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Dedicated to the memory of Professor Constantin Caratheodory, the author’s revered teacher and friend.

Abstract.

The Euler - Lagrange equations in different fields of mathematics and
physics can be transformed into the form given in optics by adding one
more variable. The author gives to these equations a normal form which
lends itself to the determining of the extremals, if the point and the direction
are given. It is emphasized that the form of the equations is independent of

the choice of variables.

I. Theory.

Let { be a function of position and direction, ¢ (%, X;), where /is

homogeneous in the first order in the X; so that E = /ﬂéds is independent

curve
of the curve parameter. This parameter can therefore be taken as the arc

length along the path, which is equivalent to stating that X* = r** 'The

curves for which Euler's differential equations,

) -
d;;(_ _3; (1.1)

hold will be called world lines.

* Communication No. 2227 from the Kodak Research Laboratories.
* MAX HERZBERGER : 'Av&lvcig tév &ficwcewv Euler - Lagrange.
*%% Starting with this equation, we shall use the Einstein convention of summing
over any index appearing twice in the formula and leaving out the summation sign.
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Now let us introduce the following vector notation :

= . dx;,
a: components X;=— -——
ds
—
g:

components ——

R
—r
b: components

ax.

and choose as parameter the arc length along the world lines.
Since @is homogeneous in the first order in the X; we have the fol-
lowing equation:
Y af — >
S — % = ——¥X=(=p a (1.2)
0Xk 00Xk
Differentiation of this equation with respect to the X; andX; respec-
tively, gives
0%
0XkoX;

0¥ . EYA

Xk e o
0% k0% 0%

X; =0
(r.3)

Since Z is a function of the X; and X; the differentiation in equation
(r.1) can be carried out and the equation can be written

R % . 8¢

T TS Xy = .
0% ;0 Xy ) X9 Xy ‘ 0X; (1.4)

By using the second equation of (1.3), equation (1.4) finally takes the form:

a_zexk=( 3% — 6% )xk. (1.5)

0 X; 0 Xy 0X L9 X; 0 X;0Xg

We shall consider this as the normal form of the Euler differential

equations. The reader should notice that it connects two tensors important
2

for the problem, namely, a symmetric one, given by the values of <i>,

0%i0 Xy
and an antisymmetric one, given by
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e e T e w0

dXk 0% 0X; 0X

—>
The a;, are the components of the curl of p, which in n- dimensional

space is a bivector in the sense of Grassmann’s theory, i. e, a vector with

. . - _ﬁ- _—+
(:) components *. In any case it is obvious that A . a = 0.
The solution of equation (1.5) cannot be attained by the normal
method since the first equation in (r.3) shows that the determinant of the

. < 8% > :
symmetric tensor { ——— | vanishes.
0% 00Xk
; i EK4
We introduce vectors /. whose components are - Equa-
0% d Xk
tions (1.3) and (1.5) then become
—> = = %% =
(e, a)= 0 } s ati— 1
» with the side conditions _— (1.8)
——  —¥ ‘ —> —
(¢, a)= A a a=0.
FK4
We assume that the matrix of the ————has the rank (n-1), i. e,
0XidXx

that the n vectors —Zlie in an (n-1)- dimensional hyperplane. The vector-_a>
is then the vector of unit lengt}.l. which is normal to this plane, and as such
is well determined. The vector;,) on the other hand, is normal to_a> and
therefore lies in the hyperplane of the-Z,

The analytical solution proceeds as follows: From (1.8) we derive (with
arbitrary Lagrange multiplier A)

— > > —>
((¢; + Na) - a) = A, (1.9)

*The vector on the right-hand side of (1.5) can then be considered as the supple-

— >
ment of the outer product of the supplement of curl p with a; or,if the supplement is

-
designated by the sign S, we find for the vector A on the right-hand side:

—> o =
A = S[a S(curl p)], (r.y)
which in three - space is equivalent to the vector product

— —
A = a ¥ curl p.

*% This abbreviated way of writing indicates that the n dot-products on the left -
hand side give the components of the vector on the right- hand side.
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an equation which cannot have a vanishing determinant for all A. We can
show that the solution is independent of A.
We shall illustrate the method of solving (1.9) by carrying out in de-

tail the solution for the case of n = 4. Equation (1.9) shows that, for instance,

the third component of a, namely X, is given by the ratio

buthig, Lo+hx, A, {, +hx,

by + A5, by + hx, A, by + bix,
613+7&X1 623+7u'<2 A, @4+kx4
by +hx, by, + x4 A, by + A%,

%, = ; (1.10)
bo+hx,  lo+dx, o+hx, 4, +Mx,
bo+hx, ot+hx, Ly +hx, b+ Ak,
{5 +Ax, los + Ak, Lo+ hxy, g+ Ak,
b, xhe, ks, G v hkg o Gyt by

where

A= a;X, + 213Xy + 2y, %y
Ay=—a;,X + 2y Xy + 2y, Xy
Ag= —a;3X, — a,%, + ag, %, (x-11)

Ay=—a X — ayX, —ag X,

For A = 0 both the numerator and the denominator vanish. When the de-
terminants are developed with respect to A, the coefficients of all powers
except the linear ones vanish. Let N, and D represent the determinants re-

sulting from setting A = 1 in the numerator and denominator, respectively,

of (r.10). Then we can write

— (1:12)

showing that X, is independent of A.
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We shall develop N, and D separately. If we represent a determinant,

for brevity, by its general row, then we can write
D= Xl | 1, éigv eiga 614 | + Xg | &1, 1a eiga éi,i [

g ) bl Ll |+ 5 Vbbbt .

We now multiply the first row of the first determinant in (1.13) by the
factor X, which precedes that determinant. Then we add to this row the
sum of the other three rows, each multiplied by its corresponding X;. In like
manner, we operate on the second row of the second determinant and so on
for the third and fourth determinants. Then, remembering that {;X,=0

we have

\ azz ézg €24 en bs Ui
D=, @za 633 634 + 613 gaa eu
£z4 234 644 Ui 634 644

éu éw éu Zu le e13 (r.14)
+ elz b 824 + 512 222 623 (X + X, + X4 + Xy).

214 £24 64-4 Z13 e23 633

This means that, aside from the factor (X, + X, +X, + X,), D is the sum of

the principal minors of the ¢,

Analogously, we find
Npg= &y | 1, s Ay U | + =, | bas 1y Aol \
+ %y | by by A 1 | .
Performing the same operation on this equation, we obtain
Zzz A, 624 by A, b
N, = @3 Agq 634 + |l As b (1.16)
? by A, L, b Ay b

gn 212 Ay
-1t 612 Zzz Ay (X, + Xg + X3 + Xy).
613 623 Ay

(1.15)

Remembering formula (r.11), we can develop (1.16) as a linear function
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of the aj. We then find for the coefficients of a;,, a5, @y, 853, 2y, and ag,

respectively, the results given
The method of finding the coefficients can be exemplified by determin-
ing the coefficient of a,; in (1.15). This coefficient occurs only in A, and

A,, where it is multiplied by X, and - X,, respectively. Going back to (1.10),

we find the numerator of the coefficient of a,, to be

foy + 2%y bos + 2K,

Multiplying the

Cis + Nxy o + NKy

é[3+ )\Xl eg;.;+ }\X2
i+ Aky foy+ Ak

in formula (1.17).

0 614““ AXy
Xy foy + AXy
_Xz 834‘*’ AX,

0 du+ Ak,

first row by X,, the second by X,, and the fourth by X,

and adding the sum of these to the third row multiplied by X, gives

or

This leads

to the equation

bl & &y
b B 1 4y
X %X, 0 x,
it O &

Xy X, Xy

éu em ém (X +X+ X+ X)) .

el4 624 644

X, X, X,
bis ss €y
b Lo Lu
X, X, X,
bz €y o
Cis b Css
X, X, X,
by b s
él3 623 e33

2

(X, +X, +X34+X)),

— a3 élz

414

+ a‘23 eu

+ ag, én

€

(1.17)

(R X+ X+ X)),
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Analogous formulae can be derived for N, N, and N,. We see that

the right-hand side for each X;is a linear function of the ay;  which are

—
componeuts of curl p. The method also works for the equations in n-di-

-5 — > -
mensional space. Knowing a as a function of a and a, we can calculate a
and higher-order derivatives and thus get all the analytical solutions of the
problem either in closed form or, if calculating machines are used, by approx-
imation. Since the Fuler equations are relations between two gradients, one
with respect to X; and one with respect to x;, the equation is independ-
ent of the choice of variables, as can also be shown explicitly.

The equations can be used to determine the world lines for special
forms of {, for instance, if the problem in question obeys certain conditions
of symmetry. As an example, we treat the case that the space is isotropic,
i. e, that { does not depend on the X;

Fulfilling the requirement that { be homogeneous in the first order in

the X;, we can write

é=nVXi2’ (1.18)

o )
where n is a function of position only, since l,/Xi2 = 1. In this case

—>_( 86)_(nx? o s
p= & = l/~¥>-na

s

0X ;0%

= n (B —X; Xy), (r.19)

where

sik={0 if is/<k
1 if i =k

Equation (1.5) then gives in this special case
¢ ( on on % i
— e R X — i) X
oxio%, * \oxi Yo% .

and equation (1.5) reduces to

. on . on .
nXi==( X, - xi>)‘(k. (1.20)
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>
Introducing the vector g _ (; ?i) , which is the logarithmic gra-
n  9X;
dient of n, we obtain the vector equation
S>> > > > > >
a-g(a)-a (8 9-S[SE ¥ al (z:27)

which is the Grassmann generalization of the three-dimensional formula

. e
a = ax (g x a) (1.22)

II. Applications.

The solution of the Fuler differential equations is of importance in
many problems of mathematics and physics.

a) The general problem of the caleulus of variations. Given a function

dX,

L(X;, T, - 3T

it is twice continuously differentiable, except for singular points). The

'), where I, can be general (in this paper we shall assume that

integral
dX;
L(X., T, = :
/‘ ( 1 dT ) dT (2 I)

is then not independent of the curve parameter and we have not assumed

. . dX; . ; ’
homogeneity with respect to the However, if the problem is considered

in (n + 1) —dimensional space, i. e.fl'ff we set
Xi(s) =
X,,_H(S) 7 (2:2)
where s is an arbitrary parameter, we find
Xi= £=L ) (2.3)
R - S T

the points designating differentiation with respect to s. We find, moreover,

dT = Xn,HdS,
and therefore
[ 14T = [ %,y Lds. (2.4)
Inserting
XopL =&, (2:5)

we find that ¢ is a function of X; and X; alone, not containing any other
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parameter, and that ¢ is, with respect to the X;, homogeneous in zero order.
The function ¢ given by equation (2.5) is thus homogeneous in the first
order in the X;. This brings the general problem within the class of prob-
lems treated in the previous section.

In particular, we have the identities

8¢ 9L
ok, oX,
for k=/=n+1 (2.6)
0
—.e—-:L i aLI X:=H
6Xn+l aXl

The last component vanishes only if L is homogeneous in the first order in
the X'.
Equation (r.1) gives the corresponding n equations

L
aT\ 8%, | T X, (2.7)
and adds the equation
d oL
(H) = . (2.8)
dT 8T
. (S T— .
If the determinant of the ———— - is different from zero, the determi-
9X10X,
2
nant ——— with (n+ 1) rows and columns has the rank n.

0X;9 Xy

Without further detailed derivation, we may mention a few other prob-
lems which lead to the basic equation (r1.1):

(b) the characteristics of a partial differential equation ;

(c) the theory of conformal mapping (and therefore the theory of ana-
lytical functions);

(d) the theory of geodetic lines in Fuclidean and non-Euclidean geom-
etry;

(e) differential geometry ;

(f) contact transformations;

(g) all of classical physics and much of quantum mechanics.

And finally we may point out that §L/¢X, and g§L/gX, are gradient

functions which keep their form for generalized coordinates.
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HBEPIAHREISE

Al #wdoec Euler - Lagrange e Sidgooa nedia t@v Madnuatxdv xai
tiic Duowriic duvaviar va peracynuatiododv ele poopv, N 6moia didetar eig v
dntxnyv Oud mooodung pidg émt mAéov petafAntiic.

‘O ovyyoagede dider el toc EEtodoelg adtds wlav xuvovixny poo@nv, 1
6moia, dedouévwv tod onuelov xoi tiic dtevdivoewe, 6dnyel elg Tov mEoGHLOQL-
oudv tdv axpotdrov tudv. Toviletar 6t fi wooen tdv dEodocwv elvar dveEdo-

mrog tiig Exhoyiic TV perafintdv.

‘0 ’Axadnpaixdg x. Lwdvy. Eavddxnys dvaxowdv v dg dvo uerétny
eimev ta €Efg:

‘Qc yvaworov ai dapopixai odioes 1@y Euler- Lagrange évéyovv onov-
dawordrny onuaciav eis iy Mow nolddv mgofinudrwy t@v Madypauxdy xai
vijc Dvowijs. ‘O x. Herzberger, Sous Owetélece padniic xal cvvepydine tod
asypvijorov Kawwvoraviivov Kapadodwesj s uvijuny 1o omoiov xai dpuepdve
wy akibhoyov ravryy doyaciav tov, dnodewxvier 6t ai Eeddoeis avraw éni da-
poowy mediwy 1w Madyuarxdy xai tijc Dvowxijc dbvaviar va uetaocynuar-
ododv el poophy, 1 omola eis Y Smuxyy diderar O Tijs moooDjxns puds énl
akéov peraPintijs. “H xavoviey uwooeptn t@v éfodoewy todtwy 60nyel, dedouévawr
109 onuelov xal tijc devdivoews, &l 10y TEOGd0PLOUOY TMY AxEOTATWY TLUDY.
*[hiautéows O vovilerar G 4 dv Ay poopn tdv dodocwy elvar aveédptnros

tijc xhoyfic 1@V uerafinrdov.




