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MAOHMATIKA.— A generalized approach to Morse theory and
Plateau’s problem, by T hemistocles M. Rassias*. *Avexoividrdn

oo tod Axadnuainod x. Pilwvog Baoikelov.

1. It 1s Euclid who asked the fundamental question :

Find the shortest line which may be drawn from a point to a given line,
and it is Apollonius of Perga who in the fifth book of conics posed the
problem about the determination of the shortest line which may be drawn
from a point to a given conic section. It is thus seen that a sort of theory
of maxima and minima was known long before the discovery of the diffe-
rential calculus and it may be justified in saying that efforts to develop
this theory influenced the discovery of calculus.

Fermat, for example, after making numerous restorations of two
books of Apollonius often cites this old geometer in his «method for
determining maximum and minimum», 1638, a work which in some instances
is so closely related to the calculus that Lagrange, Laplace, Fourier,
and others wished to consider Fermat as the discoverer of the calculus.

This is something he probably would have done if he had started
from a somewhat more general point of view, as in fact was done by
Newton (Opuscula Newton, 1, 86 - 88). Descartes has already remarked,
in a letter of March 1, 1638, that Fermat’s rule for finding maxima and
minima was imperfect, and we know that many imperfections still
existed for a long time after the invention of the calculus by Newton.
Weierstrassin his lectures in the University of Berlin (published as a
Bulletin of the University of Cincinnati in 1903) explained that to a
considerable degree these inaccuracies are due to one of the greatest
mathematicians, Lagrange, and they have been diffused in the French
school by Bertrand, Serret, and others.

The theory of equilibrium points or critical points of functions
appear in fragmentary form in the work of Poincaré, Maxwell and
Kronecker.

Birkho!f introduced the minimax principle and applied it in dyna-
mics. Marston Morse initiated a systematic study of critical points of
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functions on n variables in 1922. In 1924 the Variational Analysis in the
large was introduced and developed as an extension of the theory of
critical points of n-variables. The integrals used were ordinary and were
regarded as functions of the curves along which they were evaluated.

In 1937 the theory was put on a more general basis with the
function defined on a abstract metric space. In this general theory one
is free from any limitation of dimension. It does not matter whether the
independent variable is a point in a Euclidean space, a curve, a surface
or a more general configuration. When the function is an integral in
the variational Analysis for example, the integral of length on a surface
or the area of a surface bounded by a curve, a critical point (curve or
surface) is one satisfying the Euler - l.agrange equations.

The unification which appears in the general theory is made pos-
sible by a topological definition of a critical point, a definition which
is independent of the particular case at hand. The years 1929 - 1936 saw
a rapid development of the Theory in the large of integrals depending
on a curve., There remained the multi-dimensional variational problems
which are very important in Mathematical Physics.

2. As it had been remarked in T'. Rassias [3] one of the most diffi-
cult problems in Global Variational Analysis is Plateau’s problem. This
is the problem of determining the surfaces of minimum area spanned
in a given curve or subject to other boundary conditions. Lagrange had
posed the problem of finding a minimal surface for a given contour and
Plateau gave a physical realization by means of physical experiments.

R. Palais and S. Smale (cf. [1], [2], [7]) have found an extension of
Morse theory of critical points to a certain class of functions on Hilbert
manifolds. This theory is applicable to some variational problems and
partial differential equations (systems) on vector bundles.

It was a problem if the Palais — Smale theory on Hilbert mani-
folds can be applied to the Plateau’s problem. In [3] the author had proved
that this theory is not applicable for the Plateau’s problem and a new
theory was proposed as a generalization of the Morse - Palais - Smale
theory for Hilbert (or Banach) manifolds. It was stated in T. Rassias [3]
that if the conjecture in [3; p. 369] is true then the problem of applying
the Morse theory on Hilbert manifolds to the Plateau’s problem is com-
pletely solved. This conjecture was finally proved and the proof of it was
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announced by the author in the international Congress of Mathematicians in
Helsinki, August 1978. 'This way one obtains a global analytic proof of
the Morse - Tompkins and Shiffman [6] theorem which states that the
existence of two relative minima for the energy functional implies the
existence of a third unstable minimal surface. Thus one gets a special
theory for the problem of unstable minimal surfaces bounded a given
closed curve in a Euclidean space.

3. Let Q be an open set in R" and comsider a C* immersion
F: Q — Routk

Definition. F is a «minimal immersiony if and only if F

satisfies the system

32 (Vggu gfj) =8 (1)
whese g = det ((g,j)), ((gij)) = ((g'ij)>_

- e oF  OF
8ij ox'’ oxi /"’
It is easy to prove that the above is equivalent to the requirement

that F (Q) have mean curvature identically zero.

Definition. The immersion F is said to be «non-parametricy
if it has the form F(x)= (x, f(x )) for some function f:Q—> R,
Then (1) has the form :

n 9 o .
i —‘-<Vgg'”)=0; ji=1,23, ..., n

where g and (g') are defined above, and in this case

iy = ‘J+<6x" a<3>'

Definition. The generalized parametric minimal surface in R"

having a given Jordan curve I' as bcundary is defined as a map
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F :D — R», where D={z=x—}—iyEC:lzl<l}, with the following

properties being satisfied :

FeC*(D)NC” (D), (1)
AF =0, (2)
{F., Fo> = <{Fy, Fy>, <F,, B =0, (3)
Flyp 9D = I' is a homeomorphism. (4)

Theorem. Consider I' to be a Jordan curve in R"t* and sup-
pose that I' can be expressed as the graph of a continuous function
f:9Q > Rk where Q is abounded, convex domain in R¥. Then every
generalized parametric minimal surface with boundary I' has a one-to-
one, nonsingular projection onto Q, i.e. every such surface can be
expressed as the graph of a function WeC°(Q)N C°(Q) and ¥ satisfies
the relation (2) in Q, W:Q —> Rk,

The above theorem generalizes the following very interesting

theorem due to T'. Rado.

Theorem. A Jordan curve I" whose orthogonal projection on
some plane is a simply corered convex curve bounds a unique area mini-

mizing surface.

By applying techniques from Morse theory one can also prove

the following :

Theorem. Let 'cC»% be a Jordan curve in R?® with total cur-
vature K (I') < 4n. Then these exists a unique solution of Plateau’s

problem for I'.

Theorem. Let I' be an extreme Jordan curve in R® with
K(')<(4n. Then there exists an embedded solution of Plateau’s pro-

blem for T'.

Remark. Itcan be easily proved that embedded surfaces are

open in the C!-topology.
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4. In 1900, Liebmann proved the theorem that every convex surface
of constant mean curvature is a sphere. The problem was also proved
by Jelled in 1853 for starshaped surfaces. It is clear that neither theorem
answers the question about the shape of a general closed surface of constant

exo g.—.—i

PRig. 1.

mean survature. Aside from the sphere (of genus g =0) could there
be such ringtype surfaces (of genus g =1) or pretzel - type surfaces
(of genus g =2) e.t.c.?

In 1951, H. Hopf proved that a sphere-like surface, having constant
mean curvature must in fact be a sphere. A few years later the Russian

mathematician A. D. Alexandrov proved that any physical surface of
constant mean curvature and of arbitrary genus must be a sphere. By a
physical surface he meant the surface that appears as boundary of a
domain, i.e. as the interface separating a quantity of matter from its
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outside, and thus obviously cannot possess self-intersections. The long-
standing problem whether there are closed surfaces of constant mean
curvature other than the sphere remained to be open despite the conti-
nuous efforts of some of the greatest mathematicians. A partial answer
of this problem is obtained in the framework of our generalization to
Morse theory on Hilbert (or Banach) manifolds.

The proofs of the above theorems will appear elsewhere, because

they are very lengthy to be whitten in the present paper.
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NEPIAHVYIZ

‘H nagotoa Zoyaocia dvagéoetar el ulav yevixevowy g VYewolag tob
Marston Morse eig 10 neéPAnua tod Plateau. To modfAnua adtd magéunevev dhv-
tov mapd tog meoonadelac moAdY Madnuouxdv elg dwapdoovg ydoag. ‘O ovy-
yougevg elyev dvantiEer ulav mooragyuny Semolav el tag dvo meonyovuévag tov
avarowvdoeg glg v Axadnuiav, 6dnyovoag v Mowv tod meofliuatog épae-
noyfic tiic Yewoiag tot Morse eig 10 medPinua tod Plateau eig piav eixaciav,
tiig 6molag % didera $a Erélve yevind 1o medBinua. Eig mv magotoav éoyaciav
tov Ymootnoiletan Gt § &v Adyw eixacta dmedelydn dAndiig, medyma to omolov
6 ovyyoapedg Gvexoivwoey eig 1o Aedvic Zuvvédprov Madmpatixdv el 10
*Ehotvae thc Puvdavdiog v 181v Adyovotov, 1978.

‘H dvotéon mooelu oxéypeme ®dWynoev Emiong tov ovyyougéa elg ulav
vevixevowy rob Sewofuatog tod T. Rado oyemxa pé wv dotdudv Moewv eic 10
no6BAnua to¥ Plateau 8ua piav dodeioav xapadinv tol Jordan eig tov Edxhel-
detov ymoov tdV todY daotdoemy.

‘H 2oyacia tehetdhver pé doiouévas magatnoricels oyetixd ue 1o mEoPAnua :
*Eav ndoyovv xhetotal dmgdveian otadepds péong xaumviéinrog (constant
mean curvature) diagogetixal and thy opaigav. To medPAnua adto fgyioev va
amotehf) mobPAnua Egevvng dno to 1900, v Emoyiv rod Liebmann.



