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MA®HMATIKA.— On a convenient category of topological algebras,
II: Applications, by Anastasios Mallios*. ’>Avexowddn Hmd tod

*Axadnuairod x. Pihwvog Bacikelov.

The following constitutes the Second Part of a longer paper,
the First Part of which has been appeared under the title «On a con-
venient category of topological algebras, I: General theory», within
Vol. 50, 1975 of this journal. The respective literature of this part
of the paper is already included in that of the First Part (ibid.).
The Sections herewith are also consecutively numbered in continua-
tion to those of the First Part, the reference to which becomes also
clear from the context. A supplementary bibliography referring to
this Part of the paper is added, the references being indicated by
small latin numbers.

It is hopped that there will be a Third Part as well of the pres-
ent discussion, referred to «sectional representations», which have
been alludded to at the Introduction of the First Part of this study.

5. Cohomology and homotopy in the spectra of topological
algebras. The topological algebras which we are dealt with in the sequel
are mostly such that they satisfy the conditions of Corollary 4.2 in the
foregoing. Thus, in order to fix the terminology applied, we single their
respective class out by putting the following :

Definition 5.1. By a topological algebra of type (A) (or, for short, an
(A) - algebra) we shall mean a commutative, complete, finitely generated,
spectrally barrelled, locally m -convex algebra, having an identity ele-
ment and compact spectrum.

Thus, by the preceding definition and Corollary 4.2 in the fore-
going, one concludes that the spectrum of an (A)- algebra is homeomorphic
to a compact polynomially convex subset of C", where n denotes the number
of generators of the algebra under consideration. Furthermore, it is equi-
continuous, and the algebra itself is a (- algebra, and hence a bounded algebra
as well (Corollary 3.1).

The preceding class of algebras contains, of course, that of finitely
generated and commutative Banach algebras with an identity element

* ANAZTAZIOY MAAAIQY, "Enl pidg xataAAfrov xoarnyoplag tomodoyix@y &Aye-
Bedv, II: 'Epappoyai. Mathematical Institute, University of Athens.



246 ITPAKTIKA THXZ AKAAHMIAZ AGHNQN

(: Banach algebras of type (A)), and even more that of Fréchet locally
m - convex algebras of type (A), i.e. commutative, finitely generated, with
an identity element and compact spectrum (cf., for instance, Ref. [10]).

Now, it is our main objective in the following lines to point out
that a whole number of recent results obtained within the class of Banach
algebras of type (A), or more generally, of their «colimitsy (cf., for instance,
[16], [48], [28]) are actually valid for the much wider class of topological alge-
bras described by the preceding Definition 5.1, or their «colimits), more gener-
ally (cf. Definition 5.2 below). However, since the present discussion is
rather of a preliminary and mainly informative nature, we are content
below with only giving indications of the results, which could be
obtained, omitting thus the respective proofs. On the other hand, the
latter are mostly based on the corresponding ones in the case of Banach
algebras, by using essentially for the present case the preceding Corol-
lary 4.2, plus standard argumentation in topological algebras theory.
Besides, in connection with the terminology applied, this is the analo-
gous, within the present context, of the Banach algebras theory one, so
that we refer to the pertinent cited works and the references given
therein.

In this concern, we also note that a possible extension of relevant
results for the case of Banach algebras to more general classes of topo-
logical algebras, however different in nature from those considered
herein, has also been alludded to, although in a somewhat sceptic man-
ner as to its significance, regarding applications, in Ref. [57].

Thus, we first have the following extended form, in our case, of a
previous result, concerning the «cohomology (with complex coefficients)
of the spectrum (: maximal ideal space)» of a Banach algebra of type (A), in
the preceding terminology, which is initially due to A. Browder [11], and
has also recently been discussed by O. Forster in Ref. [16; p. b, Satz 1],
in the more general case of an arbitrary abelian «group of coefficients».
The respective result in our case, as it is stated below, can be proved
by an appropriate adaptation to the present context, of the argumenta-
tion applied in Ref. [16], as well as of that one in Ref. [22], used for the
proof of the initial Browder’s theorem (ibid.; p. 67, Corollary 3. 1. 16),
by taking into account Corollary 4.2 in the foregoing. (In this concern,
cf. also the comments in Ref. [38; p. 160]). Thus, we have:
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Theorem 5.1. Let E be a topological algebra of type (A), which is
n - generated (cf. Definition b.1), and whose spectrum is M(E). Moreover,
let G be an abelian group. Then, one has the relation :

(5.1) Hi(M(E), 6) = 0,

for every integer g >n. R

Now, it has been observed in Ref. [38; p. 160, Theorem 5. 1] that
a commutative, complete, spectrally barrelled locally m - convex algebra with an
identity element and compact spectrum is actually a pseudo - Banach algebra,
in the sense of Ref. [2]. On the other hand, a locally convex inductive limit
of Banach algebras is, certainly, a spectrally barrelled (locally convex) algebra
(cf., for instance, Ref. [38; p. 1567, Lemma 4.2], an extended form of
which has been given by Proposition 3.2 in the foregoing. In this con-
nection, cf. also a relevant recent study in Ref. [7]). Besides, the
well-known Arens-Royden Theorem has been given in Ref. [2] for the
class of pseudo-Banach algebras (ibid.; p. 68, Theorem 4. 5).

Furthermore, a «<holomorphic functional calculus» is, of course, valid
for the class of locally m-convex algebras (cf., for instance, [8; p. 412,
Théoréme 3]), hence one can obtain, within the same class of algebras,
an extended version of the previous result of Arens- Royden, a form of
which has already been given for Banach algebras by R. Arens in Ref.
[6]. On the other hand, the extended form in question of the said result,
constitutes essentially a strengthening, within the present context, of a
similar discussion of O. Forster in Ref. [16; p. 9, Satz 5], in the frame-
work of Banach algebras theory, as well as of a previous analogous one
by M. E. Novodvorskii in Ref. [43].

In the sequel we will apply the corresponding terminology of the
cited works above, without further comments, referring thus to those
papers for more details or else to the standard literature for the notation
involved.

Thus, given the topological spaces X and Y, we shall denote by
[€aEX, ¥l (resp. o (Ce (X, Y))) the set of connected (resp. path - con-
nected) components of the space C.(X,Y) of all continuous maps of X
into Y, equipped with the «compact- open topology», while [X,Y] will
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denote the set of homotopy classes of (continuous) maps of X into Y. In

this respect, we first, need the following.

Lemma 5.1. Let X be a topological space which is first countable or
locally compact and Hausdorff, and let Y be a topological space in such a way
that the space C.(X,Y) is locally path connected. Then,

(5.2) [C.(X,Y)] = [X,7],
or, in other words, one has the relation :

(5.3) [C.(X,Y)] =m0 (Ce (X,Y)) = [X, Y],

where, in both the preceding relations, equality means set-theoretic isomorphism
(: bijection). m

As an immediate consequence of the preceding Lemma 5.1, one
now obtains the following corollary, which specializes to the first part
of Theorem 1 in Ref. [43; p. 487]. That is, we have:

Corollary 5.1. Let E be a topological algebra whose spectrum M (E) is
a locally compact (Hausdorff) space, and let G be an open subset of a locally

convex (topological vector) space F. Then, one has the relation :

(5' 4) To (Cc (M(E)7 G)) = [M(E)s G],

within a bijection. W

Remark.— Concerning the topological space G in the preceding
Corollary 5.1, one could formulate a more general statement by consid-
ering instead an ANR of a given locally convex space F, or even a complex
(homogeneous) manifold modelled on a metrizable locally convex space. (In this
respect, cf. also Ref. [44]). A variant of the latter case will also be con-
sidered in the following.

Now, consider a topological algebra E, whose spectrum M(E) is a
k-space, and for which the respective Gel’fand map g:E—> C.(M(E)) is
continuous. Moreover, let F be a complete locally convex (topological vector)
space. Then, by using the preceding map g, one obtains a continuous map :

(5. 5) wsg@idF:E@F—wc(M(E),F)
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(cf. also Ref. [34; p. 478, Lemma 4. 1]). Thus, if G is an open subset of
F, one has a natural map:

(5. 6) no(W):no((E@F)c)—>no(Cc(M(E), F)s),

where by (E@F)G (= Ec by extension of the notation applied in Ref.
[43]) one denotes the set of those elements in Im(y), as in (5.5) above,
whose ranges are contained in G, the set Im () being topologized as a sub-
space of the range of y; the analogous notation is applied concerning
the range of the map =, (V).

In particular, we are interested in applying the foregoing to the case
F = C" in order to get an expression of the respective relation to (5.4) above

in terms of the domain of the corresponding map m,(y). In this concern,
Lemma 1 in Ref. (43; p. 491] might be the appropriate motivation. We

omit the pertinent details for another treatment. On the other hand, the
holomorphic functional calculus applied to the case considered herewith,
plus a result of K. J. Ramspott, concernig homotopy equivalence of holo-
morphic functions on a Stein manifold (cf., for instance, Ref. [45; p. 58,
Satz. 1]), provides the following basic result, this being besides one of the
main conclusions of this Section, and which combined with Corollary 5.1
above constitutes, in our case, the extended version of Theorem 1 in Ref.
[43; p. 487]. That is, one has the following :

Theorem 5.2. Let E be a topological algebra of type (A) (Definition
5.1), whose spectrum is M (E). Moreover, let G be an open subset of C" on
which a complex analytic Lie group acts holomorphically and transitively.

Then, one has the following relation :
(5.7) @o(Ec) = [Es] = 7o (Ce(M(E), 6)) = [C(M(E))c] = [M(E), G],

the respective equality relations holding true within a set-theoretic isomorphism

(: bijection). m

Scholium 5.1. The conditions set forth in the hypothesis of the
preceding Theorem 5.2. imply already that the given algbra E is actually
a Q-(locally m-convex) algebra, having continuous inversion. In this con-
cern, cf. also Ref. [37; p. 108, Corollary 3. 3] and Ref. [9; p. 15, and p. 31].
Besides, Théoréme 2 in p. 40 of the last reference should be compared
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with Theorem b. 2. above, as well as Theorem 5.3 in the sequel, in the
sense that it also provides possible extensions of the relevant results
obtained herewith, concerning the space G, with regard to the extensioh
of the Arens - Calderon Theorem, considered by V. Ya. Lin in Ref. [28],
and/or G. R. Allan in Ref. [1]. However, for simplicity’s sake we only
discussed, at this place, the case given by the preceding Theorem b. 2,
which also corresponds to that one, studied by M. E. Novodvorskii, for
Banach algebras, in Ref. [43].

We come now to a substantial extension of the preceding Theorem
5.2, which is essentially motivated by, and based on, Lemma 3 in Ref.
43 ; p. 492]. Similar arguments are also applied in Ref. [9; p. 44] for the
case considered therein. However, the kind of topological algebras which
is dealt with in the sequel, although different in nature, is to a certain
extend more general than that considered in the latter reference (cf. the
definition, which follows).

Thus, we first have the following.

Detinition 5.2. A complete locally m-convex algebra E is said to
be a topological algebra of type (ILA), or for short, an (LA) - algebra, when-
ever K is (algebraically) the limit of an inductive system (Eq)ac1 of sub -
algebras of type (A) (Definition 5.1), in such a way that one has
M(E) = li_r;l M (E,), within a homeomorphism.

Now, the proof of the folowing lemma can easily be supplied by
applying standard reasoning. Its content will be useful for the sequel.
That is, we have.

Lemma 5.83. Suppose that a given algebra E is the limit of an inductive
system (Eq)sc1 of topological algebras, each of which has an identity element
and a compact spectrum M (E,), a € I. Moreover, suppose that E is endowed
with the respective inductive limit vector space topology. Then, E is a topologi-
cal algebra (with a separately continuous multiplication), having an identity
element and a (non-void) compact spectrum M (E), this latter space being homeo-
morphic to the projective limit of the spectra of the given algebras E,, a €I,
defining the algebra E. m

It is quite evident that the preceding lemma has, in particular,
a special bearing on every (LA)- algebra, in the sense of the above Defini-
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tion 5,2. On the other hand, the consideration of a «final» vector space
topology (not necessarily locally convex one) on the limit algebra of a
given inductive system of topological algebras, which might be locally
convex, or even locally m-convex ones, is also of a particular signifi-
cance for applications of topological algebras theory to several complex
variables. This was, of course, already applied by L. van. Hove [23],
and it has also recently been considered by W. R. Zame, in connection
with his work on the subject (cf., for instance, Ref. [62; p. 6, Definition
15, as well as p. 9, Remark 1. 15]).
Thus, we now have the following.

Theorem 5.3. Let E be an (LA)- algebra, whose spectrum is M(E),
and let G be a homogeneous complex analytic manifold, homotopically equivalent
to an open subset of C". Then, by applying analogous notation to that of the
previous Theorem 5. 2., one has the relation :

(5.8) [Ec] = [M(E), 6] = [C.(M(E), C)],

within a bijection. W

We are now in position to state our next basic result of this section
which actually constitutes the topological algebra theory analogon of
the corresponding one for Banach algebras, given by M. E. Novodvorskii
in Ref. [43; p. 490, Theorem 2], and independently by O. Forster in
Ref. [16; p. 12, Satz 6]. The same result, within the framework of
Banach algebras theory, has also been considered by J. Wagner in Ref.
[58] and called «Forster - Narashimhan Theorem» (ibid.; p. 166, Propo-

sition). Thus, we bave:

Theorem 5.4. Let E be an (LA)- algebra, whose spectrum is M(E).
Then, the functor

(5.9) P—> P®sC(M(E))

defines an equivalence between the category & (E) of projective, finitely gener-
ated E - modules and the category P (C(M(E))) of projective, finitely gener-
ated C(M(E))-modules. n
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Now, a byproduct of the proof of the preceding Theorem 5.4 is
the following isomorphism :

(5. 10) g(c(M®)) = 9(EB),

so that this, combined with Swan’s Theorem (cf., for instance [iii; p. 375,
X1V, Theorem 3.1]) and the Homotopy Classification Theorem (cf. [v;
p. 33, Theorem 7. 2], gives rise to the relation :

(5.11)  [M(E), G, (C*®)] = Vect, (M (E)) = 9(C(M(E))) = 9(8),

which is valid within an isomorphism of the sets involved. In this respect, we
still denote by &(E) the set (actually semiring, with respect to the opera-
tions @ and ®) of equivalence classes of projective, finitely generated
E - modules, with regard to the given (LA)- algebra E, whose spectrum is
M (E). The analogous notation is applied, concerning the first member
of (5.10).

As a particular application of the foregoing one now obtains the
following theorem, which might be considered as a strengthened positive
answer to the well-known «Silov’s program», however yet in a rather
complicated way, to the extent, at least, (algebraic and/or topological)
K- Theory is (!). That is, one has.

Theorem 5.5. Let ((f)A) be the category whose objects are (LA) - alge-
bras, and morphisms the topological algebra ones. Then, the image of the
K, - functor (of algebraic K- Theory) is uniquely determined, within a homo-

topy equivalence, by the respective «topological algebra spectrum - functorn M,
restricted to the given category (CfA) (i.e., M: ((fA)—> Top: E—> M(E)). u

In a less technical language, we may express the preceding, by
saying that (LLA) - algebras having homotopic spectra are indistinguishable with
regard to K, - functor. Thus (L, A)-algebras, having contractible spectra are
within the «K,-class» (the class in (&/4), as in Theorem 5.5 above,
determined by the K, - functor) 1-dimensional algebras, i.e. one has

the relation :

(5.12) K,(E) = K, (C) = Z,

the last equality holding true within an isomorphism of the respective
groups. (In this connection, cf. also Corollary 6.1 in the sequel).
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Furthermore, as a byproduct of the preceding Theorem 5.b, one
obtains, by applying «Bott periodicity», the following relation (5.13),
which may be considered as the topological - algebraic analogue in our case
of «Kiinneth formula». 'That is, we have:

(5. 13) Ko (E®F) = K, (E)®K,(F)

for (suitable) topological algebras E and F of type (LA) and a suitable com-
pleted topological tensor (product) algebra E ®F.

Besides, by applying again (5.10), an analogous «stability theorem»
with a respective one of algebraic K-theory, actually, corresponding to
a convenient form of the «K, - Stability Theorem», could also be obtained
within the present topological - algebraic context.

On the other hand, another application of the preceding Theorem
5.4 is the following result, the analogon in our case of the respective
one for Banach algebras, given by O. Forster in Ref. [16 ; p. 18, Satz 8].

That is, one obtains :

Theorem 5.6. Let E be an (LA)-algebra. Then, one has the relation :
(5.14) H2(M(E), Z) = Pic(E),

within an isomorphism of the respective groups, where by Pic(E) is denoted the
corresponding Picard group of the ring E, underlying the given algebra. B

6. Matrices depending continuously on parameters. We are
discussing in the sequel still another domain of applications of the class
of topological algebras dealt with in the foregoing, by considering matri-
ces with values in a given topological algebra of the type under discus-
sion, which may be replaced by its corresponding Gel’fand transform
(: function) algebra. The results obtained extend to our case recent ana-
logous considerations of V. Ya. Lin in Ref. [28], who has worked with
commutative, semi-simple Banach algebras having an identity element
(ibid.; p. 127, Theorem 3). A similar treatment has also independently
been given by N. Sibony and J. Wermer, within the same context of
Banach algebras theory, in Ref. [48]. In the sequel we mainly follow the
argumentation applied by Lin (ibid.), whose paper was besides the initial
motivation to the material of this section, by extending it, according to the
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preceding, to the present more general context. As a byproduct, we also
obtain a strengthening, within this framework, of some relevant results
of M. B. Subin in Ref. [vi] which are related to previous ones by R. Arens
in Ref. [i] and [ii] (cf. Lemma 6.1 below and the Scholium following it).

To start with, we first fix the terminology applied in the sequel.
Thus, suppose we are given a topological algebra E, whose spectrum is
M(E). Now, if x is an element of E, we denote by Z(;z) the «zero-set»
of the Gel’fand transform of x, i.e. one has, by definition, the relation:

(6. 1) Z(x)={feM(E): x(f) = 0}.

On the other hand, suppose in particular that the given algebra E
is commutative with an identity element, and let (xy, ..., X.) be a given
finite sequence of elements of E. Then, the set of all elements of E of

the form 3 x;yi, with y;€E (i=1, ..., n) is an ideal of the algebra E,

1=1

containing the given sequence (x;, ..., xn) and besides is the smallest
one with this propetry, i.e. it coincides with the ideal generated by the
sequence (Xy, ..., Xa). We denote it by (](xl, ..., Xpn), so that one has
the relation :

6. 2) T(xr, ooy x) = {Sxiviiwi€E; i=1, ..., a}.

i=1

We are thus in a position to state the following :

Lemma 6.1. Let E be a commutative topological algebra with an identity
element, and whose spectrum is M (E). Moreover, let F be an «inverse - closed»,
dense subalgebra of E, which also contains the constants, and lct (%, ..., x,) be
a given finite sequence of elements of F. Furthermore, consider the following
two assertions :

1) The ideal in F generated by the given sequence (xy, ..., %n) coin-
cides with F.

2) The following relation holds true :

(6. 3) NZ(x)=@.
i=1
Then, 1) = 2). In particular, suppose that E is a commutative, complete,
semi - simple, locally m - convex Q-algebra, Then, the two preceding assertions

are equivalent.
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Proof: 1) =>2): Since, by hypothesis, the unit element 1EE is
also contained in F, one concludes that there exist elements y;EF
(i=1, ..., n) such that one has

(6. 4) Zxiyi =1,

so that one obtains, for every f & M(E), the relation:
(6. 5) > xi(B)yi(f) =1,

which proves the assertion. Now, with the supplementary hypothesis for
the algebra E, we prove that 2) = 1): Namely, under the supposition
that (6.3) is satisfied, one proves that the given elements x;EF
(i=1, ..., n) generate with respect to E, the whole algebra E. Indeed,
otherwise they would be contained in some maximal ideal of E, which,
since it is closed, by hypothesis for E, determines an element in M (E),
by which the relation (6.3) would be contradicted. Therefore, there

exist elements y;€EE (i=1, ..., n) for which (6.4), and hence (6.5) as
well, is satisfied. Now, by hypothesis for F, we can approximate the
elements y; by corresponding elements z €F (i=1, ..., n), in such a

way that we still have the relation:
(6. 6.) 3 xi(0) zi(f) #0,

for every f € M(E). Hence, the element 3 xiz; EF is a regular element

of the algebra E (cf. [40; p. 22, Theoren; 5.4]), so that by hypothesis
for F, one obtains that (3 xiz)™'€ F. Therefore, if

(6. 7) o = zi (T xizi)7,

one concludes that o, EF (i=1, ..., n), in such a way that the following
relation is also satisfied:

(6 8) S a =1,

for every f& M(E), i.e., one obtains
5
(6. 9) (.Z,x;zi) (f)=1,
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for every f& M(E), so that by the semi-simplicity of E, one gets

the relation :

(6- 10) %xizi=1,

i=1

and this proves the assertion, and the proof is finished.

Scholium 6.1. The preceding lemma has a special bearing on an
analogous result of M. A. Subin for algebras of holomorphic functions,
the above being its extended version within the context of abstract topo-
logical algebras theory (cf. [vi; p. 68, Proposition 1.1]). Both results
may be compared with previous relevant considerations of R. Arens in
Ref. [i], [ii]: The elements x; in cond. 1) of the preceding Lemma might
well be understood as corresponding to the «rational generators» referred
to by Arens in [i; p. 178]. Within the same context, we finally remark
that the commutativity for the algebra considered, concerning the first
part of the Lemma, has been set only for simplicity’s sake, although it
is not necessary in general. (Cf. also the pertinent terminology of Arens
in Ref. [i; p. 172, § 3), for «right regular systems» in a given ring
with unit).

Now, we still suppose that we are given a commutative topological
algebra E with an identity element, and whose spectrum is M (E). Mo-
reover, let

(6 11) a = (aij)

be an m X n matrix, whose entries ajj, 1 Li<Lm and 1Lj<Ln, all
belong to the given algebra E.

Now, admitting that 1 £m £ n, we shall say that the matrix a, as
above, is complemented in the algebra E, whenever there exists an nxn

matrix E, satisfying the following conditions:
(6.11.1) The entries of a all belong to the algebra E.

The matrix « contains a, i.e., the «first m X n minor
(6.11. 2) matrix» of o coincides with a (: a; = aj, withi=1, ..., m

and j=1, ..., n).
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The determinant of a (not.: det o—c_), being an element of

the algebra E, does not belong to ker(f), for every
(6. 11.3) fE M(E), i.e. one has the relation:

(6.11.3. a) f (deta) % 0,

for every f& M(E).

On the other hand, given a matrix a = (a;), as in (6. 11) above, one
defines the rank of o in E, as the largest natural number k for which
the minors of a of order k do not belong, all together, to ker(f), for
every fE€ M(E). We denote this by r1(a, E) = k.

In particular, if the mXn matrix a = (a;), as above, satisfies
the relation
(6. 12) 1 (o, E) = m,

then we shall say that the matrix a is of maximum rank.

Thus, it is an easy consequence of the foregoing that: if a given
matrix a, as in (6.11) above, is complemented in the algebra E, then it is
of maximum rank. Now, the main result below provides sufficient condi-
tions, regarding the given algebra E, in order that the converse statement
to hold also true, extending thus the classical situation, which one has
in case, for instance, of the topological algebra C" (cf. Theorem 6.1,
below and its Corrollary).

We first comment on the relevant notation which is needed for the
sequel. We mostly follow the terminology applied by V. Ya. Lin in Ref.
[28], by adapting it to the present more general framework.

Thus, suppose that E is a topological algebra, whose spectrum is
M(E), and let X be a complex manifold. Now, we shall say (cf. [28;
p. 122]) that a continuous map ¢ : M(E)—> X is spectral (resp. weakly
spectral), whenever for every (complex-valued holomorphic) function
hEHol(q)(M(E))), i. e. holomorphic on some open neighborhood U of
Im ¢ in X, (resp., for every h € Hol (X)), one has the relation:

(6. 13) hop = x,
for some x € E.
In particular, in case E is a commutative, complete locally m - convex

algebra with an identity element, and whose spectrum is M(E), and if X is a
ITAA 1976
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Stein manifold, then every weakly spectral map ¢: M(E)—> X is spectral:
This is, in our case, the generalized version of Silov - Arens - Calderén
theorem, given for Banach algebras by V. Ya. Lin (ibid; p. 122, Theo-
rem 1). Its proof can be derived by applying Lin’s argumentation (ibid.),
and taking into account the «holomorphic functional calculus» for the
case of locally m-convex algebras (cf., for instance, [8; p. 412, Théo-
réeme 3)).

Now, suppose in particular that E is an (L.A)-algebra, and let
(Ea)ae: be a given family of topological algebras of type (A), defining the
algebra E, i.e. one has by definition E = l_i_r>n E., with the respective

inductive limit vector space topology (Definition 5. 2). Moreover, suppose
that X is a Stein manifold, and let h: M(E)—> X be a given weakly
spectral map.

Thus, assumming that X is regularly imbedded in some complex
(numerical) space C" (: Remmert Theorem ; cf., for instance, [iv; p. 224,
Theorem 10]), we shall say that the preceding map h is subordinated by an
index o € I, whenever the respective topological algebra E, (of type (A))
is n- generated (Definition 5.1), in such a way that the map

(6. 14) h:M(E)>h(M(E)SUSXSC,

with U denoting an open neighborhood of Imh in X, is given by the n gener-
ators Xy, ..., X, of the algebra E,, i.e., one has the relation:

(6. 15) () = (xu(f), ..., Xalf)),

for every element f €& M(E).

We are now in position to state the following :

Lemma 6.2. Let E be an (LA)-algebra, whose spectrum is M(E),

having besides the respective Gel’fand map continuous, and let E=limE, be
—_

a given canonical decomposition of E into topological algebras E,, a € I, of
type (A). Moreover, let h: M(E)—> X be a weakly spectral map of the
spectrum of E into a Stein manifold X, subordinated to a given index o€ 1.
Then, the following two statements are equivalent :

1) There exists an open neighborhood U of the image of h in X, and a
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principal holomorphic fiber bundle &=(S, =, U), admitting a continuous

covering map
c:M(E)—>S
of the given map h.
2) The bundle & as above, admits a spectral covering map
oe: M(E)—> S
of the map h. R

Scholium 6.2. The preceding Lemma 6.2 constitutes the extended
version in our case of the fundamental result of V. Ya. Lin’s paper
(cf. [28; p. 123, Theorem 2]). The proof of Lin’s result is based on a series
of several lemmas which are actually valid for suitable topological
algebras with compact spectra. On the other hand, one applies for the
proof of the present version of the cited result Corollary 4.2 in the
foregoing, plus standard terminology of the general theory of topological
algebras, in conjunction with Lemma 5.3 above.

We come now to the formulation and proof of the main result of
this section. Its content has a special bearing on the respective result of
Lin’s paper (cf. [28; p. 127, Theorem 3]). Namely, we have:

Theorem 6.1. Let E be an (LA)- algebra, whose spectrum is M (E) and

which has the respective Gel’fand map continuous, and let E = lim E, be a given
=

canonical decomposition of E into topological algebras E,, a €1, of type (A).
Moreover, suppose that we are given an m Xn matrix o = (@), with entries
from the algebra E, and in such a way that there exists an index o € I, such
that the number of generators of the respective algebra Eq is m- n. Then, the
following two statements are equivalent :

1) The given matrix a is complemented in the algebra E.

2) The Gel’fand transform matrix a of a is complemented in the alge-
bra C.(M(E)).

Proof : It is easy to prove, by the corresponding definitions, that
1) = 2). Conversely, suppose that the statement 2) holds true, and let
Vm(C") be the set of all m X n matrices with entries in C which are
complemented in C, or equivalently, the set of all «m - framings» in C",
with 1 £m £ n. Then, one defines a principal holomorphic fiber bundle,
by the map n: GL/(n, C)—> Vw(C"), which assigns to each invertible
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matrix o = (w;) € GL (n, C) the m- tuple consisting of the first m rows

A
of . Now, the matrix o defines a continuous map

(6. 16) a:M(E) > C™"
by the relation :
(6. 17) a(f) = (a;(f)),

for every f € M(E). On the other hand, since by hypothesis a is comple-
mented in the algebra C(M(E)), one concludes that Im (&)EVm(C"), so
that there exists a continuous covering map h of a relative to the
bundle =, i.e. one making the following diagram commutative :

GL (n, C)
¥
(6. 18) / n
v
M(E) —————> Vi (€)

a
Furthermore, by considering @ asa weakly spectral map, one concludes,
by LLemma 6. 2, that there exists a spectral covering map

(6. 19) h,: M(E) > GL (n, C)

of the map (6.16). Now, if hy, = (h;;), with 1 L1, j L n, is the matrix
decomposition of the map h,, since this is a spectral map, one concludes
that hyEE"=SC. (M(E)) (i, j=1, ..., n), in such a way that one has;

(6. 20) hij = @i, with 1£i<Lm, and 1£j<Ln.
Therefore, if b;; EE, with m<iLn, and 1£Lj<Ln, such that
(6. 21) g(by) = hy = aij,

where g: E—> CC(M(E)) denotes the respective Gel’fand map of the
algebra E, one can easily prove that the matrix

=g, e, W
e, ey g u’j———l,...,n
(6 22) (l=((lij), with
= D=im=F 1, s, , 1
a;j=b

i y=1,...,n
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defines a conplement in E of the given matrix a, and this finishes the proof
of the theorem. B

In particular, one obtains the following result which provides, for
the case considered, a necessary and sufficient condition that a given
matrix, all of whose entries are elements of the algebra E, to be comple-
mented in E. That is, one has:

Corollary 6.1. Suppose that the hypotheses of the preceding Theorem 6. 1
are sotisfied. Moreover, suppose that the spectrum M (E) of the given algebra E
is a contractible space. Then, the given m X x matrix a is complemented in the
algebra E if, and only if, it is of maximum rank, i.e., one has the relation
r(a, E) = m. u

(Added in proof). Regarding the class of topological algebras con-
sidered above in Theorem 6.1 and its Corollary, a more general (and
natural) setting has been given in a forthcoming paper, in which much
of the material of Section 6 of the present paper is also discussed in detail.

APPENDIX

We conclude the present discussion by the following comments on
certain recent results obtained in Ref. [3] and [17], and which may natu-
rally be fitted within the framework of applications of the class of topo-
logical algebras considered in this study.

Thus, the problem of transferring a group of automorphisms of a
given topological algebra to a similar one of its spectrum, and vice-versa,
via the Gel’fand map, is studied in Ref. [3]. Spectrally barrelled topo-
logical algebras, in particular, those having locally compact, or equiva-
lently, locally equicontinuous spectra [38; p. 154, Corollary 2.2.], play
an important role. The well-known work of G. Silov on <homogeneous
function algebras» (cf. [49], as well as [41]) might be in this connection
of a particular interest.

Finally, results extending the classical Bochner - Weil - Raikov
theorem on integral representations of positive linear forms on Banach
*-algebras to the case of suitable classes of topological algebras without
involution have been given in Ref. [17]. The class of spectrally barrelled
topological algebras is proved to be again the appropriate framework for
this kind of results (ibid.; p. 25, Theorem 4.1, and p. 27, Remark 4.1),
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the initial motive in this regard being similar considerations of G. Lumer
for the case of Banach algebras (cf., for instance, Ref. [29]), the invo-
lution therein being replaced by a suitable finite group of transforma-

tions of the algebra under consideration (ibid.).

NEPIAHYIZ

‘H nagoToo 2oyacta droredel 10 devtegov négog widg éxteveotéoag uehéng,
avageoopévng eic v xatnyoolav TdV «pacpatixdg xvhivdooeddv> (spectrally
barrelled) dhyeBodv, T Baocwxd otoixela tiig yeviriic dewolag t@v Omoiwv, £96-
Inoav eic 10 modrov péoog tig &v Adyw ueréng (meoiingdtv #dn &viog TV
avtov Jlpaxtixdv», Tdopog 50, 1975). Eig 10 magov 20v Mégog didovrar yaga-
ATNOLOTIXOL Epaguoyal Thg Mg dvm xatnyopiag T@V tomohoywrdv Ghysfodv, dva-
geodpevar Wiantéoms el ta Yépata: 10v) Zvvopoloyia xai dpotomio eis pdouara
TomoAoywdy alyefody (§ ): Al dewgoduevar dhyefoatl elvan peradetrai, whi-
€L, MEMEQUOUEVIS TaQyOUEVaL, Qaouatixds ®vhvdooeidels, Tomxdg m-xvortai,
ué povadiaiov otoiyeiov xai cvpmaysc gdopa (romoldoyuxal dhyefoar Témov (A).
ITgBA. Definition 5. 1). Tevixdreoov, Emayoywrd Gota toovtov aryefodv (Tomo-
roywnal ddyefoar témov (LA). IIoBA. Definition 5.2). Al redevraion dryeBoat
yevirevovy ovowmddg tag peradetxdg GAyéfoag Banach pe povadiaiov otot-
xelov. “Amodewnvieton ofitwe St eis Ty xarnyopiay @y dAyefodv vimov (LA),
dAyefoar Eovoar Suotomixa @douara Oy dwapégovy ¢ TEOg TOV «(TEAEGTIY)
(functor) K, (: AyeBoun K - Ocwolo. IToBA. Theorem 5.5). Touro Eyet dc
ovvémelav, uetald v dAwv, O’ Epaguoyiic Tob «Osmouarog weguodindTnTog
tob Bott», & davdAoyov 10d «rdmov Kiinnethyn dia vy Oswpovuévny év mooxeiuévey
aeplnrwow (moPh. (5.13)). 20v) Iivaxeg ééaprduevor dmo magauéroovs (§ 6):
Syeundg demgobvron mivaxeg (matrices), t@v 6molwv td otoyelor Gviixouvv elg
utav tomohoywny dhyefoav timov (LA) xal ééerdlovrar ovvlijxar dmo Tag dmolag
TototTor mivaxes elvar (ovumAnowuatixoly (i «ouumhngolviarr el dvriotoemTovg
mivarag ®g mog TV Yewgovuévny dhysfoav. ITofA. oyéoerg (6.11: 1, 2, 3)).
To modBAnua tooduvauel, du° dotouévag ratarllniovg xatnyoolag dhyefodv timov
(LLA), u¢ to avdhoyov dua v (dmrovotéoav) dryeBoav Ghov Tdv cuvexdv wyo-
Sdudv ovvagrrioemv &ml tob pdonatog Tiig Yewoovpévng aryéfoags (Theorem 6.1).
Atderon Emtome xourijoiov ovuadnowuarixdrytos mivaxos, GOg mOg dedouévny
dAyeBoav, g moonyovuévamg, eig Ty meolntwoly xata v 6molay, 1O @dopo Tig
v’ 3P Ghyéfoag elval, iaitéomg, (svumayig Tomohoyindg) ydeog «cuvotahtog»
(contractible. ITgfA. Corollary 6.1).
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