations: Two Spe-
cies Competing for a Common Food Supply.

For the study of the growth of two mixed populations of species
in mutual interdependence of any kind, e.g. in competing for a common
food supply, several models have been proposed. One of these models,
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of which the formulation is based on determinizing the time-rate of
change of quantities as a function of the quantities and some para-
meters, is :

x =a[b—x—f (y)]x -

y=cld—y—1f,(x)]y

x and y are the numbers (or masses) of individuals of the species present
at any time, and a, b, ¢, d parameters of which the domain of possible
change define the environment of the model.

The model (14) is either «well-posed» or «non-well-posed», depen-
ding on properties of the functions f,(y) and f,(x).

Physically, the quantities x and y are non-negative, when the
region D of the validity of the model (14) is the first quadrant of the
X, y - plane. The initial conditions x,, y, of (14) is the starting point of
the solution, if this solution exists, and this point lies in the region D.

If the functions f,(y) and f,(x) are defined, single-valued and
continuous in the region D, then the right-hand numbers of (14) are
continuous functions of all their arguments, when a solution of (14)
necessarily exists through the point (x,, y,), and the first Hadamard’s
restriction is satisfied.

If, in addition, the functions f, (y) and f, (x) have continuous deriva-
tives in y and x, respectively, then the right-hand numbers of (14) have
continuous partial derivatives with respect to all their arguments, and
the solution through (x,, y,) is unique and depends continuously on the
X, Yo, Wwhen the second and third Hadamard’s restrictions are satisfied,
and the model (14) is a «well-posed» one.

We remark that: the solution of the model (14), which starts from
the inital point (x,, y,), tends, as t increases, to a point X, 7, and we may
have three cases. First, the point (%, ¥) may be a point inside the region
D, both % and § positive, when one can speak about the «co-existence of
the species». Second, the point (%, ¥) may be identical with the origin,
when one can speak about the «extinction of the species». Third, one of =
and ¥y may be zero and the other positive, and this case corresponds to
the «principle of competitive exclusion», a principle much used in ecol-
ogy, but which has been much criticized.

We remark that if the variables x and y of the model (14) are
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numbers of individuals of the populations they are restricted to be
(positive) integers, when they are «step functions» of time, and the func-
tions f, and f, of (14) are restricted to assume values according to per-
mitted values of x and y. The functions f, and f, in this case have no
properties, as mentioned above, which make the model (14) a «well-
posed» one. In this case, the model (14) is not a «continuous system», but a
«discrete system». If we assume that x and y in the model (14) are the
masses of the populations, we can remove the above restriction of x and
y and the function f, and f, regain the properties needed in order for the
model to be a «well-posed» one.

All the above remarks and results can be applied to different socia]
problems, if the competitive species and the limiting resources are appro-
priately specified.

To apply the above in the field of economics, the variables x and y
must denote the size or extent of two commercial enterprises compe-
ting for common sources and for a common market.

6th Application Modern Physics, Dynamic Meterology : 1

The classical procedure, discussed in the preceding, and especially
the step to find the «well-posed-model», combined with numerical analy-
sis and the use of high-speed computers, gave and may give much suc-
cess in the investigation of problems of great contemporary interest.

The «Synchrotron» and the «weather prediction» can be used as
examples.

a. Synchrotron. The recently discovered «strong-focusing-principle»
is the basis for the study of the multibillion-volt proton accel-
erators. This principle is related to the stability of solutions of
ordinary linear differential equations of second order with pe-
riodic coefficients. The actual orbits, because of unavoidable
imperfections of magnets and other causes, follow, approxi-
mately, linear periodic differential equations,and a modified non-
linear model is not possible. Experimental studies, under various
assumptions, the use of computing and mathematical analysis,
give encouragement to the designers for success.

b. Weather Prediction. According especially to Bjerkness, one may
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formulate the laws of atmospheric phenomena by models which
are partial differential equations. Based on the today’s data and
using the Bjerkness model as a «well-posed» one, the prediction
of tomorrow’s weather would require qualified computer men
with desk computing machines for much time.
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