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ABSTRACT

A method is presented replacing anisotropic hardening plasticity by an appropriate
sequence of anisotropic elasticity problems. Assuming a stepwise form of loading or unloa-
ding, we measure the instantaneous tension and compression yield stresses along the tran-
sient principal-stress directions. These parameters completely define the instantaneous
state of anisotropy of the body for the corresponding loading step, by applying the theory
of elliptic paraboloid failure locus (EPFS). The parameter identification problem is formu-
lated on the consitutive expressions for this most general failure criterion and by applying
convenient constraints derived from the EPFS theory, which are serving as filters through-
out the whole procedure of evaluating the characteritic values of terms defining the variable
components of the failure tensor polynomial, as the material is continuously loaded from
the elastic to the plastic region, up to the ultimate failure load.

Accurate experimental data for the subsequent yield loci of various materials, were
used as input data for applying the method developed. It was shown that, either the pre-
diction, or the eventual correction of either extrapolated, or interpolated yield surfaces, are
reasonable and concordant to experimental evidence. The method presents the further
advantage of clearly indicating the parts contributed either by plasticity, or by the strength
differential effect of elastically and plastically deformed materials and their evolution du-
ring the development of plastic deformation.

1. INTRODUCGCTION

The theoretical and experimental investigation of the elastoplastic be-
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haviour of materials constitutes one of the basic concerns of materials science.
Continuous efforts to bring to light the laws of deformation of the matter,
started as early as the end of the last century, are still active. One can pretend
that the study of multiaxial elastoplastic behaviour of engineering materials
embraces one of the largest and most diversified systems of experiments. Du-
ring these studies both proportional and non-proportional types of loading
have been considered. The generalization of the theory of plastic potential,
with associated and non-associated flow rules, their connection with thermo-
dynamics and consideration of nonconvex yield surfaces [1-3] made clear that
plasticity may be considered as a general and variable anisotropy, depending
on the stress-strain history, the influence of the preloading in the yield surface
and the contribution of the Bauschinger effect. All these subjects have been
investigated by a large series of meticulous experiments and serious efforts
have been made to adapt the plastic stress-strain relations and / or the ex-
pressions of the yield surfaces, including the anisotropy to these results [4-11]

In this paper a procedure is established according to whihc the general
anisotropic hardening elastoplastic behaviour of a particular material is ap-
proximated by an equivalent fictitious anisotropic elastic material, whose
mechanical properties are varying with the loading history of the body, thus
adapted to the corresponding sets of values of the material under the loading
conditions of each step of loading. It is therefore obvious that the method is
superior than any other approximate method introduced up to now, and es-
pecially either the well-known Mréz’s method of bounding surfaces [12], or
the method of nested multisurface, introduced by Dafalias and Popov [11, 13].
Indeed, although these two constitutive models describe the plastic deforma-
tion of elastoplastic bodies under any complicated loading path and for the
most general material, yet the method introduced in this paper yields more
accurate results, by rectifying some weaknesses of these models and, further-
more, and most important, by indicating clearly the contributions of either
plasticity or the strength differential effect tothe subsequent state of loading
of the material.

2. FORMULATION OF THE METHOD

The present method considers a learning process for an appropriately de-
fined numerical procedure based on the least squares method with constrained
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conditions, based on the validity of the failure tensor polynomial used as a
constitutive condition for progressive yielding. Then, the method comnsists in
the construction of a numerical procedure, trained to fit existing experimental
results, and to extend these results, which are normally obtained either in the
tension-tension-tension octant, or the respective compression octant, of the
principal stress space, to the whole stress space. Having totally defined some
intermittent particular yield loci of the material, based on a sufficient number
of experimental points, it is possible to combine this method with the related
modern method, based on a neural network approach, which allows to determine
further subsequent yield loci to the esixting already experimental yield sur-
faces, by considering the material as a progressively changing anisotropic
one, whose variation of anisotropy is due to a further development of pla-
sticity of the initial plastic enclaves [19]. The neural network is then instruct-
ed to learn the law of variation af anisotropy of the material, and, if applied
to another set of experimental data, may fulfil its task to define the next
step in shorter times and with higher accuracy. Both methods, making use of
the flexibility of the failure tensor polynomial criterion, (FTP), expressed by
an elliptic paraboloid failure surface (EPFS), can establish the equivalent
elastic failure characteristics, by using a continuously variable form of the
EPFS. The details of the theory of the methods are fully presented in refs.
[14-18] and [19, 20].

In this paper we are concerned only with the numerical method based on
least square theory with constraints. This method may replace the classical
numerical methods for elastoplastic calculations, since it takes into account,
in a more judicious manner, the experimental data, and automatically impro-
ves itself, through learning. The method has been applied to concrete pro-
blems, where we dispose a series of experimental data from reliable tests (un-
iaxial or multiaxial), and we seek to establish the failure locus of the material
tested, assuming that it represents the most general of mechanical behaviour
(orthotropic material) and subjected to any complicated loading path, either
inside the elastic, or outside this region, where its failure locus is variable with
loading.

3. DESCRIPTION OF THE METHOD

In order to establish the general failure surface of a brittle material under
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the most general type of external triaxial loading and assuming that the ma-
terial is in principle generally orthotropic, it is necessary to run a series of
complicated triaxial tests. The main characteristics of the testing device are,
therefore, a uniformly distributed and independently controlled device of ap-
plication of a triaxial type of principal stresses, complemented by a system
of accurate and rapidly measured strains in a large range of deformations,
whereas the machine is a robust one, which disposes a high capacity of
sustaihing stresses of the order of 250 MPa [21].

For establishing the strength behaviour of this type of brittle rock under
a triaxial mode of loading, a series of tests were conducted along loading
paths following either the hydrostatic axis in the stress space, or paths with
varying oz = o3 stresses, while the i~ principal stress was kept constant,
or path in which the c;- and oj-stresses are kept constant at various le-
vels and the o3-stress is increased up-to-yielding and ultimate strength of the
material [21]. Figures 1 to 3 present the strength data for initial yielding (Fig.
1) and for ultimate strength (Fig. 2) from the tests where the o;-stress was kept
constant at various steps of loading, whereas, in Fig. 3, strength results are
given for the case of loading, where the sa-stress was kept constant, whereas
the o1~ and o3-components of stresses varied, up to the ultimate loading. All
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Fig. 1. Yield limits at the conventional yield point in the (g, o3)-principal stress plane for
parametric values of the o;-principal stress.
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these strength data will be used for establishing the failure locus of this aniso-

tropic material, by applying the method propounded in this paper, and che-
cking its efficiency and degree of reliability.
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(o1, o3)-principal stress plane for parametric values of the o,-principal stress.
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The problem posed for the general anisotropic elastoplasticity law with
respect to a given body may be expressed as follows: «Determine an anisotro-
pic piecewise linear elasticity sequence of laws, for which a body with the same
geometry, the same loading and the same constraints, exhibits a behaviour
identical with the behaviour of the elastoplastic anisotropic body under study».

If the loading function p(t) of the time t € [0, T] is given, we may divide
[0, T] into the time instants tO, t®, ... t®™ and denote by C®, C®, ... CW
the corresponding, but as yet unknown, anisotropic elasticity tensors, satisfying
the well-known symmetry and ellipticity conditions. We seek {t®, C®},
¢ = 1,...,n, such that the solution of the anisotropic elasticity problem appro-
ximates as close as possible the solution of the initial anisotropic elastoplasti-
city problem. The problem is formulated as a parameter identification pro-
blem, where z@® = {{®), C®} are the control parameters and the strain-, stress-,
and displacement— fields are the state functions. The control parameters
will be calculated by taking into account the experimental results as observa-
tion conditions. Assuming steps of small deformations, we denote by A, A,
and A; the following differences:

n 2 n
=3 g[ o - u‘;?] dQ, A, =X [ [ggp-s@ J dQ, A, —lef lo;‘i’-c‘::’] dQ (1)
p=1 -
where u, € and ¢ are respectively the displacements, strains and stresses, Q is
the body under consideration and the subscripts «el» and «pl» denote elastic
or plastic quantities respectively.
The problem reads: Find z® = {t©, C®@}, o =1, ..., n, such as to satisfy:

A; + Ay -+ Ay~ min (2)

where for every p, the quantities ca®, ea® and ua® satisfy the equations
of equilibrium, the strain-displacement relations and the material law:

(P) C(P) ( 3)

The quantities @, 6,1®, U@, must satisfy the equilibrium equations,
the plasticity rule, and must agree with the experimental results concerning
the relations between ;® and 6,®. Moreover, the quantities for both the
initial plastic and elastic problems must satisfy the doundary conditions
and the initial consitions at t = 0.
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Even in the case of problems of elastoplasticity, where the A;-condition,
expressed by the first relation (1), may be ignored in the process and only as
a checking condition of compatibility may be used, the arising parameter
identification problem is of a non-classical nature and, therefore, it cannot be
effectively treated by classical optimization methods. If we simplify the pro-
blem by discarding the A,-condition and impose the discretized form of the
elastic body to minimize the (A,4-Aj)-deviation, the resulting condition takes

12(

the form:

s(ppl)(r) _ Eglr)(r) Z(D)) c(pt;)(r) L G(e?)(r) (Z(D))

-

P

DJ — min (4)

g

|
K(z9) u® + p® = 0 (5)

where r = 1,...;m enumerates the discrete degrees of freedom, K(.) is the ela-
sticity stiffness matrix and the symbol || . || denotes the corresponding Eu-
clidean norms. The stiffness matrix K corresponds to the geometry of the bo-
dy, whose quantities 6,® and ;@ are defined experimentally at the time
intervals t®. Finally, p® is the loading function, which leads to the experi-
mental results at the p-step.

Note that relation (4) can be replaced by [17, 18]:

max

; ®) (p)| .
0, I‘{ [ e - B0 g |+ ” ) - gONR) g | }—> min (6)
! st |

or, by the prescribed error inequalities:

(p)(r) ®Xr) _(p) p)(r) () (,(P)
€otij | - Eclij %) g i (27)

maxp_r.i'j Celij < 87 maXprij Oplij ~ Oelij < 8, (7)

I

The inequalities (7) imply that the maximum differences between the ela-
stic and the plastic stress-and strain-components respectively at any point
of the body, and at any control moment t®, cannot be larger than a given con-
stant 3. We note further that the control instant t® may be replaced by a con-
trol strain, if the loading - unloading sequence is given. If the control strains
are given, then p® results from the preseribed strains or strain-variations
at the p-step.

For the classical experimental procedures, that is for a given sequence of
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strains, even in different directions, we can assume that z includes only the
anisotropic elasticity moduli C®, where we assign at each loading step several
control parameters, C(?), C(%), ..., C(%), in order to approximate, in a relia-
ble manner, the anisotropic plasticity stress - and strain - fields. In this way
the parameter identification problem is an inverse problem in structural ana-
lysis, where a solution is prescribed and we ask for convenient elastic proper-
ties and | or loading and | or geometric quantities, producing a solution very
close, or identical, to the prescribed one. Obviously, we have to solve a mini-
mum deviation problem having as subsidiary conditions all the relations cha-
racterizing the solution. Indeed, in adapting the structural analysis to the nu-
merical approximation computation, it is necessary to formulate the structural
analysis problem as a minimization problem and the same procedure is used
for the parameter identification problem described by relations (4) and (5),
where a quadratic deviation function should minimized. Then, we have to solve
the linear system (5) corresponding to a linear elastic structure for each value
of the control vector z®.

If now the components of strains and stresses, ca® and ce®, correspon-
ding to the displacements uqa®, are prescribed, or they must take values very
close to respective eu® -, 6@ -values, for all stresses and strains of the
structure under consideration, and for all p, we need to determine the control
vectors z®@, p =1, ..., n, i.e. to the corresponding control times t®, as well
as the elasticity coefficients C®, such as to minimize the differences in (4)
after an appropriate discretization of the structure. For each value of z®, o =
1,...,n, the structure will be calculated by means of the numerical procedure,
introduced through Eqs. (6) and (7).

4. A GENERAL FAILURE CRITERION EXPRESSED BY TENSOR POLYNOMIALS

A generalization of failure for orthotropic solids is expressed by means of
the geometric interpretation of the failure surface in the principal stress space.
It was shown [18] that the failure surface for orthotropic materials is an elliptic
paraboloid with a symmetry axis parallel to the hydrostatic axis and displaced
from the origin of the coordinate system by an amount depending on the de-
gree of strength anisotropy of the material. The failure condition expressed in
terms of principal stress components, o;, was shown to have the general form

of the quadric surface equation, expressed by:
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fo) =6-H-06+h-6-1=0 (8)

where H and h denote 4" and 2nd-rank failure tensors respectively.

The tensorial character of function f(e) implies the form-invariancy, of
eq. (8) and it is holding for any coordinate system transformation. Besides, the
linear polynomial term, h.¢, accounts for the strength differential effect and
thus, eq. (8), after a proper determination of failure tensors H and h, may con-
stitute a valid generalization of the paraboloidal failure surface criterion for
anisotropic solids. Symmetry properties of tensor H follow those of elastic
compliance 4'™-rank tensor S. The 2nd-rank failure tensor, h, may have, in
general, six independent components, whereas, for specially orthotropic me-
dia, or of increased symmetry, tensor h becomes axisymmetric degenenerating
to a spherical tensor for the isotropic medium.

The necessary and sufficient condition for the failure hypersurface of eq.
(8) to be convex and open-ended is that tensor H must be positive semi-infi-
nite, which means that [14]:

c-H-62>0, (vo>0) 9)
Then, a necessary condition to be satisfied by the contracted components

of the 4t%-rank tensor H is given by:
B Bl B2 = 0. (i 15:::46) (10)
The convexity of the failure hypersurface, together with its open end
along a triaxial path of normal stresses, postulates which are assured by the
validity of either inequality (9), or (10), constitute the basic constraint implied
for the validity of the least square numerical approximation in expressing the

respective failure hypersurface.
The normal components of the failure tensors are expressed by:

Hii= 1 /orioc (i <3) (11)

hi= (1/on) - (1/oci) = (oci-om)Hii (12)
whereas shear components are given by:

Hii= 1/0'si+°'si_ (] P> 3)

hi = (1/ost) -(1/6s7) = (osi™-0si t)Hii
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In the above relations the repeated index convention does not apply and
the o1; and o - stresses express the tension (T) and compression (C) failure
stresses in the i-direction. Furthermore, the osit, o5~ -stresses express the shear
strengths, positive or negative, in the i-plane (i > 3) and the usual contracted
notation of Cartesian indices is used, meaning, that index 4 corresponds
to natural indices 23, index 5 to 13 and index 6 to 12. For the ortgotropic ma-
terials, when the coordinate system, defining the failure stresses, coincides with
the material symmetry directions, there is no shear-strength differential ef-
fect, that is: osit= =0y~

Up to this point, the failure tensor components given in relations (11) to
(13) may be determined without recourse to a special phenomenological hypo-
thesis. The evaluation of these components is based upon standard basic re-
quirements, common for all anisotropic failure criteria, which can be expressed
by the general form of eq.(8). This leaves the off-diagonal components of the
failure tensor H (Hjj, i # j) to be derived according to the particular assum-
ptions, which are different for the various criteria.

The open end of the failure hypersurface is mathematically assured by
imposing the 4™"-rank failure tensor H to have a zero eigenvalue. Moreover,
the hypothesis that hydrostatic stress is a safe loading path is further formu-
lated mathematically by associating the zero eigenvalue of tensor H to the
27 -rank spherical tensor, 1, which is then an eigentensor of H. The follow-
ing relation holds:

H-1=0 (14)

Among the six equations contained in relation (14) the following three
relations interrelate the off-diagonal terms of the H-tensor with the respective
diagonal ones. These equations are given by:

Hij=1/2 (Hu-Hi-Hy), (i, j, k < 3,i#j#k) (15)

Relations (15) imply that the interaction failure coefficients Hy,, Hyy and
H,, of the elliptic paraboloid failure surface (EPFS) are interrelated with the
diagonal components, which are directly defined through relations (11) and
(12) with the basic strength data. This is a significant advantage of the EPF'S-

criterion, which is not met with other similar criteria.
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For the complete study of the elliptic paraboloid surface four types of
interections are deesmed as necessary. These intersections are:

i) The principal diagonal intersections defined by planes containing one
principal stress axis and the bisector of the right angle formed by the remain-
ing principal axes.

ii) The deviatoric n-plane, which is normal to the hydrostatic axis.

iii) The principal stress plane intersections, which are convenient for the
study of the mechanical properties of the anisotropic body when thin plates
of the material under plane-stress conditions are to be studied.

iv) The intersections of the EPFS-surface by planes defined by the axis
of symmetry of the paraboloid and either principal axis of the elliptic inter-
section by the deviatoric plane.

The elliptic paraboloid failure surface for the general orthotropic material
is expressed, in the (oy,0,,05)-principal stress space, by a complete polynomial
of the second degree [14]:

Hy; 655 +Hyy 69 +Hgg 635 + (Hgg -Hyy -Hy,) 6 65 + (Hyy -Hy, -
-Hg3) 6505 + (Hy -Hgy -Hyy) 6,65+ hy 6y + hyop + hyey =1 (16)

This second-degree polynomial, referred to the Cartesian coordinate sy-
stem Oxyz, where the Oz-axis is parallel to the hydrostatic axis and the (Oxy)-
plane coincides with the deviatoric plane with the Oy-axis lying on the (o33;,)-
principal diagonal plane, (3, being the bisector of the o, 0s,-angle) is expres-
sed by (see Fig. 4):

(Hyy + Hgp-1/2 Hyg) x2 + 3 /2 Hyy y2 +1/3(Hyy-Hyp) xy +
+1/4/2 (hy-hy) x + 1/4/6 (2hy-h;hy) y +1/v/3 (hy + hy + hg)z =1 (17)

Figure 4 presents the mapping of the paraboloid in the principal stress
space (0o,0,03), as well as the new Cartesian coordinate systems (Oxyz) and
(0”x""y"'z"") corresponding to the already defined system and the Cartesian
system whose 0'z’'-axis is parallel to the hydrostatic axis (Oxy), whereas the
0”x” - and O”'y" axes lie again on the deviatoric plane but they are created
by an angular displacement on the (Oxy)-system so that the new (O”'x"'y")-
system coincides with the principal axes of the elliptic intersection of the EPFS
by the deviatoric plane. Then, the deviatoric plane is defined at once by put-
ting in relation (17) the value z = 0.
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Fig. 4. The elliptic paraboloid failure surface (EPFS) for the general orthotropic material.

The principal diagonal intersection of the elliptic paraboloid failure sur-
face by the plane (o3, 8;5), where oy is the strong principal stress axis and 3,
is the bisector of the angle 5,00, is defined as follows. For the general ortho-
tropic body the equation of the intersection of the failure locus and the (oj,

3;5)-plane is given by:

1/2 (Hyy + Hyy 4+ 2H,,) 8152 + Haz 657 +4/2 (Hys + Hyg) 855 03 +
+4/2/2 (h; + hy) 8,5 + hyo3-1= 0 (18)

The other two principal diagonal intersection of the EPFS-surface by the
planes (o4,3,5) and (c,,8;3) can be readily established from relation (18) by cy-
clic interchange of the respective indices.

Relation (17) in the Oxyz-space may be written as follows:

Gx X2+ Gyyy2+2Gxyxy +2gx +2gy+ gz =1 (19)
where:
[ 1 1
Gxx = k Hy + H22_"2 H33> 8x = 2v2 (hy-hy)
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3 1
Gyy = _2 Hg, gy Zm@hs' h, - hy) (20)
o) 9
Gxy = \/T (Hyp - Hyy) Bx = 93 (hy + hy + hy)

We refer relation (17) to its normal form by introducing the relations:
Gxx Gy 8y X

G:-( ) :( ) andz:( ) 21

Gxx Gxy 4 gx b/ -

Then, relation (19) becomes:

21Gz-gT + 1 = gz (22)

Putting now:

X
z=12z,+r with Gz =g and zc=( c) (23)

Ye

and introducing these relations into Eq. (22), we obtain:
gz =1-gTz. + G r (24)

Putting:
7z =172 + Az with geze =1 - gz, (25)

into relation (24), we readily derive that:

g, Az =T Gr (26)

where x. and yc are the coordinates of the center of the curves representing
the intersection of the failure hypersurface by any plane and zc is the
distance of this center from the origin. Then, it is valid that:

GxxXe + Gxyye = - gx
GxyXe + Gyyye= - gy (27)

giZc = 1 + (gxXe + gyYe)




ZYNEAPIA THX & MA'T-OY 1995 191

From relations (23, 1 and 3) it becomes evident that:

e X = X¢ + Ax
r= ( ) and therefore y = ye + Ay (28)
Ay 7 =" + Az

Equation (26), through an analysis for eigenvalues of G, yields:

€ = CBDCT (29)
0 x
D:(dl ) and C:(C1 CXZ) (30)
0 d, Cy1 Cys

where d,, d, are the respective eigenvalues of G. Similarly, the angular dis-
placement of the axes of the intersection studied is given by the eigenvectors:

s=CT'r and r=Cs (31)

Introducing these values into relation (26) we derive the equation:

gAz = dy8,% + idy8,2 (32)

If the eigenvalue d, is larger than d, and both eigenvalues are positive, the
lengths of the principal axes of the intersection under study are given by:

B\ 2 Ag M2
2y = ( gzd - ) and a, = (gzd E ) (33)
1 2

For these lengths the a;-axis is the longer and a, is the shorter for d,> d, > 0.
Then, the expression for the curve representing the intersection of the hyper-
surface can be readily found to be:

2 2
SR
CoT £
For z = 0, from which we derive the intersection of the elliptic paraboloid by

the n-deviatoric plane, we have Az = -z, and

8; = a, cos 0
Sy = @y sin 0 (35)
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When the eigenvalues d; present the sequence d; >0 > d, we obtain an
hyperbolic intersection, which must be rejected [22, 23].

This condensed theory, concerning the definition of the form and
dimensions of the curves derived by the intersections of the elliptic paraboloid
failure surface, replace the analytic expressions of the forms of various

intersections of the failure surface given in refs. [15-18].

5. NUMERICAL APPLICATIONS

The approximation schemes developed in the previoussections will now
be applied for the treatment of a numerical application. We consider the ex-
periments described in section 3 of this paper, concerning the failure modes of
a coarse grained dense crystalline material, whose strength differential effect
is predominant in its mode of failure. It is assumed that the stress data given
in Tables 1 and 2 are the data for the parameter identification problem of the

TABLE 1
The values of the terms of the elliptic paraboloid failure surface, as well as the characteris-
tic quantities defining the deviatoric and the principal (o3, 812) diagonal plane intersections
of the EPFSs.

Loading Steps Hy,; H,, Hags h, hy h; Remarks

Elastic (I) 0.19380 0.63794 0.21215 36.0586 0.12897 0.19375 Al H &
Initial Yielding (II) 0.16969 0.42635 0.09545 27.743 0.11351 0.15328 h must be
Ultimate Strength (ITI) 0.34174 0.85537 0.15794 60.919 0.13114 0.14247 multiplied

by (x10-%)
Deviatoric Plane
Xo Yo So Yo ol /2 o2 0,
Elastic (I) -82.59 -122.79 -147.98 -56.08° 184.36 55.48 -58.95°
Initial Yielding (II) -91.01 -180.56 -202.20 -63.25° 254.01 67.03 -66.17°

Ultimate Strength (ITI) -158.24 -349.46 -383.62 -65.64° 412.14 61.86 -67.36°

(o3, 815)-diagonal plane (s = ay?+ By + v)

« B W B1ap G3p n? g

Elastic (I) 0.01515 -0.69581 -47.609 32.138 50.850 22.97 17.51
Initial Yielding (II) 0.008854 -0.6955 -61.8383 38.966 75.656 39.27  17.82
Ultimate Strength (ITT) 0.006706 -0.70217 -28.3047 7.892 69.702 52.37 19.22
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form (4) and (5), with the slight modification, that, in (4), only the stress dif-
ference terms exist and the strains are not taken into account. Moreover, we
have followed the loading - unloading procedures, as described in the experi-
ments of section 3 and we have assumed as unknowns of the problem only
the two-dimensional anisotropic elasticity coefficients. Thus, we can appro-
ximate the anisotropic hardening plasticity behaviour, including the strength
differential (the Bauschinger) effect with a variable linear elastic behaviour
defined by the appropriate changing anisotropy.

The aim of the present numerical application is the following:

i) We consider as given the experimental yield points on the failure sur-
faces for subsequent loading steps inside the elastic-plastic region of loading
and unloading of the specimens. On each given yield surface we take a finite
number of points oij = (i=)=1,2,3) and we apply with respect to all given
yield surfaces the numerical procedure of the previous section. We assume that
the elastic material is orthotropic, of changing anisotropy with loading, and
we want to determine the sequence of the ortholropy coefficients o;,®, ay,®,
@ = 85, ®, a5® within each element, which satisfy the identification
problem for the stresses and constitute the elasticity tensor C® at the p-step
of the learning algorithm. As p - we have theoretically the solution tensor
C = {&y, g, %ys = gy, gz} We recall here that ex = ajyaxh + ajp0vh,... yxy =
#g30xyh, where h =1 mm is the thickness of the plane structure. The yield
point is defined by the limit stress, which corresponds to a plastic strain of
0.02 percent [7].

ii) In order to get a more reliable approximation of the anisotropic ela-
stoplastic problem with a sequence of anisotropic elastic problems, we have
considered intermediate yield points through interpolation between two ex-
perimentally given failures in the 3D-stress space. The interpolation is guided
by assuming that the stress point lies on the elliptic paraboloid failure surface,
for the general anisotropic hardening elastoplastic body presenting the strength
differential effect [16-18). The failure surface in any principal stress plane is
an ellipse, which can be defined from a series of points. The same property is
valid for the deviatoric plane, as well as for any intersection parallel to this
plane. The only exception to the general rule holding for the (EPFS)-criterion
is for intersections of the failure paraboloid by planes containing the hydro-
static axis or the axis or symmetry of the paraboloid. These intersections are
all parabolas [17, 18].

13
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After the initial rough guess of a family of yield surfaces from a series of
different experimentally determined triads of values of the principal stresses
leading to different points of presumably the same yield surface, we obtain a
family of slightly different failure loci corresponding to equivalent loading
steps, but of different loading paths in the three dimensional principal stress
space.

In this way three different loading steps were studied and plotted in this
paper, that is the initial yield surface of impending plasticity, where the elas-
tic version of the EPFS criterion is valid, the conventional yield surface cor-

TABLE 2
The values of the characteristic quantities defining the (oy, 6y), (61, 63), and (o, 65) principal
stress intersections for the EPFSs.

Principal Stress Plane (o, o))

. \ sk (*%)
Loading Steps Ot - 7\12( ) L % % 6,2
Elastic (I) -416.54 -202.38 -25.91° 463.10 154.09 202.38 -27.18°
Initial Yielding (II) -611.12 -358.90 -30.42° 708.72 128.04 753.11 -31.43°

Ultimate Strength (IIT) -1167.38 -709.18 -31.28° 1365.91 176.27 1389.72 -31.850

Principal Stress Plane (o, o3)(*)

G G A ) r 6 (¥%)
1M M 23 13 *1m *im 13

Elastic (I) -74.93 -137.87 -47.260 156.92 184.36  55.48 -42.74°
Initial Yielding (II) ~ -135.85 -113.92 -39.98> -177.30 256.14 114.00 -57.36°
Ultimate Strength (ITI) -241.31  -214.71 -24.36° -323.00 412.14 81.86 -58.660

Principal stress plane (o3, o))

sk (%)
%M %M L PR %M %
Elastic (I) -1.64 -3.00 -61.270 -3.42 171.81 35.01 -61.49°
Initial Yielding (H) -1.95 -4 .40 -66.10° 4.81 227.65 44.62 -66.61°

Ultimate Strength (III) -1.53 -3.71 -67.55¢ -4.02  210.59 31.78 -68.04°

* All stresses in MPas.

** Negative angles are measured from the negative principal axes with the lower index.
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responding to an equivalent strain e = 0.002, and finally the ultimate strength
failure locus corresponding to the maximum effective stress oy. For the eva-
luation of the corresponding EPFS’s the respective values for o,, o,, and oy
given in Tables 1 and 2 are used. It was assumed in this analysis that the in-
stantaneous values of the failure and strength differential effect tensors Hj
and h;, as derived from the least square approximation scheme, belong to a
certain failure surface of an equivalent orthotropic elastic body with values
of Hijj and h; those considered and this failure surface is progressively chang-
ing satisfying always the respective, experimentally obtained, values for the
principal stresses.

However, one should notice that the calculated orthotropic elasticity
coefficients are fictitious and they have generally nothing in common with the
elasticity coefficients of the elastoplastic material. Moreover, they are not uni-
quely determined. Furthermore, the larger is the number of unknowns to be
determined, the less accurate is the method. In order to check the stability
and accuracy of the numerical procedure we have to define the limits of the
constraint Hpouna satisfying the inequality (10) or its respective bound concer-
ning Eq. (19), which is expressed by:

Gxx Gxy - Gxy?® =Guouna (36)

This was necessary for studying the form and its variation inside the pla-
stic zone of deformation of the failure hypersurface along its deviatoric plane,
as well as its shape relatively to its axes of symmetry.

For purposes of high accuracy the limits of variation of Hyoupa and Gpouna
were taken between 1 X 10-1' and 1 X 10-?. Furthermore, the numerical pro-
cedure of defining the failure hyperspace was based on different combinations
of experimental data. The sets of hypersurfaces, derived from these combina-
tions, created coherent entities of curves with insignificant deviations between
them, thus indicating the stability of the method. Only when some of the ini-
tial values were selected at the borders of each loading zone, where either ela-
cticity was in doubt, or the strain rates were rapidly changing, some scattering
of these zones appeared in the plottings, which indicated the high sensitivity
of the method. The satisfaction of the other constraints, that is either H;; > 0,
or Gij > 0 did not present any difficulties.

The three distinctive steps of loading of the Naxian marble tested gave
finally the following values of the terms of the respective tensors Hj; and h;
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contained in Table 1. The values of the terms of the respective tensors Gi; and
gi are readily given by relations (20). In the same table the values of the pairs
of principal stresses in tension and compression or; and oc;i for the three load-
ing steps are also tabulated. Having at our disposition these values of stresses
and of the coefficients H;; and h;, we can readily define the various intersections
of the failure hyperspaces.

a) The deviatoric plane of the EPFSs:

The center of this intersection, as well as the polar distance r, and the
angle (), subtended by this polar distance and the 0"’x"’-axis of the paraboloid,
are given by [14]:

Xo = v/2[3F {2h; (H;;-Hyp) + hy(3Hgg-Hyy + Hop)-hy(3Hgg + Hyy-Hyp)}
Yo =+/6/9F {h;(5Hyy-Hgs-Hyy) + hy(5H 13- Hyy-Hyg)-2hg(2Hy, + 2H,e-Has)} (37)

with

F = {2(H,,Hyy + HyHgg + HggH,,)-(Hag-Hyy)2-(Hyy- Hyp)2-(Hgp- Hyg)?}

V?T{ hl(5H22_H33_H11)+h2(5I—Ill_H22_H33)_2h3(2H11+2H22+ H33)

tan Yp=—
3 2h3(H11_H22) +hl(3H33_H11+ H22)-h2(3 H33+ H11+ H22)

| o9

Since the material is an orthotropic material, the orientation and the size
of the intersection of the failure surface by the deviatoric plane, which is an
ellipse, has its center outside the axis of symmetry of the paraboloid and its
principal axes are subtending acute angles with the 0’x" and 0"”y”-axes of
the surface.

Figure 5 presents the elliptic intersections of the failure hypersurface by
the deviatoric n-plane and Table 1 the coordinates of the centers of the three
ellipses corresponding to the three loading steps of the material. Furthermore,
the polar distance r, and the inclination to the (-x)-axis of this radius, g, is
given, as well as the lengths of the principal axes of the ellipses and their in-
clinations of the longest axis relatively to the (-x)-axis.

It is clear from this figure and the Table 1 that all centers of the ellipses
lie inside the third compression-compression quadrant and their polar distan-
ces rotate antiblockwise while the anisotropy of the material is increasing as
we advance inside the plastic zone of deformation.
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-

Fig. 5. Ta deviatoric plane intersectioas of the EPFS for three ttypical loading steps of the
Naxian marble.

b) The principal diagonal intersection of the elliptic paraboloid:

The intersections of the failure hyperspace by the three principal diago-
nal planes (c3,9;5), (61, 355) and (o, 8;3) are all parabolas, whose axes of sym-
metry are parallel to the Oz-hydrostatic axis and lying at different distances
from it, as the loading is progressing inside the plasticity zone. Their equa-
tions are derived from relation (17) by putting either 8, =4/2 6; =4/2 o5 for
the (o3, 8;5)-plane, or 8,3 =+/2 6, =4/2 o5 for the (o, 8y3)-plane, or 8,3 = /2
6; =4/2 o3 for the (o, 3;3)-plane. One of these equations for the (a3, 8;5)-
plane is given by relation (18).
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Figure 6 presents the parabola corresponding to the intersection of the
failure locus by the (o3, 3;,)-principal diagonal plane. It is obvious from these
plottings that, as the loading of the material increases, up to its ultimate
strength, the elliptic paraboloids become more and more shallow, and the
distances of their symmetry axes from the hydrostatic axis increase progres-
sively. It has been already shown that, when the anisotropy of the material
in increasing its representative failure locus becomes progressively shallower
and the coordinates n and £ of the distance between the symmetry axis of

Fig. 6. The principal diagonal plane (o3, 8;,)-intersections of the EPFS for three typica
loading steps of the Naxian marble.

the paraboloid and the hydrostatic axis are also increasing. These distances
for the orthotropic material are given by complicated relationships for the
general orthotropic material and they are not given here. These relationships
for the transversely isotropic material are considerably simplified and they
are given in Ref. [14].

Table 1 gives the characteristic dimensions of the principal diagonal
(o3, 81)-plane, that is its equation with the coefficients «, B, v, the coordinates
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of the vertex of the (o3, 8;5)-parabola, as well as the distances =; and & bet-
ween its symmetry axis and the hydrostatic axis along the y- and x-axes of
the EPFS.

Then, the EPFSs for the general orthotropic material have their axes of
symmetry parallely displaced, relatively to the hydrostatic axis, but moving
outside the principal diagonal planes. Indeed, for the orthotropic materials
the respective EPFSs are angularly displaced, so that the centers of their
transverse elliptic intersection lie outside the principal diagonal planes and
their planes of symmetry O”y"”z"” or O”x”’z"”" are intersecting the principal
diagonal planes along lines parallel to the hydrostatic axis, whose traces on

the deviatoric plane are points S (for the O”y”z"”-plane) different than the

origin O.

¢) The principal (i, o;)-stress intersections of EPFS.

The equations expressing the intersections of the failure hypersurface by
the principal stress planes are given as follows: For the (¢,, a;)-principal plane
the following equation in this plane expresses this principal intersection. This
comes out from relation (16) by putting ¢, = 0. It is valid that:

H,,6,% + Hgso5% + 2Hg 050, + hyoy + hyoy =1 (39)

The center of this ellipse is defined by its coordinates (cgu, 6yu). Figure
7 presents this intersection in the (3, 6,)-principal stress plane and the coor-
dinates o4y, 6;u and the angle 2, of inclination of the polar radius (OM) are
given by [14]:

i 1 !
‘2‘(th31"th33) E(thsl‘h?.Hn) (40)

(53.\1, 51.\1) =

(HyHy-H3)  (HyHg-H3)

A = tan~? (hyHyy-hyHyy) fhyHy, (41)

The system of Cartesian coordinates (M- o, o3), to which this ellipse is
central and symmetric, is defined by the angle 0,, expressed by:

0, = 1/2tan! [2H;, /(Hys-H,,)] (42)
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Fig. 7. The (o4, o5)-principal stress plane intersections of the WPFS for three typical loading

steps of the Naxian marble.

17
-%

-0

Fig. 8. The (o3, os)-principal stress plane intersections of the EPFS for three typical loading

steps of the Naxiap marble.
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whereas the semi-axes a;y and agy of the ellipse are given by [14]:

A — (i)llz{l - H11h3 +H33h2 -2h;h;H,, } o
1 a (Hy-Hgp)? + Hyy(4H,5-Hy)
m = (-1—>1/2{ 1+ H11h3 +H33h2 -2h,h Hg, }1 o~
b (Hyi-Hyp)? + Hyg(4H 15-Hyg)
and
a - 1/2
a :;{(HH"F Hgg) + [(H33-H” 4H31] }
; 1/2 (45)
B:E{(H11+H33)_ [(H%-H%,) L[!Hgl} }

Similar relationships are valid for the two other principal stress planes
((61, 6,) and (c,, 63)), where these equations are established by eyclid rotation
of the indices.

4

/)
/

"03

Fig. 9. The (o3, o3)-principal stress plane intersections of the EPFS for three typical loading
steps of the Naxian marble.
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Table 2 contains all the necessary dimensions for plotting these intersec-
tions. Thus, the iy, 6ju coordinates of the centers of the ellipses, as well as their
polar distances for the origin O are given, complemented by the polar angles
%ij, of these polar distances. Similarly, the principal semi-axes of the ellipses are
given together with the orientation of their major axes, relatively to the prin-
cipal frames of the EPFS. Furthermore, Figs. 7 to 9 present these intersections
for the Naxian marble tested.

From all these values of the coefficients of the terms of the failure tensor
polynomials the values of the principal stressesin simple tension and compres-
sion along the principal directions of the materials are readily evaluated using
relations (11) and (12) and they are given in Table 3.

TABLE 3
The values of the principal stresses in tension (c_n) and compression (cCi) along the three

principal ‘axes for the EPFSs

1 £
Loading Steps C,_“( ) & L. Scy % G
Elastic (I) 24 .54 -210.60 39.49 -39.69 68.20 -69.11
Initial Yielding (II) 30.39 -193.88 48.30 -48.56 101.55 -103.16
Ultimate Strength (III) 15.10 -193.36 34.11 -34.78 7942 -80.02

All components of stresses in MPas.

7. R BSIUILT S

From the extensive analysis, based on the definition of failure surfaces in
various loading steps of a typical rock material under elastic and plastic mo-
des of deformation, the evolution of the whole failure hypersurface of this
material during loading was solidly established, by using only uniaxial and
triaxial compression-compression-compression modes of loading, yielding re-
liable and complete information about the evolution of strength of the mate-
rial, which can be readily employed in applications. The least square numeri-
cal analysis was employed with constrained bounds derived from the respec-
tive theory of failure tensor polynomials for defining yield loci of the ma-
terials.

The method succeeds to solve completely the problem of the definition of
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the failure loci of a material deformed progressively in the elastic and plastic,
up to its ultimate strength, by using only experimental data concentrated in a
small area of the yielding, conveniently selected to give reliable and accurate
experimental data. In this paper three characteristic steps of loading of a gra-
nular rock were considered, that is in its elastic range, in the initial yielding
defined by a conventional strain of 0.02% and finally at its ultimate strength.
The experimental data were all concentrated in the compression-compression-
compression octant of the yield locus, where these tests could be effectively
executed. The method succeds to yield a full picture of the failure hypersur-
face of the material, based on data belonging in the underbelly of the yield
locus.

Provided that the problem considered is of the type of proportionate
loading, for which the classical flow theory of plasticity is valid, it is possible
to proceed to interpolations in-between the basic loading steps, for which ex-
perimental tests are executed, and define the details of the variations of the
mechanical properties of the material, as the loading proceeds inside the pla-
stic zone.

This procedure is more accurately established by using, instead of the
least square numerical method developed here, a method of parameter iden-
tification, realized in an appropriate neural network environment, through
supervised and unsupervised learning algorithms. This method, which is intro-
duced and extensively developed in refs. [19] and [20], presents certain defi-
nite advantages over the classical numerical analysis with adjoining constraints,
derived from applying optimization problems, based on neural network ap-
proach, where the anisotropic hardening elastoplastic behaviour is approxi-
mated by a fictitious convenient material, whose properties are adapted to the
existing experimental data. This method will be the subject of a companion
paper.

Figures 5 to 9 present the intersections of the elliptic paraboloid failure
hypersurface by different characteristic planes. It is clear from these figures that
the material is strongly anisotropic with variable anisotropy, if the material
is loaded inside the plastic zone. Moreover, the compression strength of the
material is very pronounced and increasing as the loading is progressing.

However, it is of interest to study separately the influence of anisotropy
of the material per se, and the influence of the strength differential effect.
Table 3 indicates the values of the yielding stresses in triaxial loading, as the
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loading is progressing. Examining the values of the terms h;, responsible ex-
clucively for the strength differential effect, one observes the striking diffe-
rence between the values of h, and, on the other hand, the respective values of
h, and h,. These values are a hundred time smaller than h; and almost equal.
This phenomenon indicates that the strength differential effect at the plane
(04, 03) of symmetry, is insignificant. Figure 9 indicates the same phenomenon.
The three elliptic intersections by the (s,, 6;)-plane of the EPFSs at different
steps of loading have their centers almost at the origin O of the coordinate
system 6,003, thus resulting to almost equal tension and compression stresses
along the principal axes of the ellipses.

This phenomenon may be explained by the form of structure of this type
of marble. Indeed, Naxian marble is belonging to the cataclastic family of
rocks derived from igneous parent rocks. These rocks are produced by a dyna-
mic metamorphism during which, faulting, granulation and flowage may oc-
cur in previously crystalline parent rocks, because of stresses exceeding their
breaking strength. Then, the individual minerals in the rock may selectively
granulated. Movements in preferred directions may occur with slippage planes
and granulation being oriented preferentially. Thus, partially destroyed rocks
create streaks swirling around still undestroyed rock. It is accepted that Na-
xian marbles are products of extreme cataclastic deformation. They are fine
grained and laminated, creating closely spaced slippage surfaces giving to
the rock a fissility. Figure 10 shows a cross-sectional view of a phyllite type
rock, indicating intense stretching spots, forming parallel laminae similar to
those typically existing in the Naxian marbles.

Fig. 10. Cross sectional view of a spotted phyllite rock showing spots of chlorite in a stag-

gered arrangement.
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On the other hand, foamy materials and other modern composites with
a weak reinforcing phase, arranged in a zig-zag distribution of their oblong
inclusions, belong to a special category of materials presenting very low va-
lues and in some staggering arrangements, negative values of their Poisson’s
ratios along the transverse planes of laminae. An analytic study of such com-
posites, whose configuration resembles the arrangement of Fig. 10, gave Pois-
son’s ratios of the order of -0.20 to 0.60, for the plane normal to the plane
of laminae [24]. Values of Poisson’s ratios for Naxian and Parian marbles have
been accurately measured and found to be v, = 0.08 for the Naxian marble
and v, = 0.80 for the Parian marble along the normal plane to the laminae
[25]. This coincidence of results constitutes another proof of the correctness
of the results derived from application of the theory of failure tensor polyno-
mials with variable terms inside the plastic zones of deformation.
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HNEPIAHYIE

TENIKH ME®OAOX ITPOXAIOPIZEMOY TON NOMQON ITAAXTIKOTHTOXZ
ANIZOTPOIION TAIKOQN

Eic miy avexoivwow adtiy elodyeron pébodog mpocdiopiopod Sradoyiic vépwy,
Oraxovévrey Tunpatikds elg Tog doydc THG Yerppixiic EAacTIOTYTOS, XUTC TV
omolay cdpe tig adtiic yewuetplag xal i adTig StwdoxTs popTicewy xal TGV ad-
TAY TEPLOPLOUBY, TAPOLGLATLEL GUULTEQLPOPAY TAVTOGNUOY UE THY GUUTEQLPOPLY TOD
O EEétacty EhacTo-TAaGTIZ0D AVLGOTEOTOU GOUATOS.

*Eov p (t) éxppdlet miv cuvdptyowy popticews évtdg Tob Swnstiuatos t € [0, T,
70 Sudotnpe adtd Srowpeiton eic T dmodiwstipate [0, T]— t@, t@, t® . t@
%ot To 6mola Loy bovy dvricTolyms ol éml wépovg avicéTpomol EAacTinol TavueTal:
W, C®, CO ..., Cw

Znrobpey v oyéow {t@, CP} o =1, 2, 3, ..., n, Totdtyy dote 7 Motg Tod
dvicotpdmov mpofhuaros EhacTixéTnrog Vo Tpoceyyiler xatd TO Suvatdv TANGLE-
GTepoy THY Aoy Tob {rroupévon EhacTo-TAReTIZ0D TpoBATuaToc.

To mpoPAnpo Srproppdvetar 6¢ TpdBAnwe TUPARETPIKTG TAVTOTOLGEMS, Emov
2@ = {t@, CO} clvar ai éréyyovoor mapdpertpor xal ol cuvicTdoxr TEY TAGEWY
6@, mapopmoppmoewy ¥, xal petatonicewy U® Exppedlouv T0G AATAGTATIXAS GU-
vopthoets, ol 6molal Stdovral &md TO TEOBANua Sie TAV Eml pépoug TELPALETMY.

Aeybpevor Bhpate pixpdv pertatonicewyv xoul Tapapop@hcoewy, 6ptlopey Tig
Suxpopds:

[ () _ (p)] dQ, A, = Zn [ (@) _ (p)} dQ, A, = 2 f[ ®) _ (p)lde (1

1':!; p= é el} )

p=1Q

n

p=

To mpbBhnua tiletor va 6ptabi 9 oyéorg 2= {t@, CO} o0 =1, 2, 3,

obrwc Gote va ixavorold, 8’ olavdfmote TRy Tob p, TV GuVONXNV:

Ay + A, + A; > min 2)

émov Ta peyéln ca®, ca® xal ua® meémer v ixavomoroby tag EErodaelg icoppo-
Tl 10D GUGTHUATOS %ol THG GYEGELS TACEMV-TIOPAULOPPMGEMY, EVE Ta AvTioToLy s
TAuGTIRG eyl mpémer éml wAéov v& ixavorololy TOG AVTLOTOLYOUG TEELQOULATIXGG
TULAG %ol TaG GYEGELS TAXGTLOTYTOC.
’Exogyiotomordvras iy cuvBiuny (2) AapPavopev:
n m
P 3|3
p=1[lr=1

(p)(r) (p)(r) (Z(p))

(D))r) (p)(r) (P)
“pl el (Z )

+| ou

2)] — min (3)
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I{(Z(p) u(p)) =& p(p) =0 (4)

o 9 I ’ h (Y ~ fn
07OV P TORLGTA TT)V GLVARTYGLY QOPTLOEWS dnax TO B’T]Ha POPTLGEWC P.

‘H oyéoic (3) yedpeton xal ¢ dviabryg og éETig:

PO _ X0 (0

®0Or) @) /)
max ot o <9, max Cotij - Oeri (z7) < 3, (5)

Pstiisj PR AN}

émov 8 mapiotd TOV EmPadddpevoy cbvdeouov.

A Tov xaBopiopdy TGV cuVLeTOEEY TEHY Tdotwy Surppotis cig TO Yo EEéTacty
Biiua popricews ypnoruonotobuey Tas cuvdirag yevindic Stappoiic dvicoTpdmwy HhL-
%@y, Exmeppacuévag ué TavueTIXd TOAMVLRY doToyluc, xal 3N wE To EMAEmTIKOV
nopofohocidic kpitiplov Sroppofig, ol dmoion dmoroytlovrar Omd xAetaTiy popohy,
YVWOTGY 00G@Y T@Y xuplwv Tdoewy elg dpehnvopdy xal OATYLy ToD cdparos o
Tag Tpeic xvplag SeuBiveeig The Pabpidog popricewc.

‘H dg dve Osmpio Epnpudody Enl Sedopévev Srappotic %ol dartoylag Mapiov
Rappapov, xatamovovpévou elc Siupdpovs cuvdvaspods Tprabavinie OAidews. Ex
7@y dedopévav elg v meproplopévny meptoydy popticews BAidewe xatd Todg Tpeis
&Eovag Omeroyiclhy miMpog nal pd peydhyy dxpiBelav 6 vépog dotoytag Tod Hhxod
dud Suapbdpoug THTOVE opTicewg xal Tpoéxuday oNULAVTIXOL VOULOL TREAULOPPHGELG
TGOV OAXGV elg TV TAXGTINY TEpLOYY YIL THY YEVIXGOTETYY TepimTwoy Tob
avicoTpbmon EhacTo-mhacTinol Ohxol, mapovctdlovros xul Quwbpeve Siapoptxiic

avroyie.



