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ABSTRACT

An experimental investigation was undertaken for evaluating the failure mode of po-
Iycrystalline granular fresh-water ice at temperatures around -20° C. A series of triaxial
compression tests, where the secondary lateral stresses o; and o, were taken always equal
to each other and their magnitude did not overpass a limit of 0.50 o, were used as data for
determining the failure locus of this material. The experimental data corresponding to the
initial, as well as to subsequent yield loci, were introduced to an appropriate tensor failure
polynomial criterion, suitable for defining failure loci for anisotropic materials. Based on
modern connectionistic theories, we approximated the anisotropic hardening elastoplastic
behavior of the ice by a fictitious appropriate anisotropic elastic material, whose properties
are adapted to the existing data of the tests in the elastoplastic range of loading. These data
were used as the input values into an elliptic paraboloid failure surface criterion, which ex-
emplifies the respective failure tensor polynomial. Introducing a stepwise form of loading
of the specimens, we derive enough data for the accurate determination of these failure sur-
faces inside the elastoplastic region of loading, up to a complete failure. This parameter iden-
tification method was realized in an appropriate neural network environment via supervised
and unsupervised learning algorithms. The network is trained to interpolate or extrapolate
the existing experimental results, concentrated in all the compression quadrant of the prin-
cipal stress-plane, to the entirety of the failure locus. Depending on the quantity of the ex-
perimental values and their reliability, the speed of convergence of the numerical method
may be considered as satisfactory, yielding stable results after a few cycles of iteration.
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The method sketched was applied to a series of compression compression tests with
ice I specimens for three successive steps of loading, corresponding either to the elastic limit
of the material, or at the initial yielding, creating a volumetric conventional strain e,= -0.2%,
or at the peak strength of the material. Interesting results concerning the strength and the
mode of fracture of this important material have been derived.

INTRODUCTION

Ice is a remarkably brittle solid compared to other materials at high ho-
mologous temperatures. Up to now much work has mainly developed on the
study of creep and plasticity of ice, since these processes are known to domi-
nate in ice sheets under small deviatoric stresses. However, ice fracture is also
significant in many different aspects of the mechanical behavior of ice, espec-
ially in brittle fractures. Despite the importance of this mode of failure, less
experimental work is devoted and no satisfactory fracture criteria for multia-
xial loading of ice actually exist.

Since brittle fracture and cleavage are strongly influenced by the hydro-
static confinement of the ice, it is of paramount importance to establish a mul-
tiaxial criterion of fracture describing all the aspects of failure of this mate-
rial. Then, a systematic experimental investifation of the failure modes under
complex states of stress seem to be indispensable for defining the mode of re-
sistance of such an important material. Polyaxial stress loadings along the
principal directions of the substance have been sparcely executed for defining
the failure mode of various types of ice.

Hausler (1981), as well as Schulson, Jones and Kuehn (1991) studied ice
under multiaxial compressive stress and established the effect of confinement
on the compressive mode of failure under brittle conditions. Furthermore,
Rist and Murrell (1994) have undertaken tests under a triaxial mode of
loading of polycrystalline ice I under compressive conditions, favourable to
brittle fracture and microcracking. The influence of moderate confining la-
teral pressures was studied and it was shown that for low confining pressures
brittle strength was strongly dependent on pressure. However, at higher con-
fining pressures brittle strength was strongly dependent on pressure. How-
ever, at higher confinement, corresponding to a lateral compressive hydrosta-
tic pressure equal to 6; =06, = 0.15 o3, fracture is resembling an overall shear
type, where an oblique crack is established, followed eventually by wing sec-
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ondary cracks, which are deceloped for lower than the above limit ratios of
the lateral to the axial fracture stresses. This type of cracking of the specimen
follows a sliding-wing mechanism of brittle fracture under overall compression.

It was further shown an all compressive triaxial testing, where a uniaxial
stress is combined with a hydrostatic lateral pressure, was a sure means to
promote a uniform stress field inside small specimens and therefore it was con-
venient to study the failure mode of such materials. For this purpose a con-
ventional triaxial loading cell was used to study the mechanical behavior at
low temperatures, corresponding to situations where ice of type I is formed
and maintained during loading.

During the triaxial tests executed on cylindrical ice specimens an all com-
pressive state of stress is applied to specimens, where the absolutely higher
compressive stress o, was directed along the axis of the cylindrical specimen,
superposed by a lateral compressive stress state, where o;=0,< ;. By
varying the combinations of such stress states, where the ratio R = o3/0; was
kept either below or slightly above the transition limit R = 0.2 different
modes of fracture were obtained.

The definition of the yield stresses and loci for the various steps of load-
ing considers a learning process of an appropriately defined numerical pro-
cedure using the least squares method with constrained conditions and based
on the validity of the failure tensor polynomial working as a constitutive con-
dition for progressive yielding. Then, the method consists in the construction
of a numerical procedure, trained to fit existing experimental results, and to
extend these results, which are normally obtained all in the compression
octant, in the principal stress space, to the whole stress space. Having totally
defined some intermittent particular yield loci of the material, based on a suf-
ficient number of experimental points, it is possible to determine further sub-
sequent yield loci to the existing already experimental yield surfaces, by con-
sidering the material as a progressively changing anisotropic one, whose va-
riation of anisotropy is due to a further development of plasticity of the ini-
tial plastic enclaves (Theocaris and Panagiotopoulos (1995a)). The procedure
is then instructed to learn the law of variation of anisotropy of the material,
and, when it is applied to another set of experimental data, may fulfil its task
to define the next step in shorter times and with higher accuracy. The method,
making use of the flexibility of the failure tensor polynomial criterion, express-
ed by an elliptic paraboloid failure surface (EPFS), can establish the equi-
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valent elastic failure characteristics, by using a continuously variable form
of the EPFS. The details of the theory of the methods is fully presented in
Theocaris and Panagiotopoulos (1995a, 1995b).

The crystal structure of ice may be deseribed by a unit crystal which is
extended indefinitely in all directions where each oxygen atom of the cry-
stal is situated at the center of gravity of four neigbouring equidistant oxygen
atoms, from each of which it is separated by hydrogen atoms, so that each hy-
drogen atom touches two neighbouring hydrogen atoms and each oxygen
atom touches four hydrogens. according to the pattern of Fig. 1a. The three
atoms do not lie in a straight line, but rather with the hydrogen atoms bent
toward each other, so that the 3D-structure of the water molecule is unsym-
metrical and can contain four uneven arms, placed inside a not-quite perfect
cube. Thus, the angles formed by the two hydrogens and the respective cen-
tral oxygen atom form angles equal about 105° and the distance between the
oxygen and each hydrogen nucleus is equal to 0.96 A°. Opposite the hydrogen

(b)

(a)

Fig. 1a. The atomic structure of the Ice (large circles correspond to oxygen atoms, small
circles to hydrogen, long lines mean hydrogen bonds, while short lines correspond to
covalent bonds). Fig. 1b. The tetrahedral arrangement of the water molecules.
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atoms, and directed to the opposite corners of the unit cube, are formed two
electronic clouds, which are the keys to the peculiar behavior of water, be-
cause they attract the hydrogen nucleus of an adjacent molecule of water,
thus forming a hydrogen cloud (see Fig. 1b).

It has been established that a variety of structures are formed when wa-
ter freezes, and they are identified by roman numerals. The structure repre-
sented in Fig. 1 corresponds to ice I, the familiar ice that forms, and it is sta-
ble, at ordinary atmospheric pressures. Nine different forms of ice are known,
each definable by its lattice structure. Changes in temperature and pressure
transform one kind of ice into another. The changes are specific and have been
charted in phase diagrams (see Fig.2). Thus, ice I at -10°C is converted under
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Fig. 2. The phase diagram of water at different temperatures and pressures.
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a pressure of 4,400 atm to ice V, while at the same temperature level and under
a pressure of 6,300 atm is converted to ice VI. Similarly, ice I at -30°C is con-
verted to ice III at 2,200 atm, whereas, if the pressure is raised to 3,000 atm
is converted to ice II. Furthermore, ice at -30°C is converted further to ice V
and ice VI at higher pressures than 3,000 atm. Figure 2 presents a diagram of
ice formation in terms of combinations of temperatures and pressures during
its process of formation, where the equilibrium states are indicated for high -
pressure forms of ice.

The present work focuses on the study of the mode of yielding and fail-
ing of polycrystalline ice close to the ductile brittle transition. Triaxial all
compression tests were performed on fresh-water isotropic granular ice at a
constant strain rate. We investigated the effect of triaxiality of the applied
external loads on the mode of yielding and failing of this material. Since this
material behaved as a quasi-brittle material the elliptic paraboloid failure
surface criterion of failure for orthotropic materials was applied and inter-
esting results and conclusions were derived concerning the mode of failure of
this material up to failure under a triaxial mode of loading.

2. TRIAXIAL TESTING SYSTEM

A series of compression-compression tests were conducted on specimen
ol pure isotropic granular ice using a typical low temperature triaxial loading
cell. The loading system utilizes clear silicone oil to impose hydrostatic con-
fining pressure up to 20 MPa. Simultaneously, an axial load is applied to the
specimens through a piston. The specimen was either cylindrical or rectangu-
lar. A compressive stress o, was applied axially to the specimen under a con-
fining pressure p = o, = 6,. The test temperature was maintained nominally
to -200C by adjusting the temperature of the cold room where the cell was
contained with an adequate stability.

A systematic investigation of the mechanical behaviour of ice under
triaxial testing requires cylindrical fine-grained specimens which should ap-
proach isotropy being consistent and of a reproducible quality. Thus, high
density specimens of uniform size and with randomly oriented grains are
necessary to be prepared. Therefore ice samples were prepared by flooding
vaccumed moulds with sieved ice seeds with de-aerated water to achieve
randomly oriented grained ice of uniform size of the order of five millimeter
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in diameter. The specimens, which were all cylindrical, had dimensions
of 40 mm in diameter and 100 mm in length. Constant strain rates were
maintained during loading of the specimens in the loading direction, while
lateral strains perpendicuiar to the loading direction were measured via
two transducers of gauge length of 30 mm. Thus strains were measured in the
central portions of the specimens. The main characteristics of the testing de-
vice are, therefore, a uniformly distributed and independently controlled de-
vice of application of a triaxial type of principal stresses, complemented by
a system of accurate and rapidly measured strains in a large range of deform-
ations, whereas the machine is a robust one, which disposes a high capacity of
sustaining stresses of the order of 250 MPa.

For establishing the strength behaviour of three series of ice specimens
under a triaxial mode of loading, and at a temperature of -20°C, a series of
tests were conducted along loading paths following either the hydrostatic
axis in the stress space, or paths with varying o, = o, stresses, while the o, -
principal stress was kept constant, or path in which the cy-and o,-stresses
are kept constant at various levels and increased the os-stress up-to-yielding
and ultimate strength of the material.

Table 1 and Figure 3 present the strength data and the curves of varia-
tion of yield limits during triaxial loadings from the three successive series of
all compressive tests at different strain rates, e, varying between e = 10-2 to
é = -10-4 All these strength data will be used for establishing the failure loci
of ice, by applying the method propounded in this paper, and checking its
efficiency and degree of reliability. The problem posed for the general aniso-
tropic elastoplasticity law with respect to a given body may be expressed as
follows: «Determine an anisotropic piecewise linear elasticity sequence of
laws, for which a body with the same geometry, the same loading and the
same constraints, exhibits a behaviour identical with the behaviour of the
elastoplastic anisotropic body under study». If the loading function p® of
the step t € [0, T] is given, we may divide [O, T] into the time instants t@,
t®, ..., t® and denote by C®, C®, ..., C® the corresponding, but as yet
unknown, anisotropic elasticity tensors, satisfying the well-known symmetry
and ellipticity conditions. We seek {t©@, C®}, o =1,...,n, such that the solu-
tion of the anisotropic elasticity problem approximates as close as possible
the solution of the initial anisotropic elastoplasticity problem. The problem
is formulated as a parameter identification problem, where z® = {t«), C®},
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are the control parameters and the strain, -stress, - and diplacement- fields
are the state functions. The control parameters will be calculated by taking
into account the experimental results as observation conditions. Assuming

TABLE 1

Summary of test results at different strain rates

Test Series Confining Compression  Failure axial Strain Mode of
No stresses o; = G, G, — stress rate Deformation
MPa MPa s
0.00 -2.20 Brittle
0.12 18.10 Shear fracture
1.30 22.24 Shear fracture
2.41 26.79
1 4,82 30.64 Ductile with
t = -200 C 10.30 43.72 e=10-2  dense cracking
19.80 54 .40
28.50 60.91 Ductile
30.00 62.82
0.00 -2.40 Ductile
0.10 14.30
0.82 16.10
I 4.61 22.48 Ductile with
=200 5.64 24.30 e=10-3 dense cracking
10.30 28.78
11.10 29.52
19.92 40.30 Medium
29.74 49.91 cracking
0.00 -1.85 Ductile with
041 6.62 dense cracking
.70 15.21
III 9.80 21.74 ¢ =-10-* Medium cracking
t=-200C 19.88 32:12
28.80 40.78 Sparce

33
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Fig. 3. Yield limasts at the ultimate strength of ice in the (s,, 6, = o,)-space.

steps of small deformations, we denote by A;, A, and A, the following differ-
ences:

_ 2 a :
A=Y Ilug’l)—ui‘l’)} dQ, A, = g .S‘{ s(p)—s(p)J de,
Q Q

p=1

where u, ¢ and ¢ are respectively the displacements, strains and stresses,
is the body under consideration and the subcripts «el» and «pl» denote elastic
or plastic quantities respectively.
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The problem reads: Find z® = {t®, C®}, o =1, ..., n, such as to satisfy:

A; + A, + Ay > min (2)

where for every o, the quantities 6e®, ca® and ua® satisfy the equations
of equilibrium, the strain-displacement relations and the material law:

egl)) = C®™ Gg‘» (3)

The quantities en®@, op®, un®, must satisfy the equilibrium equa-
tions, the compatibility conditions, and must agree with the experimental
results concerning the relations between ;® and op®. Moreover, the quan-
tities for both the initial plastic and elastic problems must satisfy the boun-
dary conditions and the initial conditions at step t= 0. In the case of pro-
blems of elastoplasticity, where the A;-condition, expressed by the first rela-
tion (1), may be ignored in the process and only as a checking condition of
compatibility may be used, the arising parameter identifiction problem is of a
non-classical nature and, therefore, it cannot be effectively treated by classi-
cal optimization methods. If we simplify the problems by discarding the A;-
condition and impose the discretized form of the elastic body to minimize the
(Ay + Aj)-deviation the resulting condition takes the form:

=21

2
1
| c®O OO (z0) l! +

! [ 2 .
} G(Sl)m— Gg)(r) (z @) ‘l[ —min (4)

K (Z(D)) u(P) + p(ﬂ) = O (5)

where r=1,..., m enumerates the discrete degrees of freedom, K(.) is the elas-
ticity stiffness matrix and the symbol I. I denotes the corresponding Eucli-
dean norms. The stiffness matrix K corresponds to the geometry of the body,
whose quantities cn® and £;® are defined experimentally at the step in-
tervals t©®. Finally, p® is the loading function, which leads to the experi-
mental results at the g-step.

Relation (4) can be replaced by (Theocaris & Panagiotopoulos, (1995)):

max
ol

| | 9
l| & (X0 — XD 7 ® I| 1 } — min (6)

e OO @0 26| ) £
1

[}




516 ITPAKTIKA THX AKAAHMIAYZ AGHNQN

or, by the prescribed error inequalities:

max e QO - QO(2®) | < 3, maxy,,;; | 6 O - cBO(ZM) | < 3, (7)

P,Tisj

The inequalities (7) imply that the maximum differences between the
elastic and the plastic stress-and strain-components respectively at any point
of the body, and at any control moment t®, cannot be larger than a given
constant 8. For a given sequence of strains, even in different directions, we
can assume that z includes only the anisotropic elasticity moduli C®, where
we assign at each loading step several control parameters, Ce), Cey, ..., C@),
in order to approximate, in a reliable manner, the anisotropic plasticity stress
-and strain- fields.

In this way the parameter identification problem is an inverse problem in
structural analysis, where a solution is prescribed and we ask for convenient
elastic properties and /or loading and /or geometric quantities, producing a
solution very close, or identical, to the prescribed one. Obviously, we have to
solve a minimum deviation problem having as subsidiary conditions all the
relations characterizing the solution. Indeed, in adapting the structural ana-
lysis to the numerical approximation computation it is necessary to formu-
late the structural analysis problem as a minimization problem and the same
procedure is used for the parameter identification problem described by rela-
tions (4) and (5) where a quadratic deviation function should be minimized.
Then, we have to solve the linear system (5) corresponding to a linear elastic
structure for each value of the control vector z®.

If now the components of strains and stresses, ca® and ca®, correspond-
ing to the displacements ue(®, are prescribed, or they must take values very
close to respective en®@-, op®@-values, for all stresses and strains of the struc-
ture under consideration, and for all p we need to determine the control ve-
ctors z®, o =1, ..., n, i.e. to the corresponding control times t®, as well as
the elasticity coefficients C®, such as to minimize the differences in (4) after
an appropriate discretization of the structure. For each value of 2®, p =1,
..., 1, the structure will be calculated by means of the numerical procedure,
introduced through Eqs. (6) and (7).
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3. THE TENSOR POLYNOMIAL FAILURE CRITERION

Considering that ice should be an orthotropic brittle material we have to
define the failure tensors Hj and h; along the principal stress axes, where
i, j =1, ..., 3 and the 3-axis is taken to be the strong axis of the medium. We
assume further that the principal stress axes coincide with the material princi-
pal strength axes. In this case, the failure surface is expressed by (Theocaris,
1987a,c):

Hy1(64% +0,%) + Hgy05%-(2H 1~ Hyg)0165-Hg(0505+056,) +hy (0, +65) +hyoz=1 (8)

The quadric surface (8) is an elliptic paraboloid surface, whose axis of
symmetry is parallel to the hydrostatic axis ¢, =6, =03 and it is symmetric
to the principal diagonal plane (g3,0;,), containing the cj-axis and passing
through the bisector §,, of the angle 5,05,.

6

. 5

Oxy — deviatoric
Oyz — diagonal

0'y'z'\ planes of sym-
0'x'z’ [ metry of EPFS

Ilig. 4. The elliptic paraboloid failure surface (EPFS) for the transversely isotropic body.
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Figure 4 exhibits the elliptic paraboloid failure surface whose axis of sym-
metry KO0'z" is parallel to the Oz-hydrostatic axis, in the principal stress space
(63, 69, 03). The Cartesian reference system Oxyz is formed by rotation of the
(61, 04, 03)-system, so that the Ox-axis becomes a bisector of the (g, 6,)-plane,
the 0z-axis coincides with the hydrostatic axis, and the Oy-axis forms a tri -
orthogonal system. In addition, the 0x'y’z’-system is formed from the Oxyz -
system by translating the origin 0 to the new origin 0’ by a distance y,.

The distance y; between the hydrostatic axis and the axis of symmetry
of the EPFS is given by:

/
Y1 = 911_%; (hy— hy) ©))
Relation (8) when referred to the Cartesian coordinate system 0x’y’z’ becomes
(Theocaris, 1987 a,c):

1 3. 9 hy\ , H
(2H11_ §H33)X2+ §H33Y2+17§‘(h1 + i)z +?33(}11~ hy)2=1 (10)

It should be noted that since relation (10) does not contain linear terms
in the y’ and x’ coordinates, the planes (y’, z') and (x’, z’) are planes of symmet-
ry of the EPFS.

The intersection of the EPFS with the principal diagonal plane (oj, §,,)
is a parabola, which is represented by the following equation:

- 2
yr=_2 (1 e Shalf %(hﬁﬁ*) z’) (11)
3L\ 9HI, | 73 5

The deviatoric plane is defined by letting the value z’ = 0 in relation (9).
The coordinates (x;, y;) of the origin 0’ of the deviatoric intersection of the
EPFS are expressed by (Theocaris, 1987 a, c):

x5 =10 (12)

5 = J6 (h,~ hy) (13)
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Finally, the distances d and d’ between the deviatoric z-plane and either
the point of piercing of the hydrostatic axis z, or the axis of symmetry of the
EPFS 7z’ are expressed by:

i . B < (14)
2(h1 i 2§)
n 3 (hl_ h3)2
B A (15)

13
) (hl W %‘n’)

Because of the symmetry of the EPFS with respect to the principal
diagonal plane (o3, 3;,), the intersections of this surface with either principal
stress plane (o, 6,) or (o,, o3) are identical. Therefore, only one needs to be
studied. The cross-section of the EPFS by the principal plane (s,, 6,) may be
derived from relation (8) by setting ¢, = 0. This substitution yields:

H,,6,2 + Hy05% + 2H,,040, + hyo; + hyog =1 (16)

Relation (16) under the condition of its discriminant to be positive (for
4H 44 > Hyy) is an ellipse (see Fig. 5). The center of this ellipse has coordinates
(63m, oym). These coordinates together with the angle 2,5 of inclination of the
polar radius (OM) are given by (Theocaris, 1988b):

2 2
o :(2h1 H3; + h3H11) (17)
4ha Hu = h1 Haa

g (h1H33 i 2h:«xHu> (18)
Hga(4H,,~ Hgy)

Hgp == bam" [I——~—11H33 3 2h3_H11] (19)
H33 (2h1 it hs)
The system of Cartesian coordinates to which this ellipse is central and
symmetric, is defined by the angle 0,;, expressed by:
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o

Fig. 5. The intersection of the EPFS by the (o,, o;)-principal stress plane.

0,3 =1/2tan"! [Hy,/(Hy;— Hyy)l (20)

The lengths of the semi-axes a;y and azy of the ellipse are given by:

C\1/2
(a,M,a3M):< > (21)
12
where
h
Hll H13 2}
h
H13 H33 33
. . T
CdetA, |2 2 (22)
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and §,, are the roots of the characteristic equation:
32— trAud + det A2 = (23)

The above cited analysis completes the exact study of the form of the fail-
ure criterion by yielding sufficient information concerning the form, shape
dimensions and orientation of the important intersections of the failure locus
of the material under study and therefore describe accurately its failure mode
under any triaxial loading path.

4. EXPERIMENTAL EVIDENCE OF TRIAXIAL TEST ON ICE

The experimental scheme described previously will now be applied for
the study of the yield and failure loci of ice at different strain rates. As the
basis of the calculations the numerical results included in Table 1 will be used
for the definition of the failure loci under triaxial loading. We consider the
experiments described in section 3 of this paper concerning the failure modes
of a coarse grained dense crystalline material, whose strength differencial ef-
fect is predominant in its mode of failure. It is assumed that the stress data
given in Tables 2 and 3 are the data for the parameter identification problem
of the form (4) and (5), with the slight modification, that, in (4), only the
stress difference terms exist and the strains are not taken into account. More-
over, we have followed the loading-unloading procedures, as described in the
experiments and we have assumed as unknowns of the problem only the two -
dimensional anisotropic elasticity coefficients. Thus, we can approximate the
anisotropic hardening plasticity behaviour, including the stregth differential
effect with, a variable linear elastic behaviour defined by the appropriate
changing anisotropy.

The numerical procedure for the evaluation of the failure:

We consider as given the experimental yield points on the failure surfaces
for subsequent loading steps inside the elastic-plastic region of loading and
unloading of the specimens. On each given yield surface we take a finite num-
ber of points ajj = (i = j = 1, 2, 3) and we apply with respect to all given yield
surfaces the numerical procedure of the previous section. We assume that the
elastic material is transversely isotropic, of changing anisotropy with loading,
and we want to determine the sequence of the orthotropy coefficients o,,®,
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Apo®, o15® = 00)®, 035 within each element, which satisfy the identifica-
tion problem for the stresses and constitute the elasticity tensor C® at the
p-step of the learning algorithm. As p —o0 we have theoretically the solution
tensor C = {x;;, ttgy, %15 = gy, g5}. We recall here that ex = a;;0xh + ay505h,
«ey Yxy = %330xyh, where h = 1mm is the thickness of the plane structure.

In order to get a more reliable approximation of the anisotropic elasto-
plastic problem with a sequence of anisotropic elastic problems, we have con-
sidered intermediate yield points through interpolation between two experi-
mentally given failures in the 3D-stress space. The interpolation is guided by
assuming that the respective loading step corresponds to a point at the sur-
face of the elliptic paraboloid failure surface for the general anisotropic hard-
ening elastoplastic body presenting the strength differential effect (Theocaris

TABLE 2
The values of the terms of the elliptic paraboloid failure surface, as well as the character-

istic quantities defining the deviatoric and the principal (o, 3,,) diagonal plane inter-
sections of the EPFSs

Loading Series H,, H,, Hsg hy h, hy Remarks

I(e =10-%-1) 0.4542 0.4542 1.5139 12.993 12.993 0.0553 All Hij; & hii
IT (¢ =10-3s-1) 1.4123 1.4123 4.7078 0.0068 0.0068 21.1610 must be mult-
IIT (¢ =10-%s-1) 3.7261 3.7261 12.420 0.0037 0.0037 23.266 plied by (x10-3)

Deviatoric Plane

Xd yd rd Ya Oy/ia oy [2

I'(e =10-2%-Y 0 2.335 2.385 900 81776 5247115
II (e =10-3s-1) 0 -1.223 -1.223 900 46.331  11.963
1L (e =10-4s-%) 0 —0.5098 -0.5098 900 28.443 7.344

(o3, 8;5) - diagonal plane (z = ay® + By + ¥)

o B it S12p G3p N3
I{e = 10=55~4) 0.1513 -0.7067 —66.6398 38.9496 51.0389 40.8572
1T (é =l)F5 1) 0.5760 1.4141 —81.8447 46.2541 67.5321 46.2541

I e =104 1.3869 1.4142 74.4419 42.5628 61.0754 42.7709
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TABLE 3

The values of the characteristic quantities defining the (oy, 6a), (03, 63), and (s,, 6;) principal
stress intersections for the EPFSs

Principal Stress Plane (o}, 0,)*

Loading Series oy oM A (**) T o M Uam 015 (**)
I(é=10-%s1) -8.5826 -8.5826 45° 12.1376  85.6869  38.3203 4&5°

II (e =10-3%s-1) —0.001 —0.001 450 0.002 46.0883  20.6113 450

IOI (6 =10-%-1) 0 0 450 0 28.3748  12.6896 450

Principal Stress Plane (o', %)%

OM1 O3m 23(**) ry3 %M %3M 045(*%)

I(6=10"25"1) —42.9240 -85.8443 26.57° 95.9776 161.0533 28.5740 27.50¢
II (6 = 10-3s~1) —13.4855 —22.4762 30.960 26.2114 78.2191  13.8776 27.50°
III (6 = 10-%s-1) -5.6199 -9.3665 30.96° 10.9231  46.4987 8.2498 27.50°

* All stresses in MPa’s.
** Negative angles are measured from the negative principal axes with the lower index.

(1989 a,b)). The failure surface in any principal stress plane is an ellipse,
which can be defined by a series of adequate points. The same property is va-
lid for the deviatoric plane, as well as for any intersection parallel to this
plane. The only exception to the general rule holding for the EPFS-criterion
is for intersections of the failure paraboloid by planes containing the hydro-
static axis or the axis of symmetry of the paraboloid. These intersections are
all parabolas (Theocaris, (1989a) (1989b)). After the initial rough guess of a
number of basic yield surfaces derived from a series of different experimentally
determined triads of values of the principal stresses, leading to different
points of presumably the same yield surface, we obtain a family of different
failure loci corresponding to equivalent loading steps, but of different loading
paths in the three dimensional principal stress space, which describe in a
convenient way the failure mode of the material in multiaxial loading.
Applying the above described method to the three series of experimental
results from the series of tests with ice cylinders at different strain rates we
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evaluated the corresponding EPFS loci to the respective values for each triad
of 6y, 6, and o, given in Table 1. It was assumed in this analysis that the in-
stantaneous values of the failure and strength differential effect tensors Hj
and h;, as derived from the least square approximation scheme, belong to a
certain failure surface of an equivalent transversely isotropic elastic body with
values of H;; and h; those considered and this failure surface is progressively
changing satisfying always the respective, experimentally obtained, values
for the principal stresses. However, one should notice that the calculated or-
thotropic elasticity coefficients are fictitious and they have generally nothing
in common with the elasticity coefficients of the elastoplastic material. More-
over, they are not uniquely determined. Furthermore, the larger is the num-
ber of unknowns to be determined, the less accurate is the method. In order to
check the stability and accuracy of the numerical procedure we have to define
the limits of the constraint Hpouna satisfying the inequality derived from the
so-called «stability conditions» expressed by (Theocaris, (1989b)):

HiiHj;— Hi®2 > Hpouna = 0

The numerical procedure of defining the failure hyperspace was based on
different combinations of experimental data. The limits for the Hpouna were
taken to vary between 1 x 10-? and 1 x 10-'%, so that a high accuracy can be
obtained. Thus, the sets of hypersurfaces, derived from these combinations,
created coherent entities of curves with insignificant deviations between
them, thus indicating the stability of the method. Only when some of the ini-
tial values were selected at the borders of each loading zone, where either ela-
cticity was in doubt, or the strain rates were rapidly changing, some scattering
of these zones appeared in the plottings, which indicated the high sensitivity
of the method.

The three distinctive series of tests of Ice I tested gave finally the follow-
ing values of the terms of the respective tensors Hj; and h; contained in Table
1. In the same table the values of the pairs of principal stresses in tension and
compression op; and ¢ for the three loading steps are also tabulated. Having
at our disposition these values of stresses and of the coefficients Hj; and h; we
can readily define the various intersections of the failure hyperspaces.
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a) The deviatoric plane of the EPFS’s:

The center of this intersection, as well as the polar distance rq and the
angle ga subtended by this polar distance and the 0"'x"’-axis of the paraboloid
are given by relations (12) and (13) and they yield:

16
=y, =— (hy— h
Y1 OH,, (hy— hy)
and dﬂd = OO

Indeed, since the material is a transversely isotropic one, the orientation
and the size of the intersection of the failure surface by the deviatoric plane,
which is an ellipse, has its center along the axis of symmetry of the paraboloid
and its principal axes are parallel to the 0'x” anc 0"y’-axes of the yield surface.

Ay,

Fig. 6. The deviatoric plane failure intersections of the EPFS for ice I at different

strain rates.

Figure 6 present the elliptic intersection of the failure hypersurface by
the deviatoric m-plane and Table 1 the coordinates of the centers of the three
ellipses corresponding to the three series of tests with ice. Furthermore, the
polar distance ra and the inclination to the (-x)-axis of this radius, {q, is
given, as well as the lengths of the principal axes of the ellipses and their
inclinations of the longest axis relatively to the (-x)-axis.

It is clear from Fig. 6, as well as from the table 2 that while the center 0,
of the elliptic locus of the deviatoric plane for the first series of tests with ice
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lies above the hydrostatic axis 0z (y, > 0) the two other centers of the ellipses
for the series IT and I11 of tests lie beneath this axis (y;< 0). The shapes of all
three elliptic intersections of the deviatoric plane are horizontally oblong indi-
cating that the material tested is strongly anisotropic along the transverse
principal (6,,6,)-plane with the o,-stress axis the weakest of all three axes.
Then, it may be concluded that ice I under the conditions of the present
testing behaves like a weak-axis woven fabric composite, whose transverse
plane behaves isotropically (Theocaris, (1992)).

b) The principal diagonal intersections of the elliptic paraboloid:

The intersections of the failure hyperspace by the three principal diago-
nal planes (o3, 8;5), (61, 853) and (o, 8;5) are all parabolas, whose axes of sym-
metry are parallel to the 0z-hydrostatic axis and lying at different distances
from it. Their equations are derived from relation (8) by putting either 3;, =
V2 6, =4/2 o, for the (o3, 8,,)-plane, or §,; =+/2 6, =4/2 o3 for the (o, 353) -
plane or 8,3, =4/2 6, =4/2 a3 for the (c,, 3;5)-plane.

Figure 7 presents the parabolas corresponding to the intersection of the

Fig. 7. The principal diagonal plane (o3, 8;,)-intersections of the EPFS for ice I
at different strain rates.
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failure loci by the (s, 3,,)-principal diagonal plane. Tt is obvious from these
plottings that, as the strain rate of loading of the material decreases, the ellip-
tic paraboloids become more and more shallow, and the distances of their
symmetry axes from the hydrostatic axis increase progressively. It has been
already shown that, when the anisotropy of the material is increasing its re-
presentative failure locus becomes progressively shallower and the coordinates
7 and & of the distance between the symmetry axis of the paraboloid and the
hydrostatic axis are also increasing (Theocaris, (1989, b)). Then, it may be
concluded that any increase of the strain rate of the loading of the ice results
in a tendency of the material to behave as a less anisotropic material tending
to become quasi-isotropic.

Table 2 gives the characteristic dimensions of the principal diagonal (o3,
3;2)-plane, that is its equation with the coefficients «, B,y, the coordinates of
the vertex of the (o, 8;,)-parabola, as well as the distances n; between its sym-
metry axis and the hydrostatic axis along the y-axis of the EPFS. It is worth-
while indicating again that the axes of symmetry of the three hyperbolas of

Fig. 8. The principal diagonal plane (c,, 8;3) and (o, 8,)-intersections of the EPFS
for ice I at different strain rates.
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Fig. 7 representing the failure loci of the ice are placed on both sides of the
hydrostatic axis with the loading step corresponding to the lower strain rate
e = 10-2s-1 lying above this axis, whereas the axes of the two remaining load-
ing rate loadings lying beneath the hydrostatic axis.

Figure 8 presents the parabolas of intersections of the failure loci for the
three series of tests by the planes (s, 8;5) and (oy, 355) which are both groups
of identical curves. However, since these intersections do not correspond to a
symmetric section of the failure locus and therefore their axes of symmetry
are relatively displaced when projected to the respective planes.

Again, it can be pointed out that the parabola corresponding to the load-
ing step with the lower strain rate (¢ = 10-2s71) is the more shallower than the
other two loci corresponding to higher strain rates. Again, the relative posi-
tions and sizes of these intersections indicate that the failure-surface of the
material takes an oblate shape relatively to its transverse isotropic plane.

Fig. 9. The principal stress plane (o;, o3)-intersections of the EPFS
for ice I at different strain rates.
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¢) The principal (oigj)-stress intersections of the EPFS.

The equations expressing these intersections of the failure hypersurface
by the principal stress planes are given by relations (16) to (23) where the ex-
plicit expression for the (o;, 6,)-principal stress plane is given as well as the
coordinates (oM and o3m) of its center and the lengths oy and azm of its semi-
axes. Similar relationships are valid for the two other principal stress planes
( (0105) and (c,03) ), where these equations are established by cyclic rotation
of the indices. Table 3 contains all the necessary dimensions for plotting these
intersections.

Figure 9 presents the intersections of the EPFS by the (oy0,)-principal

Fig. 10. The principal stress plane (oy, o,)-intersections of the EPFS for ice I at
different strain rates.
34
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stress plane for the three series of tests on ice, whereas Figure 10 gives the in-
tersections of the EPFS by the isotropic stress-plane (o,6;). It is worthwhile
indicating that these intersections are symmetric to axes subtending angles
of 45 degrees with the principal stress axes and the elliptic intersections are
oblate to the hydrostatic axis.

5. RESULTS

From the extensive analysis, based on the definition of failure surfaces
for three series of tests in compression compression of specimens of ice I at
different strain rates the evolution of the shape and form of the failure hyper-
surface of the material during loading was solidly established, by using only
uniaxial and triaxial compression-compression-compression modes of loading,
yielding reliable and complete information about the evolution of strength of
the material, which can be readily employed in applications. The least square
numerical analysis was employed with constrained bounds derived from the
respective theory of failure tensor polynomials for defining yield loci of the
materials. The method succeeds to solve completely the problem of the defini-
tion of the failure loci of a material deformed progressively in the elastic, up
to its ultimate strength, by using only experimental data concentrated in a
small area of the yielding, conveniently selected to give reliable and accurate
experimental data.

Figures 6 to 10 present the intersections of the elliptic paraboloid failure
hypersurface by different characteristic planes. It is clear from these figures
that the failure surface changes shape as the strain rate during loadings is in-
creasing and it becomes more oblong thus resembling the Mises cylindrical
shape valid for isotropic brittle materials.

It is of interest to examine separately the influence of any existing aniso-
tropy of the material and the influence of the strength differential effect.
Table 3 indicates the values of the yielding stresses in triaxial loading, as the
strain rate is increased. Examining the values of the terms h;, responsible ex-
clusively for the strength differential effect, one observes the striking diffe-
rence between the values of h; and h, with the corresponding values of h;.
While for the low strain rate loading the h, and h,-terms are 250 times larger
than hy, for the other two higher strain rates this relation is reversed with the
hy-term to be 3000 to 6000 times larger than h, and h,. This difference between
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the values of the tensor terms h; together with a similar discrepancy between
the orders of magnitude of the terms of the Hj-tensor, where Hj, is threefold
and more larger than H,;; = H,,, explains the higher lateral strength of ice
appearing markedly in all the intersections of failure loci, fact which may be
explained by the crystallic structure of ice under such environmental condi-
tions.
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HERPIAHYIE

Mehétn tiig IMolva&ovikilg "Avroyfic tob ITolvkpvstariikod Ilayov (Tomov I)

Eic miv wapoboav 2pyasiav, émiyelpeitar melpapotind nehérn Sie TOV Tpoodto-
PLGOY TAV ®pLTYpleV &oToylng ToD TOAXEUGTHAAOD %oxx®ous ayoy elg Ozppo-
xpactug mepl Tovg -20° C. Awd v mpoodiopiopdy Tiig mgavetag dotoytug Tob HAu-
%00 adred Eypyoipomorinoay &g dedopéva cerpn TpLakovindy OhmTIXGY waTemo-
vicewy, Ut Tog SeuTepeuoloug TrpaTAEdPOVE TAGELS 6y %ol Gy toug peTabd Twv %ol
70 wétpov Toug wixpbrepov ol Gplov 0.50 o5 Ta merpaparting dedopéva, o dvri-
oTouobvta el THY dpyixny, xabdg Enlong xal eig Ty Tehwny Emipdveiay Suxppoic,
elonyOnoav elg elduxdy xprtheLoy TavuoTined ToduwVipon doToyiag, *kaTdA oy dud
Tov GpLopoy TAV Emoaveldy doToylag TAY dvicoTpémwy Yhxdyv. *Enl 1% Bdost cuy-
xeovev dvramoxprtindy OewpLdv, mposeyyloapey THY AVIGOTROTOV %PATUVGLY X¥TO.
ThY EAAGTOTAAGTLIXYY GUUTEPLPOPaY ToD Tdyov pé Eva xatadhfiws 6pLlbuevoy dvi-
66TpoTOV ixovindy EhaoTindv VAKdy, al i3tétnTeg Tob 6motov foav cbppwvor pé Ta
ioybovta dedopéva T@Y TElpapdTOY Sk TO EAacToTAAGTIROY Tediov gopTiczwy. T
dedopéva Tabta sloNyOnoayv eig ©6 xprmipLov g ENeimminic mapaBoloetdoly émi-
Qavelag acToytog, TO 6molov TepLypdPeTaL PE TO AVTLGTOLYOV TAVUGTIXOY TOALGVU-
pov &otoyluc. Elcdyovres &v cuveyela Babudwtiv popeiy @opticems tédv Soxtulnwy,
ouvayopey Emapxd plluov dedopévmy e TOV dxpLB wpoadlopiopdy TGV EmLpavel&y
aotoyiog eig TV éhacTomAnGTIXY TEQLOYTY THC PopTicews, éxpt TANPOUS xal GAo-
w\pwTixiic dotoytag Tol OGAxob.

‘H gpapupoclecion dpunriny wébodos ik tavtomorficews Tév mapapérowmy
¢Eeteréoln clc xatdMqhov mepLBdlov vevpwvixol Sixtdov, pése Emtnpobuevev
xal pui-Emrnpodpevey dhyoplBuwy. T Stxtvov Siddoxetar vo mapepPdiy %) vé mpo-
oexfBaly T dmdpyovra TeLpapaTind dedopéva, T 6mota edploxovTal GuyxevTpwpéve
el 70 TeTapTudpLov OAidewe Tob Emimédov @Y xuplwv Tdoewy, ¢p’ GhoxMipoy THG
empavetag aoroyiag. ‘O pubuds cuyrhiceme g &pbuntindic uedédov, daptduevog
€ TG T0GOTNTOG TGV TELpapaTIRGY TLUGY %ol Ti¢ &Elomtatiag Twy, Oewpeltal ¢
ixavomolnTinds, mapéywy dxptBl xal otabeps drotedéopata petd amd dAtyoug ubvov
»hxdovg EmavadPewy e dpbuntiniic mposeyylocnq.

‘H meprypageica wébodog Epnpubody cic ceipdv merpapdrev OMidewg-OAiewg
el Selypata wayou I S tplo Suadoyind émimeda popricews, dvrisToryobvra el Suo-

@bpovg TaybTnTag EmPodTc T@Y mxpapoppdoEwy xal mpoéxuday &x ThHg peréTig
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Tadng Evdiagépovta amoTehécpata, apop®dvTa elg THY dvToyny %ol eic TV Stadixa-
oty &otoytug adTol Tol ompavtined HAwob.

‘O mdyos dmoteetl &v EEbywg Yabupdy HAxby, cuyxpvdpevoy e &AL GyeTLxd
Ohwxd slg @vtieToiyovg otdlpac Oeppoxpacias. "Ewg topa, dpxetal perérar €yovv
mpaypatonornd] S Tov xabopiopdy Tob Epmucpod %ol THg TAacTIxéTHTOG TOD TR~
yov, émewdy ol Stadixacior adtot, O YYWGTOV, xVpLapyodv el QOAAa TTdyoy OO ThHY
¢nidpaoly Linpdy dmoxAvovcdy tacewy. 'Ev todrotg, 6 tpbmoc dotoylag Tol mayou
elc mohvaEoviniy xatambvnoty elvar EEicou oMpavTINdS dLd TIY YEVIXWTEQRY Wiy ovL-
%V GLUTEPLPopAY Tov g Tag Yabupag OBpadceig. Ilapd Thv cmovdarérnra adTol T0b
pyovioped dotoylag, i bmdpyovoa melpapaTixy) LeAéTn elva pwixpa xal d&v drdpyet
uéypr ofpepoy Emituyds xpLtnpLov dotoyiug Sk ToV mayov elg wohvaovixds @opTi-
oeLe.

"Emedy) 9 Yabupa Opadorg xal dotoyto tob mwayov elvan loyvpde EEaprduevor
& T7¢ OpocTatindic OAdewe Tob mayov, xabicTatar dvayrate i pehéty Tig dvroyiic
Tov 73 Bornbeta morvaEovined xprtnplov Opadoews, To bmolov O mepLypdon Bra T
YAQAAXTNPLOTIRE THE &oToylog adTod Tob Yhixod. "Ev cvveyele, % ovemparind met-
popoTid) EEETAOLE TEY PNYAVIGUEY doToylag UTTO TOAVTTAGROVG KATAGTAGELS THGEWG
xptvetor 6O¢ dmiToanTind SLd THY TEPLYPXPTY TOD UN)AVLGPOD GVTLOTEGEWG TOD GMpay-
Txob TodTov HAuxol. *Ev todrols, molvaboviral Soxtpal avroyiic xato giixog TEBY %u-
olwv dreubdvoewy Tob mayov elvar omdvion xal GAlyor pévov Exouvy éxtehesti o ToV
%efopLopdy T&Y pnyavicpdy detoytag TV Srepbpwy eidGV TaYoL.

‘O Hausler (1981), xafidg xal of Schulson, Jones xal Kuehn (1991) éuené-
ooy TOV Yoy Hd mohvakovindg ONmTIRGG xaTaTOVGELS ol EpUNVEVGAY TO Qort-
vbpevov adinoewms THe dvtoyig Tou eic OumTindy dotoyiav dnd Yabupas cuvbirac.
’Eminposhétoc, ol Rist xal Murrell (1994) émpaypatomoincav metpdpata TpLato-
V@Y @opTioewy ToALXELGTIANKOD Tdyoyv Omd OhimrTixde cuvOfxac, edvoixag elg
Jabupag Opadosie xal pixpopwypde. *EueketOn 4 éntdpacic 1év mapamiclpwy mé-
6wy TpoxaAovady perplag ouceiybeic xal dmedelyln Eru dudk pwixpdg Tipag TV Té-
cewy auooiyEewe # Yabupa dvroyh fro Eaprmuédvy éx g miéoewe. Mapd Tabra, S
peyahutépag ovagivbel, dvtiotoryoloayv elc mapamiedpwe Ohmrindg H3pooTaTindg
méoets loag pé 6 = 6, 0.15 a3, 7 Opalotc mpocopotdler mpde GAixde StaTuynTinny
popeny, Eueanlbuevne hokiic pwypic, dxohovboduevne &vdeyouévers dmd Suaxho-
3oz %ol devtepevodou pwYMAS.

Kot mhy Sidpxetav @V Tprakovindy melpaudtov Tod Empaypatomornincay, -

AMO7 el o wuhwdpud delypata whyov mohvabovixd) Ohmrind) évratind) xatdoTa-

)

olg, ud Teg amohdtwe SYmhotépas Tipag TG BTk Tdoewg 65 xatevbuvdpevag
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%ot Rijnog Tolb &Eovos TEY xuNVSpBY SerypdTov, el dépleaty En’ adtiic ThevpL-
%0¢ OMTTINTC ®ATHGTAGEWE ThoEWY, 8OV 67 = 6,< Gy.

‘O 6pLopdg TGV Thoewy xal TGV Empaveldy Stuppotic did tag Suapbpovs Balui-
dag popricews Oewpel Gg Stadinactay Expadficews piay xatadkhiwe GoLopévny dpt-
Opnrueny Stadinactoy, yenoipomotdy iy pébodov 6y Ehaylotey Tetpaydvov pé
mepLwpLopévag ouvBfrag, xal Baciletor eig Ty yrvpéTyTe Tol TavuGTIX0D TOAVGV)-
pov &otoylag #wg THY xatacTaTiky oKy TEpLYpd@ovsaY THY TPOOSEVTIXTY
drpporyv. Zuvemds, 7 wélodog Emhbcewes cuvicTatal elg THY xaTacxrevny aptunTinic
©e06d0v, xaTodA g Exmadevpévrg Sud Ty wposopolwoly T&Y HTapydvTLV TELpU-
PATIEY ATOTEAEGUET®Y, ol SLd TV ETéXTAGLY TEY ATOTEASGRATOY adTEY, AopBo-
vousa O GYuv Ghe T elc TO TeTapTRbELov OAiewg ToD xpov TGV xupley TdoEwY
dedopéva xal Emexteivovsa Tag TANpogopiag clg GAGxAnpov TOV Yépov TGV TAGEWY.
‘Opilovrar ToroutoTpbmeg ol TémoL StxppoTic Tob HAxol, Pactlbpevor cig pxpdy dpt-
Opov merpapatindy onpeioy. Mepartépn, xabiotatar Suvatdc 6 xabopiopds TéHv do-
doyx@v Témwy Srxppotic OC TPdg TRG &pYrAG TELpapATIXAS émipaveins SixppoTic,
Ocwpdvrag 871 16 Shuxdy elvor &v EEehiber petaBaiibépevoy dvicbTpomoy HAxdy, 1 pe-
Tafoly) tij¢ dvicotpomiag Tob 6molov dpeidetar elc THv EmmAéoy dvamTuEly THG TAa-
oTIRbTYTOE TRV Gy xS dvamTuacopévey mAaoTixey Cwvdv. “Ev cuveyeta, # Stodi-
xaoto xahelton va pedethon Tov vépov petaBoAiic T dvicotpoming Tob DAuxol, xal,
drav adty) Epupurocdi) elg Ghov O Glivodov THY TetpapaTIXGY dedopéveyv, Vi ExmAy-
PV T6 %abfixov Tg xal v 6ptln T6 Embuevov BRua elg cuvtopwTépoug ypbévous xal
ug peyadvtépay dxpifBeiav. ‘H pébodoc adty 8 Zoapupoyfic Tig Suvaréryrog mpo-
GopUOGTIXOTNTOS TOD %pLTnptov Tob TavueTixold mohvwvbpov actoylus, éxppalopé-
vou dmd ENermTixiy mapaBoroetdy Emipavetay dotoytug (EPFS), Stvatar va 6pion
T tooddvapo EAaoTina YopaxTneLeTIXd doToylag Ot Epapuoyiic cuveyds petaBo-
Aopévev wopedv ol Témov datoytuc. Al Aemropépeion Thg Bewplac adtiic xal TéHV pe-
063wy dpbuntindic Emhdcews mapovsialovrar mAfpwg lg mpoyeveoTépag Epyastas.

Elva edpéwg dmodextdy o yeyovds §tt, Stav o 88wp Poyertar, elvar Suvartdv ve:
oynuaticel mowthioy Sopdv. “H Sopd) tév popley N mapovortaldpevy el w0 oyfpa 1
avtioToLyet eig mayoy I, Tov yvdpLpov mayov mod oynpatomolciTal xol elvan aTabepdc,
elg Quotohoyxdg cuvifxag dTtpocpaipixic miésews. *Evvén Suapopetival popgal mwa-
you elval Yvwotal, Exacty TodTev 6plopévn Ex THg xpuaTaleiic g Soufs. Me-
vaforal cic Ty Oeppoxpaciav xal Ty wieow petacynpatifovy Tov Eva TOmoy wEyoL
elg &Ahov. Al petaBoral adral elvar cuyxexprpévar xal Fyxovv yaproypaendi cig
Srypappata gacens (Zyfjue 2). Katd cuvéneiay, 6 wayos I elg tovg -100 C peto-

poppdvetal Hmo wieowy 4,400 atm cig mayov V, &vé elg 10 18tov Enimedov Oeppoxpo-
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olog xal O7d wieowy 6,300 atm peraBarretar eic mwayov VI. “Opotws, 6 mdyog I el
-300 C perasymuarilerar eig wdyovlll el 2,200 atm, AapBavopévov Srbdiv étt, 2av
1 mieatg adén0i clg 3,000 atm, peratpémeton el ndyov IL. *Emnmdéov, 6 mdyoc el
7006 -300 C perarpémeror mepartépw clg mayov V xal mdyov VI el méoeig peyatv-
tépag vév 3,000 atm. Té ayfjue 2 mapovaialer w6 Sdypappe oynuationod To wi-
YOU GO¢ cuYEETNGLY TGV cuVSLacUEY T&Y Oepuoxprctdy xal Ty méctwy ®aTR THY
Srapreiav Tig Swadieaciog oynpatioped Tov, §mov ai xatactdosis icoppomiog Hmwo-
Sewxvbovtan Sie T GyMraTiorods Tob Thyou &lg BYmhdg mécelg.

‘H nopobon épyasin Eotidletar cic ™y uehétny 1é&v unyovicudy Stuppoic xal
GoToylag ToU mohuxpuaTadhixol whyov elg TV Eheipov-Yobupdy mwepLoyiy mapaLop-
pwoewy. 'Erpaypatomornlncay totafovine netpdpate Ohidewe elc moluxpuotodhindy
%oxx®dn Tayov, cig orabepode puluode mapapoppdoewe. Epshethifn 16 dmotéhe-
opa thc TptaovindTnTog TéV EwTepinde dpnpposuévav goptiwy cic Tov Témov Stxp-
potic xal dotoylag Tol Hhixol. *Eneidy) 76 Shindv adrd cvpmeprpépeton 6¢ Yobupdy
Dby, &enoipomornln 6 xpithpov Tii¢ ENetmTindl TapaPohoctdolic Emipavelog
aotoylag 8 dplbTpoma G, xal vdiapépovta amoTeléopaTo xal CUUTEPAGULATE
ouvyOncay dpopdvra ToV pnyavicpdy dotoyiug To HAkod adTol Hmd Ty Emidpa-
o toLaovixiic @opticewme.

‘H xpvotadhed) Sopd) 700 wayov ddvator va meprypagd 2 vog povadiaion xpu-
GTENoY, ErenTevbuevon dreplopioTame elg Bhag Tae SreuBivosie, pt x&0e &ropov dEu-
Yévou tomolernpévoy el 10 %évtpov Bhpoug TEY TEaedpmY YeLTovidY loumeybvTwy
grbpov 6Euyévoy, Sruywetldpevoy £ atéuwy H3poyévon, date Exactov dropov H3po-
Yévou va dmretar 3Vo yerTovikdv dtéumy H3poydvoy xal ExacTov dtopov EVYEvou va
&nTeTal TE66ApnY dTduwmy H3poybvov, cupPMVLS TEdg TO Téderypa Tod GyfpaTtos
loe. T Tploe dropa Tob rouyeiov dtv elvar edvypappiopéva, A oynpatilovy yo-
viay T petald Tov, dote § Tpradidotatog Sout Tol poptov Tol B3xtoc v& oTepeiTal
ovppetplog xal v mepLéym Téocupa avopola péhy, tomoletnuéve sl Eva dTedy) wd-
Bov. 2vverds, ol oynuatilopevar Ywvial &x T6v dbo dtépuwy H3poydvov xal Tob dvti-
GTolyov xevTpixob &Tépov Tob dEuydvoy elvar mepimov toon ug 1050 xal 4 awbotasie
petald Tob drépov Tob 6EVYEVeL %al ExdaTou TVpTvog B3poydvou Vo looltar ut 0.96
AL "Evavre t6v drbuov 93poyévon xal pt Sieluvewy mpde tdg dmévavty yoviag Tol
povadialov xHBov, aynuatilovror 3do Mhextpovind véen, Smaitia Suk T i8ubppubuov
cupmepLpopay Tob U8atog, xadbT. adre EAnouy TOV TUpTve B3poY6VoL EvdG YeLTOVLXOD
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poptov Tob vepol, oyuatilovra xatd cuvémelay vépog H3poyévou (ZyFiue 18).



