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Introduction

In a previous paper, Ref. 1, we discussed the stability of a helicoid
precession in case of constant torque, whereby, by employing different
stability concepts, we found for this precession different stability situa-
tions. The concept of this helicoid precession was successfully applied in
problems of current interest in Astrodynamics, treated in papers Ref. 2, 3.

In the present paper, we discuss the stability of a «class of heli-
coid precessions», of which the helicoid precession of the paper Ref. 1 is
only a member.

The concepts of stability in the sense of Liapunov and Poincaré,
Ref. 4, are employed.

We found that all the members of the class of precessions are
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unstable in Liapunov sense; but in Poincaré sense the stability of a
member S of the class is either stable, or asymptotically stable, or un-
stable, if the limit value of the pitch distance of S is either a constant,
or zero, or infinite, respectively.

There are reasons which suggest that the stability situation of the
above class of the helicoid precessions in the sense of Poincaré is close

to practical stability, then it is preferred.

1. The class of the helicoid precessions

The rotational motion of a rigid body around its symmetry axis, is

governed by the Euler’s equations:
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where o = (0, ,0,,0,) is the angular velocity ; L =(L,,L,, L,) the exter-
nal resultant torque acting on the body, I,, I, =1, = I the moments of
inertia about the coordinate axis 0, w, w,w,, 0, the center of the mass of
the boby.

In the case where the torque is:

L, =L, (t), L,=0, L,=0 (2)
the solution of (1) is:
w,(t)z%‘fL,(t)+C, wz(t);ACOSQ(t)» o, (t) = Asin Q(t)
‘ (3)

Q) = I'I_Ifw.mdt

c and A are constants to be determined from the initial angular velocity :

_('l_)U s ((D)(), W30 , (1)30)) and A= ((1);0 + w;{))!/‘z.

In case o, (t) is increasing function of and tends to infinity with
time t, the solution (3) is a helicoid curve S on the surface of an ortho-
gonal circular cylinder of radius A and gives a helicoid precession cor-
responding to the specified function L, (t), and so (3) gives a «class of
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helicoid precessions», each member of which is determined by the speci-
fication of L,(t). We remark that if o, (t) does not satisfy the above
requirement, the corresponding precession is not helicoid, as, e.g., for
L,=0, when we have the «regular precession» and its «precessional
curve» is circumference on the surface of the cylinder; or for I, = sin t,
when the precessional curve is closed curve on the surface of the cylin-
der. But, for L, = constant, o, (t)—> » as t—> », and we have a helicoid
precession, the simplest one of the class (3).

We discuss here the stability of the class of helicoid precessions (3)

in the sense of I.iapunov and Poincaré.

2. Stability in Liapunov sense

The vector o,,= (0,, ®,) on the w,, o, — plane, Fig. 1(a), of which
the components are given by (3), is periodic in t, but with period depen-
dent on t, then the motion of the end point of this vector on the circum-
ference with radius A and center 0,, is unstable in Liapunov sense,
Ref. 4, and, as a consequence, («the class of helicoid precessions is «unstable)

in Liapunov sensey.

3. Stability in Poincaré sense (orbital stability)

The orbital stability of any member of the above class of precessions
depends upon the structure of the corresponding function L, (t). Some
auxiliary distances and their properties, shown below, will help to create

a criterion for the orbital stability.

3.1 Some auxiliary distances and their properties.

Let us take two helicoid precessional curves S and S belonging to
the same family, that is corresponding to the same function I, (t), but
starting from different points P, (0, w ,, 0) and P, (0,5, ®,0, 0), respecti-
vely, Fig. 1(a).

The generator of the cylinder through P, intersects S into the
points: P,, P,, P,, ..., Pa, ..., and S into the points: P,, E, 2.

P., ..., S,, at the point P, of S, we can define, as shown in Fig. 1(b),
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the pitchidistances: Dy = PRy, do = P,P,. A third distance at P, is
defined by the plane through P, perpendicular to S at P, the distance
On = P —P—n .

Fig. 1.

The above distances have properties very useful for the discussion
of the orbital stability of the helicoid precessions. These properties are
given by the following theorem.

Theorem 1. The distances D, , d,, o, have the properties :
{a): Du>dn>en

.(b): The limit distance: lim D,= D is either a constant, or Zero,
n—»x

or infinite, when the lim d, = d, lim 0, = ¢ are either constant,
n—y n——>»w

or zero, or infinite, respectively.
Prooi .(a): T'he point P, is a point of the segment P, P,.,, Fig.
1(b), which means that: D, >d,.
The plane through P, and perpendicular to S at P, intersects per-
pendicularly the tangent P, T of S at P, , so this tangent is perpendicular
to the distance g, . The plane through P, and perpendicular to o, contains

the tangent P, T and divides the whole space into two parts, one of which
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contains all the points of P; S, and the other contains the point Py, so
the distance P, P, is bigger than the distance P, Pj, that is d,> g..

. (b): For the second part of the theorem the calculation of the
limit D is needed.

The curve S starts from P, (0, w,,, 0) at t, = 0, and corresponds to

¢ = 0 in the formulae (3). Its equations are :

il = -LfL, (t)dt, ®,(t) = w,cosQ(t), o,(t)= o ,sinQ(t)

[,
Q(t) = I'—I—Ifdth‘(t)dt

For the points P,, P,, P,, ..., Py, we have o,(t) =o,,, o,(t) =0, then
the quantity Q(t) of (4) for these points must be:

(4)

Ofta) =2mm, n=0, +1, +2, ... (5)

and, if we take into account some restrictions of Q and the nature of n,
we can solve (H) for t,, when :

th =§(n) B (6)

Inserting (6) into the first of (4), we can get the value of w,(t) cor-

responding to the point P.: w,(t,)=P,P,=(»,)s, when the distance
By at! Byeise

I)n = Po Pn+1 === PO Pn = Pn Pn+1 = ((D,)n+1 —‘((Dl)n (7)

As n—> ®, the points P, and P,4; go to infinity, the distances P, P, and

P, Pn4: tend to infinity, and the lim D, = D tends to get the undetermi-
n—y*®

ned form (% — ), which may be either a constant, or zero or infinite,
and, then the limits d and § may be either constants, or zero, or in-
finite, respectively.

3.2 Orbital stability criterion

Based on the above properties of the distances Dy, dn, 0., We can
formulate a criterion for the orbital stability of the helicoid precessions
(3), expressed by the :

Theorem 2. «Any member of the class of the helicoid precessions (3),

corresponding to a given function L (t), is orbitally either stable, or asymptoti-
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cally stable, or unstable, if, respectively, the limit distance D is either a con-

stant, or zero, or infinite).

Proof : We first see that, for sudden perturbation when the initial
conditions are only perturbed, the curve S can be considered as the per-
turbed of S and the distance o¢,, defined above, is the «Poincaré dis-
tance» of S at P,, Ref. 4.

If the number D is a constant, given £>0, we can really find a
8 >0 such that, if the Poincaré distance initially is ¢,<9, then inequa-
lity o, <€, for all n, can be implied, since we can select § = ¢, and d, = 9,
when 0,<0 implies 0, <eg, and S is «orbitally stable».

If D=0, then =0, and S is «orbitally asymptotically stable».

If D= w , S is «orbitally unstable».

3.3 Example. As an example, we mention the case L. = L, = con-
stant, treated in Ref. 1.

The corresponding helicoid precession is in this case given by :

—

I« b o, (t) = w,,cos O, {t), Wy (t) = w,s1nQ, (t)

Q,(t) = (I, =)L, t" /211,

@) =

(8)

This precession, due to the form of Q,(t), is «Liapunov unstable»; but
it is «orbitally asymptotically stable», since the distance D, is given by:
D, = a(Vm—VH), a = constant, and of which the limit, as t—> ®©,
is D=0.

For this example, we can determine the region of the permitted
deviations of the precessional curve, the «e-region», and the correspon-
ding region of the initial points, the «d-region», for which regions the
helicoid precession is orbitally asymptotically stable, when this stability
situation of (8) has a practical importance.

Given a point (®,,, ®,,, ®,) on the surface of the cylinder as a star-
ting point of a helicoid precessional curve (8), the coordinates w,, w,, o,

of any point of this curve are related to w,,, ®.,, ®,, by:
0! + 0! = o 4+ 0}, = constant (8.1)

((’Ul)n<mlo<(ml)ﬂ+1 (8 2)
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The inequality (8. 2), by using (). = a Vn, leads to:
ngBy,lagnt1 (8 3)

from which the integer n can be determined, when, as a result,
= a(Vn_—|—l—V5) is known. This distance D, is the upper limit
of § and e,

We remark that we can calculate the «e, d-regions» of any mem-
ber S of the helicoid precessions (3), if the distance D of S is zero or
finite, when the orbital stability situation of S, and not its Liapunov
stability situation, has a practical meaning.

3.4 Remarks. We saw above that, for the same phenomenon, we
have different stability situations, if we apply different stability concepts.

There arises the problem of the selection of the stability concept
appropriate to the phenomenon, that is of the selection of the stability
situation, which interprets the reality in an adequate way, and it is more
close to «practical stability» of the phenomenon.

The possibility of the determination, by using a physical situation,
of the region of the permitted deviations of motion and orbit, of the
corresponding region of the initial points, and of the appropriate region
of the perturbation, in case of persistent perturbations, Ref. 5, makes
the stability results practically important and physically accepted.

Stability investigations, which may satisfy mathematical curiosities
or needs, will become useful if they are oriented towards «practical
usefulness».
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NEPIAHVYIZ

Eic moonyovuévny goyactav, dvaxowmdeioav eig v "Axadnuiav tdv ITo-
owlwv (1969), 2ueketidy 1 edorddera wds Elxoerdols petantioews eig Ty el
ntoowv otadeodc EEmTeoiic ol UE yonoipwomoinoy  diapiomv GQLOUMY EVOTO-
Velog, xal evoédnoav dugpogetinal natactdosg sbotadelag, vmedeiydn d¢ wola &x
v rataotdosmy svotadeiog thg Elnoedolc Eyer moaxtuv GElav.

Eic v nagoloav oyaciav pehetdtar 1) xatdotaoctg evotadeioas piag xhd-
oems EMr0Ed®V petantdoswy, ToL mEQLEXEL Og Eva uéhog Tng TV Eloeldi) petd-
TTOOWY THG TEONYovuévng éoyaoiag.

Xonouonototvral o Gotopol evotadeiag, ol natd Liapunov xal Poincaré.
T cvureodoparo tig Taovong oyaoctag eival :

a. “Ola ta uéhy tig #Adosws T@V Ehxoeddv petamt@oswy elval Elg
aotadi} xata Liapunov xatdotaoctv.

B. “H »ata Poincaré notdotacig evoradelag olovdiimote pélovs S tig
xhdoewg EEaptdtal Gmd v 6otoxny Ty Tov Prinatog tig €Aosdols S, xal
Srav 7 Gotoxn T elvar otadepd i) undev i) dmewgov, toTE 1) EAoedng elval
gvotatic, 1| dovumtotnxd edotadg i) dotadig, dvriotoiywe.

y. Eic myv neolntwowy mov % Ehwoetdng S eivar dovpmtotxrd edotadiig,

t61e 1) ®otdoToolg avtt) %ol uévov Exel moaxtixnv GElav.
x

"Eyow ™y runy va wagovotdow elg v Axadnuiav Adnvav v oya-
oiav tod % Anunrtolov Mayeigov, ‘Emotnuovizot Zvufovlov tijs General
Electric tdv H.IT.A. 970 tov tithov «H Evotddeia wag Kidoswg “Elnostddv
Metantdoewv rara Liapunov xal Poincaré».

‘O . Mdyeioog gig moonyovuévny Eoyaciav tov, avoaxowvodeloav eig v
*Aradnuiay Haoistov, duekétnoe tyv edotddeiav wdg ‘Elwwoedots Metantdoewg
eic v mepimtwowy oradepds EwteQuxilg pomg.

Eic mv magodoav doyaoctav pekerdrar 1) rardotacig ebotaveiog wdg »hd-
aewg Elnoetddy petamtdocwy el Y Omolav Ev &x tdv uehdv g elval xal 1)
Eloedng uetdatmole Tig avagpeodeiong §dn moomyovuévng doyaciac.

Xonotuomwotodvtar meodg Tovto of Oglopol evotaveiag xata Liapunov xal

Poincaré, ta 8¢ dvrictouya moplopata tijg 0evvng elval ta rdrwd :
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a) “Ola ta péhn tijg xhdosws TV EMxoelddv petantdoemy ebolorovral €ig
adotadi) nata Liapunov xatdotacty.

B) ‘H xata Poincaré xatdotacis evotadelag olovdimote péhovs tilg £Ee-

A2, ’ S ~ S \ A\ c \ A ~ ’ ~ c
talouévng xhdoewg &Eaptdtal Gmd TV Optoxy TN Tod PBrinatos tig éAuxoet-
dotc. Olitw, Grav 1) 6otaxy Tl eivar otadeod 7| undév 1) dmegog, téte 1) -
%0eldng elvar Gvriotoiyme evotade, aovumtopatind edotadg, 1| dotathis.

3 A/ ’ (<4 /-3 c \ A -3 / (2 ’ [3 c

y) Eilc tv aeolntwory Smov 1) 6ptaxyy Tl elvar undév, oOméte 1 Ehi-

#0e1d)g elvar Govumtouating ebotadc, TOTE xal uévov TotE 1) ratdotactg alty

gyeL moaxtnv atlav.




