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OEQPHTIKH MHXANIKH.— The finite deformation of an almost
homogeneous elastic solid *, by A. D. Kydoniefs **. *Avexowvadn

0 tod "Axoadnuaixod x. ®. Baoukelov.

1. 1. Introduction

Owing to the non-linearity of the equations involved, the number
of exact solutions to problems in the theory of finite deformations that
have been obtained is very limited. Most of these solutions are given by
Green and Zerna [1] and Green and Adkins [2] who also give references
to original sources. Some further solutions can be obtained with the
assumption of a simplified form for the strain-energy function. But even
with this simplification the equations often remain intractable. There
has therefore been considerable interest in the development of perturba-
tion and approximation methods. Thus, for instance, various authors,
some of whose work is described in [2], have employed successive appro-
ximation procedures ; Green, Rivlin and Shield [3] have developed the
theory of small deformations superposed on large; Adkins [4] noted
the possibility of perturbing the shape at the boundary of either the
deformed or the undeformed body ; Spencer and Kydoniefs [5] used series
expansion of the solutions in terms of a geometrical parameter of the
problem which could be regarded as small.

A further possibility is to perturb the strain-energy function W (1I; ),
where /; are the strain invariants to be defined later. The first of these
types of problem was described by Spencer [6] who examined the case
of a homogeneous body. In this paper we consider the effect on the
deformation of the inhomogeneous perturbation term &’ (.Ii , )
where /; and 9; are the strain invariants and the convected coordinates
respectively and & a constant number small compared with unity. The
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general theory is given and also applied to the case in which the original
deformatioy is a uniform extension. Finally, as an example, we solve
the problem in which the specified deformation is a uniform extension
and the undeformed body an incompressible right circular cylinder with
axis Ox, and W' =W' (I,, .,, x,).

The result of the perturbation of the strain-energy function is in
general an additional small deformation superposed on the original finite
deformation. If we know the original deformation, and suitable boundary
conditions are given, the additional deformation can be determined by
the equations of equilibrium and the stress-strain relations which we
give in the general theory.

The strain invariants, stress-strain relations and equations of equi-
librium are the same in form as in the theory of small deformations
superposed on large deformations. The coefficients in the stress-strain
relations are formally the same as in [6] but in this case the additional
terms depend also on the convected curvilinear coordinates.

Though the equations of equilibrium are considerably reduced if
we assume the original deformation to be a uniform extension and the
undeformed body an incompressible right circular cylinder, they are still
too complicated to be solved in general. In order to find a solution we
further assumed a restricted form W' =W’ (I,, I,, x,) for the perturba-
tion of the strain-energy function. Under these assumptions the addi-
tional deformation is determined.

Throughout this paper the notation of Green and Zerna [1] has been
used. For easy reference, a brief summary of the results and formulae
necessary for the solution of the above problems is given in the Sections
1.2 to 1.4. The reader is referred to [1] for details of the notation and
derivation of the formulae in these Sections.

1. 2. Finite Deformations

The points of the undeformed and deformed body are referred to
the rectangular cartesian coordinates (o, x; ) and (0O, y; ) respectively,
and to the system of general convected curvilinear coordinates ¥; .
The base vectors for the undeformed and deformed body are denoted

by g; and G; respectively.
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The metric tensors for the unstrained body are

oxm ox™ s 0¥ 09 _—
8= 5 gy 0 & = Gym o  SwEM=8, (L.2.1)

and the metric tensors for the strained body are given by

Lol i T . 8 el
oY 09 g s ay™ dy™ ) Gin G —61, (1,2. 2)

Gij -

where 8;. are the Kronecker deltas.

The strain tensor is by definition

1 i g 1 . i
¥y = G (Gij — gij), vy = g5 v = i (g% Gy —9; ), (1.2.8)

and the strain invariants of y; are

Il = grsGl’S ’ IQ = gl’SGrS I:l ’ I‘z = Gg_l ) (12 4)
where G and g are respectively the determinants of the covariant metric
tensors of the deformed and undeformed body.

The contravariant stress tensor measured per unit area of the
deformed body is denoted by tii and the equations of motion are

/i + oFi = of} (1.2.5)

where o is the density of the deformed body, Fi G; the body force per
unit mass and fJ G; the acceleration vector. The double line denotes
covariant differentiation with respect to the coordinates ¥; and the metric
tensor of the deformed body.

When the surface force P! Gy is prescribed at a surface with unit
outward normal vector n; G then, at that surface

Pl = dis. . (1.2; 6)
For an homogeneous and isotropic body the strain-energy function W
has the form W= W (I,, I,, :;) and the stress-strain relations are
given by
@ = dgil |+ WBI 4 pGY, B = Lgh — g g G,
1 35 i

O =21, L(OW/al), W=2I; ®(@W/dl,), p =21 (OW/OL). (1.2.7)

For an incompressible solid I, =1, the strain-emergy function
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depends on I, and I, only, and p is a scalar invariant function of the
coordinates 9; to be determined by the equations of motion and the
boundary conditions.

1. 3. Small deformation superposed on finite deformation

We give now a brief summary of the theory of small deformations
superposed on finite deformations. This theory has been described by
Green, Rivlin and Shield [3].

The finite deformation of the body B, to the body B is assumed
to be completely determined and we consider a further deformation of B
to B’, this last deformation being such that the state of strain and stress
at any time differs at most by terms of the order of & from the state
of the known finite deformation.

Let P,, P, P be the corresponding points in the bodies B,, B
and B’ respectively. Because of the above conditions we can assume that

PoP’' = v (;,t) + cw (9 t), (1.3.1)

where v = PoP and ¢ is a constant number small enough compared with
unity for its squares and higher powers to be neglected.

If we denote by G; + €G’; the covariant base vectors of the coordi-
nate system 9; at the points P’ and refer w to the base vectors G; , G! at

the points P, we have
W =0,G"= o"G,, (iL,:3::2)

Gi=w; = 0n//iG" = 0" //; Gy . (1.3.3)

The covariant and contravariant metric tensors at the points P’
will be denoted by Gj; + ¢G’;; and GY 4 eG'l respectively where

Gi=w//; + o5 /i, Gl = — GIrGiE G, (1.8. 4)
and if |Gy + €G'y5] = G + €6, then
G’ = GGIG';. (1. 3. 5)

The strain invariants associated with the body B’ are I; -} el’;
with I’; given by
Lol CGlesy o galGPL + GPLY) ; Iy =l Gl (1.8.6)
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The tensor B in (1. 2. 7) becomes B~} ¢B'li for B’ with
Bl = (gligr — gif g5 ) G, = elMmeimg G'uog?  (1.8.7)
Similarly, the Christoffel symbols for B" are I'jj + eI''i;, where
I = 5 6™ (G%us + G'ss — Giia) + 2 C*(Gusy + o — Gl (1.3.8)
The stress tensor for the strained body B’, referred to curvilinear
coordinates ¥ in B', is v+ er’l with
v = gl @’ 4 BIW | BiiW 4 Giip’ 4 G'ip, (1.3.9)
where @', ¥’ and p’ are given by
@ = Al', + FI', + EI', — 21, oI,
¥’ = FI', + BI', + DI’, — (21, ¥I’,
p’ = I,(EI', 4+ DI’, 4+ CI'y)) 4+ (21, pI’,
and the coefficients 4, B, ..., F by

1 1

A=21, ® (0'W/aL,Y), B =21, ° (3*'W/oL.),
i) .

C =21  (0W/oLY), D=2I * (3°W/aL,0lL,),
1 1

E =21, ° (*'W/oL,0L), F —2I, ® (8*'W/aLaL). (1.3.10)

If the contravariant components of the body force and acceleration
vectors for B’, referred to base vectors G + ¢G’; , are Fi 4 ¢F'J and
S+ €77 respectively, then the equations of motion for B’ are

I TR+ T57 4 oF 4 oF =o' 0, (1.3.10)

where the density of B’ is o-}&0’ with
o = — oG’ (2G)™ (1.3.12)
and the double line denotes covariant differentiation with respect to the

coordinates ¥; and the metric tensor of the first deformed body B.
The surface force components for the strained body B’ will be

Pi 4 ePJ = (v 4 ev'il) (n; + en’y ), (1.:8. 18)
n; 4+ en’; being the covariant components of the unit normal to the sur-
face of B’ referred to the base vectors Gi 4 ¢G’i and P/ + eP'} the
components of the surface force vector referred to G; - G’ ;.
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1.4. Small deformation superposed on finite uniform extensions

A complete account of this subject can be found in [3]. We give here
a brief summary of the necessary formulae for easy reference.

We assume that the undeformed body B, is deformed into the body B
by uniform finite extensions along the three orthogonal axes to which
both B, and B are referred, and denote by 1; the constant extension
ratios. The points P, of B, are defined by the coordinates x; and for
convenience the coordinates of the points P of B will be denoted by
x, ¥, z instead of y; . The deformed body B’ is obtained by superposing
on B a small deformation of the type described in Section 1.3. We take
the moving coordinates {; to coincide with the fixed cartesian coordi-
nates x, y, 2.

The strain invariants for uniform extensions are
L=A44"4+4, L=L"4 020020 L=AL'0 (1.41)
From these formulae and (1. 2. 7) we see that @, ¥ and p are constants.

The components of the stress tensor for the body B are

=0 WA (A4 +p, =04 WA (A0
o= @A+ WA (A2 41 +p, =1 =1"=0. (1.4.2)

Since ti is constant the equations of equilibrium for the body B are
satisfied when the body forces are zero.
The strain invariants for B" are I; -+ €I’; with I, given by (1. 4.1) and

ou dv ow
{ S SR e 2 2 2
1= 2 (M G 4 S a2,
Lo= 2 2 2% ot a0 2 a0 22
2 1 2 3 aX 2 3 1 ay 3 1 2 aZ b

Jv o ) ; (1. 4. 3)

du
i 8 29 29 2 3
T Sl <8x dy 0z

where we have written u, v, ® instead of ®,, w,, @,.

If we assume Fi =0, fJ =0 the equations of motion (1.3.11) are
reduced to

0 - . 0j . 0m; -
T fir it o i B g io LY, 4.4
sgferitovedifioan Yy oo, (1.4.4)

if we also take F'J =0, that is assume B’ free of body forces.
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In (1. 4. 4) the stress components are referred to the coordinates ¥;
but for some purposes it is more convenient to have the stress compo-
nents in the strained body B’ referred to rectangular cartesian coordi-
nates y; with axes coinciding with the axes (%, ¥, 2). Thus y; = & + ew;
and if we denote by # - &'l the new stress components we have

a(Ds awr

rs —— b 248 wass ‘T rm ms
freies o e a&m—{-r i (1. 4.5)
Hence the equations of motion (1. 4. 4) take the simpler form
ot'™s | 99, = of’r (1.4.6)

where ¢f’" are also the acceleration components in the directions of
the yi - axes.

If the boundary surface of B’ is given in the parametric form
F(® )=F(,y,2) =0 and n. - sen; are the covariant components of
the unit normal referred to G* - ¢G’* then

nr 4+ en’s =k (0F/29;)

where
_( 9F OF )—%[ OF OF (aw, aws><‘ JF OF )‘1]
k’(m 0%m L+egs o5 \ a9, T o, ) \%58, 395 ) 4D
and the surface force components are
Pi 4 eP'l = k(7 4 er’ll) (0F /0% ), (1.4.8)

where PJ 4 eP'J are the components of the surface force referred
to Gj |- EG'j g

If Q' 4+ ¢Q’' are the components of the surface force referred to
the y; - axes we have

1
o — o OF ((’)F aF>—2— ,

0% \09n O

=
I

 OF (OF OF \-5 | . do;
0% (a&m a&m) +0'%, ha

i aF aF awr aws aF aF =3
T 9% o, <a35 + %r) (2 v, am) (1.4.9)
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THE FINITE DEFORMATION OF AN ALMOST HOMOGENEOUS
ELASTIC SOLID

2.1. Statement of the problem

The general theory of Finite FElastic Deformations is given by
Green and Zerna [1], for an elastic, homogeneous and isotropic body
with strain-energy function W ([; ), where [ are the strain invariants.
The result on the deformation of a perturbation of the strain-energy
function into W (L )+ €W’ (f; ), where & is a constant number small
compared with unity has been described by Spencer [6]. It is of interest
to investigate the more general case of an almost homogeneous body
in which W' = W'(L, 9;), where 9 are the convected curvilinear
coordinates.

We consider an elastic, homogeneous and isotropic body B_ with
strain-energy function W = W(l;). If B, is deformed into the first
deformed body B we denote this deformation by D= D(B,, B, W).
P, and P denote corresponding points of B, and B respectively, and
f, F, P the acceleration, body and surface force applied at the point P
in the deformation D.

We also consider an elastic, almost homogeneous and isotropic body

with the same initial configuration B, and strain-energy function
W* = W(L)+eW (L,¥) , 2.1.1)

where & is a number small enough compared with unity for its second
and higher powérs to be neglected. If this body is now deformed into
the second deformed body B’, D* = D(B,, B’, W*) denotes this deforma-
tion, P’ is the point of B’ which corresponds to the point P, of B, and
f* F* P* are the acceleration, body and surface force respectively at P’
in D*, the following problem is considered : Assuming that the displa-
cements, acceleration, body and surface forces of D* differ at most to
the order of ¢ from those of D, that is

P,PP=P,P}cew, F*=F+4cF', Pr=f+tef, Pr=P-}cP (2.1.2)
and D(B,, B, W) is completely specified, we wish to determine the

deformation D* = D(B,, B’, W*)) in terms of the specified deformation,
the perturbation of the strain-energy function and the constant e.
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2.2. General Theory

Because of the first of (2. 1. 2) we see that the result of the pertur-
bation of the strain-energy function is a small deformation superposed
on the original one and that the geometry of D* is the same as in the
case of a small deformation superposed on a finite deformation. We also
note that the formulae (1. 2.7) are valid for the perturbed strain-energy
function. If we use the superscript * for the quantities relative to D*,
the formulae (1.2.7) take the form

ol — Q)*gij _|__ kB + p*G*U .

1 1
2 2

O+ =215 * (aW*aly), W+*=217 * (aW*/al3),

3;
p* =215 * (OW*/ol3). (2.2.1)

By expanding these expressions in series and neglecting the second and
higher powers of ¢ we obtain
Q¥ =P+, Y=LV, p*=p-tep’ (2.2.2)
e
¢’ = Al'y+ FI',+ EI',— (21,) @I, 4 213 * (OW’/al,)
1
Y’ = FI’, 4+ BI',+ DI, — (21,) ' ¥I',+ 21, ® (OW’/aL,)
1

p’ = L(ET,4+DI’,+CI')+(21,) " pl', 421, ° (OW'/oL)  (2.2.3)

where

and A4, B, ..., F are again given by (1.3. 10).

It can now be easily proved that the stress tensor t#! corresponding
to the deformation D* is

v = i) - et (2.2. 4)

where ' is given by (1.3.9), @, ¥’,p" by (2.2.3) and *J is the stress
tensor corresponding to the specified deformation D(B,, B, ). It can
also be readily seen that the equation of motion is (1. 3. 11) and that the
surface force components are given by (1.3.13).

1f the body is incompressible we have [, =I*=1, I, =0. Thus

0’ = AT, + FI', 4 2(0W’[oL,), W' = FI’, + BI’,+ 2(8W’/aL,), (2.2.5)

where the A, B and F are given by (1.3.10). In the case of an incompres-
sible body, p’ cannot be found from the elastic potential function
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and is a scalar invariant function of the coordinates for each value of
the time ¢.

Before we close this Section we mnote that all the formulae of
Section 1. 3 have been proved to apply in our problem with the exception
of the formulae for @', ¥’ and p’. These were replaced by (2. 2. 3) or,
in the case of an incompressible body, by (2. 2.5).

2. 3. Uniform extensions

As an application of the theory described in Section 2.2 we
consider now the case where the original deformation D(B,, B, W)
is a uniform extension.

By using the same coordinate systems and notation as in Section 1.4
we obtain, after a certain amount of algebra,

dw 2 oW’
@’ dna —!—dna +d13&2+xkl TR
g 2 oW’
IIJ S ﬂ a + d + dﬂ a + }“1}\’2}\':} dIZ )
raalli 0o AW g
p - 1[ a + d32 0 + d:}:‘ _g— + 2)" ;\' )"} aI ) (2'3'])
where the constants di; are given by
d;j = 2AA% + 2F A% (M + A ) + 2EA A0 — @,
d,j = 2F 2% 4+ 2BAY (M 4 A% ) -+ 2DACAA — W,
d,j = MM A7 [2EA - 2D A% (M + A% ) + 2CA° A AT+ b,
i, de, 1= 1,2 3 ik ~<1£] (2x8. 2)
In the above formulae @, ¥ and p are given by (1.2.7) and 4, ..., F
by (1. 3.10).
The stress tensor t' is given by
Ao AWM . sy OW’
T Clla + l?a +Ha +}L}\.A[ (}"k_i_}“l) aI]+
+ 20 A A aw :

> ov ow : dw ou dv
23 __ o L o LB B B T AT (TSR
T _'CH( aZ + ay >) T Céi.y( ax + az )7 T c(;b‘(ay + ax) (2 3 3)
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where the constant coefficients ¢;; are given by
i = — v 4 2A0% 4 2BAY (M + 2% ) 4+ 204 000 4+
4 4D A% M A (B A% ) + 4E A5 A% A
+ 4F M (M +47), (2. 3. 4)

oij = — A% 4 WAL (A — A%) + p - 2A2% Ay 4+

+ 2BA% A (A% 4+ M) (M - ) 4 2CAC 00 +

4 2D A A AT (AN A 4 AT A A A) 4

A 2800 b A 0+ M)+ BT (0% - o ) 2. 3.5)
= s PRI P py gy = = WA AP p, ey = — WAL — p. 1(2:8.6)

5

In (2. 3. 3) to (2. 3. 6) double indices are not to be summed, i, 4,/ =1, 2, 3
and iskj7k=~i. In the formulae (2.3.4) to (2.3.6) @, ¥, p are given
by (1.2.7), 4, ..., F by (1.3.10) and ¥ by (1.4.2).

If both D and D* are deformations of incompressible bodies I';=0and

ou ov dm
2 2 2 ___ [5
WA =1, ot gt =0. @37

In this case the components of the stress tensor t’J reduce to

ity bo Mg B 4 o B0, o [OW 4 ol gy OW
Y +a11 aX +alz ay +al:1 az+2}"1 aIl (A‘J+7Lk) aIZ a(238)

where
wi = — 2p 4+ 2% [A + B (X 4 2%)' 4 2F (XY 4+ 2%)],
aij = a5 = 20% A% [W 4+ A+ B (M + Vi) (A% 4 M) +
4+ F (A% 4 A5 4 20%)].  (2.8.9)
In (2. 3. 8) and (2. 3. 9) repeated indices are not to summed and i=%j=,k1.

The remaining stress components are given by the last three of (2.3.3)
and (2. 3. 6).

2. 4. Extension of an almost homogeneous circular cylinder

We shall now apply the results of the Section 2.1 to 2.3 to an
incompressible right circular cylinder with axis Ox,. Though in this case

the equations of equilibrium are reduced to a simpler form, their solution
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does not seem to be feasible in general. In order to obtain a solution
we assume a simpler form for the perturbation of the strain-energy
function and consider the case in which this perturbation depends
on I,, I, and one of the curvilinear coordinates, ¥,.

As in the preceding Section we refer the undeformed body B, and
the first deformed body B to rectangular cartesian coordinates (x,, %,, x,)
and (x, ¥, 2) respectively, both systems having the same axes, and take
the moving coordinates & to coincide with («, y, z). The undeformed
body B, is an incompressible right circular cylinder with axis x,. The
deformation D(B,, B, W) is a uniform extension of the type described
in Section 1.4 and (2.1.2) are valid. We also assume that the deformed
bodies B and B’ are in equilibrium and free of body forces. Finally,
that the perturbation of the strain-energy function and the extension
ratios are

W = W' (I, I,, &), A =1, =1, Ay = n. (2.4.1)

As boundary conditions we assume that B’ is in equilibrium under
the action of surface forces applied on its end surfaces only.

With the above assumptions the incompressibility conditions (2. 3. 7)
take the form

- ou ov o
Mp=1, % + oy —+ E = 0. (2.4.2)

The stress tensor t¥ for the deformation D(B., B, W) is given by
(1.4.2) and from the equations of equilibrium we see that p is constant.
Hence we can specify the value of p and write

11

T o tﬂl —_— O’ t33 = (@ + ‘q]k‘l) (Mz___ }\‘2), T12 p— t?3 p— T:” — 0’
p = — QA — WA (A + ). (2. 4. 3)

These relations and (1.2.6) give the following components of the sur-
face force for the original deformation

curved surface of B: Rl P ()

¥, = const. : P'=P" =0, PP=1"=(u*—21)(® +W¥1). (2.4.4)
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The formulae (2. 3. 6), (2.3.9) and (2. 4. 1) give the coefficients

@y =0y =—2p+ 2 [A+BQA +u)' +2F (' +u’)],
g = — 2p + 2u° (A +4BA' - 4F1),

Gy =ty = 20 [W A A+ B+ W) + 2B 4w
Uy = Gy = Oy, = 0, = 20°p* [P A +2BA* (A" %) + F(3A* 4-u)]
c“:C“:__.lp)ﬁM?_p’ e = — PA* — py (245)

and if we write

oW’

st aw‘]=f(&s), 2u? [ -+ 24* 2L, = h(d,), (2.4.6)

2 2 2
2) 1, (W —+n )—aI,

the components of the stress tensor t'i are

" du

e 4 oy S +a,,g—‘;+an%—‘;’——l—f(Z),

v? = p + al,%{u——l- a“g—;—{- a,;;%(;——i'f(z) )

ey, el bl Wiy

=gy (—gl F 3—‘;’) At (%ﬁ% + ?a_u>
—— (%‘;" " g_:’{). (2.4.7)

In the above expressions the stress tensor is referred to the curvilinear
coordinates ¥; . By use of (1.4.5) we now refer v’ to the rectangular
coordinates y; the axes of which coincide with the axes (x, vy, z) and we
denote its new components by ¢!/ where

t'“ . 't'“ , t/zz . t/iz’ t/33 — 1,/3.7+ 2133 dw ;
0z
‘ ov 2 , Oou
t/l! — t/l! " tli.} — _':/23 + tSS az , tlai =X 31 _I__ T.‘!d az X (2' 4. 8)

The equations of equilibrium can now easily be calculated from
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(1.4.6) and (2.4.8). After simplification, using the second incompres-
sibility condition (2.4.2) and (2.4 b), they reduce to

a o’u
p+66 +q@F+mAw

ox’ oz’

. 0*w
. {0y - %y — @3 — Cﬁﬁ)m =0,

R & O
+ 14 a + CGG ay2 + (CH + T ) aZi +
d’w

+ (Cu + Gy — By — Csu)m =0,

op’ 0'w 0*w el o  dh
" + e ox’ + Cis 'a—yg +(d33+t Cus a|3) g + dz =0. (2.4.9)

Since the bodies B, and B are symmetric with respect to the Ox,
axis, p is a constant and W’ is independent of ¥, ¥, it is reasonable to
expect that, if B’ is in equilibrium under the action of external forces
symmetrical with respect to the same axis, the additional displacements
due to the perturbation of the strain-energy function will be axially
symmetric and, also, that p’" and ¢ will be independent of 9. Hence we

may tentatively assume
p’=7p'(1, 2), e =elr,z),
u=ogcos?, v=psin ¥, o =or,z), (2.4.10)

where o is the radial projection of w. Thus, if we change to cylindrical
coordinates (r, ¥, z) the equations of equilibrium are

i +k<i@>_ Lég_%>
r or T

9w , dh
i 2

6(0 1 ow
( T or

9 , o , 9o _
+ L+ 5-=0, @4n)

where for convenience we have written

k = a, — 0,3 + 2¢4 — 4y, l=c, 4",
== o 33
m = Cy , e ag, T (2.4.12)



ZYNEAPIA TH2X 15 IOYNIOY 1967 345

One particular integral of (2.4.11) is
p" = — h(z), o= o= 0, (2.4.13)
hence (2.4.13) plus any solution of

op’ 0% 1 oo 1 0
r +k(ar2 “—“?@>+1’a7—0’

r Or
ap’ 0w 1 dw ’w
?E +m<ar2 +—I‘— 61‘>+n azz—oy
S8 4 8 g g (2. 4. 14)

ar s 0z
is a solution of (2.4.11).

The system (2.4.14) is a particular case of a more general system
the solution of which is given by Wilkes [7]. It can be verified that
(2.4.14) has solutions of the form
o=1M(t)cosvez, w=1M(r)sinvez, p =M (r)cosv.z (2.4.15)
where % is not to be summed and the functions fi(") (r) are given by
£09(r)= A W1, (kv 1) + A, (k,vs 1),
£,09(r) = — k,A,™] (k, v 1) — k, A, (k, v 1),
£,09(r) =k, v A @ (n—mk ) (ki 1) + k,va A, (n—mk,") [ (k,v« 1), (2.4.16)

where A,®, A® v, are arbitrary constants, k,*> and k,’ the roots of

mg — (n-+k)C+1=0 (2.4.17)

and I(t), I,(r) the modified Bessel functions of the first kind given by
- T & ()

L = Z = L) = Z fieFm1 e,

After a comnsiderable amount of algebra it can be proved that the
solution of (2.4. 11) which satisfies the boundary conditions is

e ﬁl [A Coff (k, —ul—n—r> -+ AT, (k,—‘%r)}cos}{l—nz,

0 = £, [ amon (i 4 c) a1, A oin 3,

i Sl ao+§l»[kA(“) n— mk,! Io<k1 )
=+ k,A,®(n —mk,") I ( r)J ——z (2. 4.19)
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where

=_§ cos z)d, n=01,2,.

o - S g oW’ , OW’
= nmn
= 5o+ Z acos |z, (2. 4. 20)
the constants 4 are given by
Al(n) = — On (kzz + 1) I'o (nrz) An_] )
A" = o, (k24 1) T, (nr,) ALY, fa = ko nr, /1
n 4 "
A = T [Bl 1) L (ar) T (nr.) —v (k,*+ DT, (ar,) T, (nr,)] +
+ ’2:i (kiz —k,’) I, (ar,) I'; (mry)
0
B = Ryletyy + mgp=p o8 — ¢y — Doy, =€ k%),
Y = ky(a,, + Olgs —+ 2 — 1By - Oy kzg) , (2.4.21)

and [, r, is the length and radius respectively of the cylinder B.

It can also be proved that the resultant force (Yi) acting on
the end surface of the second deformed body B’ and referred to
the y; - axes is given by

iy [0, 0, nr,* " + €2 S F(r) rer (2. 4. 22)
where .
1 @ ot
F(I‘) === _E_ 27 +u§1 (_l)u [fa(u) (1‘) + (a:m — O3 + tﬂa) '1_ fz(r')(r)} ’
— . (2. 4.23)

1

Thus, the resultant force equals the resultant force acting on the end
surface of the first deformed body B plus a small force parallel to the
axis of the cylinder and the magnitude of which is of the order of e.
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NEPIABYTIZE

Adyo tiic pi) yeommxdtntog t@v oyetndv Swagogundv EEwcwosmv, 6 Got-
Yuog tdv meoPAnudrev peydiov Ehactixdv magapogedoewy €lg T Gmoio Fye
dod} dxoiPiic Adoig elvan mold meguwoiopévog. Al mhelotar tdv Adoewv adrdv
neQuyedgovrar V0 t@v GREEN xai ZERNA [1] xai GREEN »ai ADKINS [2]
ol 6motor Gvogéovy Emiong ol tag Goyurag mnyds. “Eteoun Mosig elvar duvarov
va evoedolv, Eav Oexdduev eidixdg dmhovotrégog pogpdas S v ocvvdormowy
ghaotinol duvapxol. "AAAG mOAV ovyvd, xal magd v dmhovorevewv tavtny,
ai EEomoeg magauévovy dvemtivror. Aud tov AGyov adtov onmuavtinov Eviiagégov
Exev yevvmdf meol Ty avdnrvEly mpooeyyiotin®y pnedddwv xadoc xai pedédov
nagadldEenc. Obtw, éni magadeiypat, didpogor Egevvnral, mwodkdv tdv Gmolwy
ol Zoyacion meuyedgpovran gic 10 (2], &ouv xonowwonowioer pedédovg Sradoyndv
moooeyyloewv' of GREEN, RIVLIN xai SHIELD [3] dvéntvEav v uédodov tdv
WrQMdV TaQuUoQEHoEmY Emmeostidepévay eig ueydlag towatagt & ADKINS [4]
nagetiionoe v duvatdtnra maparldEemg 1ol oxfuatog elte tol moQuuOQPWuUE-
vovu elte ol M0 Tiic TaQUUORPDOENS cuatog” of SPENCER xai KYAQNIEYS [5]
gyonotnomoincoy pédodov dvamtiEewg t@v AMoewv eig oeedg i Pondele yewue-
Tourfig apapéroov tol mooPAtiuatog Suvauévng va dewondf mwxods.

‘Etéoo Suvardrng mogoverdleron Sud tiig magalldfewme tiic ouvagrhicews
ghactixot duvamxol W (I; ), dmov I; elvaw ai avalloiwrol tiig mapapnoopwoeme.
To modrov té@v meoPAnudrev adrol tob eldovs megueyoden dad tol SPENCER [6]
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6 omoiog £Eftace v meolntwowy Gpoyevols oduatog. Eic v magoicav doya-
olav &Eerdletar 1 Enldoaois &ml tiig mapapoppdoewg t0d wu Gpoyevolc mogalia-
xtxob 8gov eW’(I; , ¥; ) Omov Ii xal & elvar al dvalloiotor tiic magapoopd-
0EmMG %ol Ol CUUTAQAUOQQPOVUEVAL XOUTVAGYQOUUOL GUVIETAYMEVAL GVTLOTOLYOG
xoi € elg otadepos douduls, wxdg Bv ovyngloer meog TV povdda. Aidsran
1 yeviun deoola xal 1) Epagpoyn avrilg elg v neolntwowv Smov 1 doyuxy mapa-
néopwotg eivar 6uotépoeqos didyrwotg. Téhog, #v eider magadeiynarog, dmAveran
10 wEdPAnua Evog dovpméctov dedol xuxdxod xvkivdgov ¥xovrog dfova Ox, ol
magalloaxtinov Ggov W’ = W’ (I,, I,, x,).

To Gmotédeopa tilg maguAldEemg tilg ocuvvagticews floactinol Suvapuxod
elvan v yéver plo puxoa magaudepwots fmmgootidepévy g Tv doyuunyv peydiny
naapdopooy. “Av 1 doyul) magandopwotg elvar yvmot, xal Fovv o9 xordA-
Anhov cuvograxal cuvdiixar, 1 mododetog magandopmatg dvvarar Vi mEoodoQLodT
gx tdv EEodoswv t000gomiug xal T®V oxfcE®V TAGEMY - TAQOUOQPMOEMY i GTOTOL
didovran glg v yeviulv dewolav.

At dvoldoiwtol tiig moQUU00QdoEWS, ai 0Yf0ELS TAGEWY - TOQUUOQPDCENDY
nol af 2Ewodoelg loogooniag Exouv Ty adtiv pooenv ué Exelvny tic Yemolag
WHEBDY TUQUNORPMOE®Y Emmoootideuévav sig pueydiog toradtag. Of cvvreleoral
v oxfoewv TACE®V - TUQAUOQPNDCEWY EYOUv TNV vy Hoeenv Hug Oideta
gig [6], GAha ol mobodetor door EEagrdvrar xal &% TOV CUUTOQAUOQPOVUEVMY
ROUTVAOYQAUU®DY CUVTETAYUEV V.

Ilag® 8hov 6t ol EEwodoeg loopoomiog dGmlomolotvrar onuovtinde &ov
1) Goywx1) moQapuop@®otg eival pio 6uoL6HoQEpog dyrwols xul T GTUQUUOQPMTOV
odpa eig 80F0c nurhindg wUAvdgog, 2v tovtog avtar S&v elvan duvatov vo Emi-
Mdodv elg v yevixny seolnrwowy. Awr v eligeoy AMdoswg Tivog dexdueda v
amlovotéoav woopny W’ = W’ (I,, 1,, x,) 100 magarlaxtinod Sgov tiig ouvoe-
toewg Elaotinol Suvapunod. ‘Ymo adrdg tdg mooimodéoec mooodiogileTar

1| mododetog maQandeEwalg.



