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MAOHMATIKA.— Generalized structure sheaf envelopes of topolo-
gical function algebra spaces, by Anastasios Mallios*. >Avexor-

vardn Hmo tov Axadnuairotd %. Pidwvoe Baothelov.

1. Introduction. The purpose of the present note is to give detai-
led information concerning some earlier results of this author, as well
as a complete proof of the main theorem included herewith, an early
announcement of which has been given in Ref. [10]. At the same time,
the said theorem constitutes the first systematic account towards an
«abstract complex analytic space theory» within the context of topologi-
cal algebra sheaves [8], the main motivation of the latter notion being
so far the standard theory of analytic functions of several complex
variables. An analogous study, although in another setting, has already
begun by C. E. Rickart (cf., for instance, {12]), and besides another
treatment, more contiguous to the present «sheaf-theoretic» context,
however in a rather implicit way, has been recently given by R. M. Brooks
[2]. In this respect, cf. also the recent work of D. S. Kim [5].

2. Preliminaries. We first recall from [10] (cf. also [8]) the notion
of an (abstract) topological algebra space. By this we mean a pair (X, 4)
consisting of a Hausdorff topological space X and a topological algebra
sheaf A over X [8]. In case 4 is a subsheaf of the sheaf C of germs of
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Yy cuvaptnolax®dy dAyeBpdv. Mathematical Institute, University of Athens
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(complex-valued) continuous functions on X, we shall have, in particular,
a topological function algebra space. Notice that we do not require in this
latter case any special restriction, concerning the topology of the parti-
cular section (topological function) algebras under consideration.

Now, given a topological algebra space (X, A4), its structure sheaf
envelope H (X) is defined by the relation :

2. 1) H(X): = M(T(X, 4)),

i.e. as the spectrum of the topological algebra T'(X, 4). of the global
sections of 4 over X.

The preceding definition is in agreement with recent training,
within the context of complex analytic space theory, since for the parti-
cular case of such a space (X, O), one defines the envelope of holomorphy
of X, as the spectrum of the respective topological algebra I'(X, O), an
idea which goes back explicitly for arbitrary Riemann domains at least
to H. Rossi [13]. (For more recent developments in this concern, cf. for
instance [4], as well as [15]).

Now, for purposes of applications in representation theory of topo-
logical algebras, and in particular of topological function algebras (cf.,
for instanse, [11]), it is of a special interest to consider that, which might
be called the generalized structure sheaf envelope of a given topological
algebra space (X, A), in analogy with the case of generalized spectra of
topological algebras (cf. [9] and [10]), i.e. one has by definition:

2. 2) H(X,F): = Hom: (I' (X, 4), F),

where by the second member of the preceding relation we mean the gene-
ralized spectrum of the topological algebra I'(X, 4), with respect to a
given topological algebra F [9].

On the other hand, in view of applications to vector-valued func-
tions, one is also led to consider tensor products of topological algebra
spaces. For simplicity, we shall consider in particular the case that the
latter spaces are over the same topological space X.

Thus, given the topological algebra space (X, 4) its «vectorization»
with respect to a given topological algebra E, will be the space (X, 4 tE),
where the (topological algebra) sheaf AtE is defined by the lemma
which follows. Now, for technical reasons concerning topological tensor
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products, it will be more convenient to assume the topological algebras
involved to be locally convex ones. But, we shall have first to fix our
terminology concerning the formulation of Lemma 2. 1 below:

Given the locally convex (topological vector) spaces E and F, one
has the following (canonical) exact sequence

(2. 3) 0—>E®F > (F.,E),

where &£ (E., F) denotes the space of continuous linear maps of F (: the
weak topological dual of F) into E. In case E and F are, in particular,
locally convex algebras, by a compatible topology on E®F we mean a
locally convex algebra topology t on E® F, which is induced on the latter
algebra by the following topological version of (2. 3)

(2. 4) U»E@F—>ggT(F's,E),

with S>s. One may think, for instance, of T as the topology e of
biequicontinuous convergence and S the Mackey topology on F’, with E
a nuchear locally convex algebra [6] (cf. also Corollary 2. 1 below).

Thus, given a topological algebra space (X, 4), the contravariant
functor

(2. 5) U->T(U, 4@ E,

with US X, open, defines a presheaf of locally convex (topological)
algebras on X (cf. also [8]), where in the range of (2. ) we mean the
completion under t (as in (2. 4)) of the respective locally convex algebra.
(In this concern, we assume, unless otherwise stated, that the locally
convex topological algebras involved have (jointly) continuous multi-
plication).

Now, we denote by AtE the sheaf on X generated by the topologi-
cal algebra presheaf defined by (2. 5).

Thus, we are now in the position to state the following lemma by
which one guarantees (under certain conditions; cf. Corollary 2. 1) that
the presheaf defined by (2. D) is actually a sheaf: That is, we first have.

2. 1. Lemma. Let (X, A) be a topological algebra space and E a locally
convex algebra. Then, denoting by I'(U, AtE) the algebra of local sections
over an open set US X of the sheaf AvE generated by the presheaf
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(2.6) {P(U,A)@E.-ng, open},
one has the relation :
(2.7) I'(U, ATE) = I’(U,A)@E,

within a bijection, for every open set UZ X.

Proof: (A la Bungart [3]). Without loss of generality we may take
U =X, and let, for every open UES X,
(2. 8) by : T (X, 4) > I'(U, 4)
be the (canonical) restriction map. Then, by definition of the sheaf AtE
one gets a natural map

(2.9) p:I‘(X,A)G:)E——)F(X,AtE),

which is an algebra homomorphism. We shall show that the map p is a
bijection : Indeed, let fET (X, 4)®E < (by (2.4)) Lr(Es, ['(X, 4)),
with p(f) = 0. Hence, by taking an_o>pen basis U of X one obtains
Oy of =0, for every open set UelU, i.e. for every x’ €E’, one has
(Oy o f) (x*) =0y (£(x")) =0, for every U U, and hence f(x’)=0, for
every x'€E’) so that £=0, i.e. the map ¢ is I— 1. On the other hand,
taking an element fEI'(X, AtE), there exists an open basis U of X
such that, for every U€ U, one has f|y = fy, where

fv €T (U, 4) ®E S Lr (Es, T(U, 4)).

Moreover, for any U, V€U with VE U, one obtains Oyyo fy = fyv = flv,‘
so that the family (fv),¢, defines an element g in the domain of p,
whose image under p is obviously f, that is p is also an onto map, and
this finishes the proof of the lemma. &

The preceding provides also a stengthening, for the case considered
herewith, of a similar result of I.. Bungart (cf. [3; p. 328, Proposition 9. 2,
and its Corollary]), which also was the motivation to the present setting.
We could continue the argument within the context of the preceding
lemma, however for simplicity’s sake we restrict ourselves to the parti-
cular case described by the following Corollary 2. 1.

Thus, suppose that in the exact sequence (2. 4), one has T =e, the
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topology of biequicontinuous convergence, S =rt, the Mackey topology
on F’, so that if, moreover E is a complete nulear locally convex algebra

and F complete, one has the following (topological) exact sequence:
2. 10) 0>E®F > &, (F., E)> 0,

with EQF = E®F a complete locally convex algebra.

In particular, the following corollary is now an immediate conse-
quence of the preceding Lemma 2.1, so that we may omit the details of
the proof. That is, we have.

2.1. Corollary. Let (X, A) be a topological algebra space such that
the respective local sections define complete, nuclear locally convex algebras,
and let E be a complete locally convex algebra. Then, the sheaf AeE generated
by the presheaf

(2. 11) {P(U, 4)®E: US X, open}

is such that one has the relation

(2. 12) (U, 4:E) = I'(U, 4)®E,
e

within an algebraic isomorphism, for every open set US X. &

Now, by the relation (2.12), we may consider the sheaf A<¢E of the
preceding corollary as a sheaf, whose local sections define topological
algebras, by considering (2. 12) as a topological isomorphism, so that one
actually obtains a topological algebra sheaf in the sense of Ref. [8] (cf. also
[3; p. 328, Corollary 9. 3]).

We finally note that a more general formulation of the above Corol-
lary 2.1 can also be given, within the context of Ref. [8; p. 218, Theo-
rem 2. 1], but we shall leave it for another treatment within a different
more natural setting.

3. The main theorem. We first comment on the terminology
applied in the formulation of the next theorem.

Thus, given a topological algebra space (X, 4), we shall say that a
subset S of X is A -convex whenever one has the relation

(3. 1) M(T'(S,4)) =S,
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within a homeomorphism, where S carries the relative topology of X
and the first member of (3.1) denotes the spectrum of the topological
algebra I' (S, 4). In this concern, we recall that the topology of the latter
algebra is defined by the relation

(3.2) 'S, 4) = 1lim I'(U, 4),
>

u2s

where, by the second member of (3.2), one means the inductive limit
(locally convex) topological algebra (with (jointly) continuous multiplica-
tion) defined by a fundamental system of open neighborhoods U of S in X.

In particular, one has the relation (3. 1) above in case of a Stein
manifold (X, O) and a compact holomorpically convex (i.e. O-convex)
subset S of X. Thus, motivated by this fundamental example, we shall
also call the first member of (3.1) the structure sheaf envelope (or the
A - convex hull) of S in X, with respect to the topological algebra space
(X, 4) under consideration.

Finally, by a central morphism between two unital algebras E and F
we shall mean an algebra homomorphism h:E—>F such that its image
is a central subalgebra of F, i.e. Im (h)EF has a trivial center in F,
which means that the latter is equal to C.1r =2 ¢ (: the field of complex
numbers), where 1g denotes the unit element in F. In case the algebras
involved are topological, by a morphism between two of them, we always
mean a continuous one. For the rest of the terminology applied in the
sequel, we refer to Ref. [10].

We are now in the position to state our main result, which also was
the ultimate goal of the present note. For clarity’s sake its formulation
is given within the context of the preceding Corollary 2.1, however a
more general statement in the framework of Lemma 2.1 could also be
considered. Thus, we now have the following.

3.1. Theorem. Let (X, A) be a topological function algebra space
whose local sections determine unital, complete, nuclear locally convex algebras,
having locally equicontinuous generalized spectra, with respect to a unital com-
plete topological algebra F. Moreover, let E be a unital, complete locally convex
algebra with a locally equicontinuous generalized spectrum with respect to F,
and finally let S be an A -convex subset of X.
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Then, every central morphism h € Hom (I'(S, A¢E), F) can uniquely be
expressed in the form
(3.3) h = 000z,
where ¢ € Hom (E, F) and 0x is the image of a point x € S under the gene-
ralized Dirac transform
(3.4) 6:5—> Homs (I'(S, A¢E), E ).

Moreover, ¢ is also a central morphism. Finally, by applying the rela-
tion (3. 3) above, one obtains that the map
(3. 6) y: Homs (' (S, A¢E), F) = Homs (E,F) X S

defines a homeomorphism onto its range.

Proof : By (3.2) one has the relation
(3. 6) I'(S, AeE) = lim I'(U, A<E),
-
=1
where U ranges over a fundamental system of open neighborhoods of S

in X. Hence, one obtains

Hom; (I' (S, A€E), F) = Hom, (lim I'(U, A< E), F)
-

UiDis

— (by Corollary 2.1) Homs, (lim (T'(U, 4) ® E), F),
— €

UDSs

(3.7)

so that, by Ref. [10; Part I, rel. (3.13)], every element h in the first
term of the preceding relations (3. 7) gives rise to a uniquely defined pair

(3. 8) (e, ) € Homs (E, F) X Hom, (T'(S, 4), F),

with h = ¢ ® ¢. Now, since by hypothesis h is a central morphism, one
concludes, by Ref. [10; Part I, Theorem 3.2; cf., in particular, the
rel. (3. 18)], that

(3.9) Im(¢) S Im(h) ~ (Im(h))' = C. s

(where the «prime» in the last relation means the commutant subalgebra

of Im(h) in F). Hence (ibidem; rel. (3.16) and (3.19)), the morphism
¢ € Hom (T' (S, 4), F) is of the form

(3. 10) ¢ =121®lr,

with y € M(T'(S, 4)), so that by the hypothesis for S, y is uniquely
ITAA 1974
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determined by a point x€S. Thus, by [10; Part I, rel. (3.13)] and the
preceding, one gets a map y:h —> (p, ), as in the rel. (3. 5) in the sta-
tement of the theorem, which is a homeomorphism onto its range, defi-
ned by (3.5), as one concludes by the comments following the rel. (3.13)
in Ref. [10]. Moreover, the map p € Hom (E, F) is also a central mor-
phism by [10; Part I, Theorem 3.2]. Finally, concerning the relation
(3.3), where dx is given by (3.4), in connection with the map (3.5), one
obtains the desired result as a consequence of the following Lemma 3.1,
and this will complete the proof of the theorem. N

That is, we also have.

3.1. Lemma. With the hypothesis of the preceding Theorem 3.1, and

the terminology applied therein, one concludes that : for every (section)
—>

(3. 11) feTI(S, AcE),
the following relation is valid

—> —>
(3.12) h(f) =el(f(x)),

where the pair (o, x) is uniquely defined by (3.5) for any given central mor-
phism h & Hom (I'(S, A¢E), F), so that one actually obtains :

with the map Ox given by (3.4).

> A
Proof: Suppose that we have an element f €I'(U, 4¢E) =T'(U, 4)® E

(Corollary 2.1), with U2S, open which is a decomposable tensor, i.e.
—> -> —
assume that f = g® a, with g €I'(U, 4) and « € E. Now, for every

central morphism h, as in Theorem 3.1, one has h=p® ¢, where the
pair (¢, p) is defined by (3.8) and the map o is given by (3. 10). Hence,

-
concerning the particular f considered, one obtains:

- > —> —
h(f) = (r®p) (g®@a) = ¢(g) - p(a) = x(g) - 15 p(a) =
— — > —
=y(g) ela) = g) pla) = p(g®)a) = p(f(x)),

i. e. the relation (3. 12), so that one actually gets

—> —> —>
h(f) = p(3x(f)) = (p°ds) (f),




SYNEAPIA THE 13 IOYNIOY 1974 381

where 0x is defined by (3.4) for the given x &S, namely one has the

—
relation (3.13), for f as above. Now, the general case follows immedia-
tely by continuity and linearity, and this finishes the proof of the lemma.®

A form of the preceding results for Banach algebra-valued analytic
functions defined on " has been given in Ref. [11], those considerations
being also the initial motive to the present context.

4. Applications. It is an easy consequence of the preceding argu-
mentation to realize that the whole of Section 3 in Ref. [10; Part II],
concerning results of the Runge type, is valid within the context of topo-
logical (function) algebra spaces, so that we may omit the details.

On the other hand, we can indicate, for instance, the respective
extension and improvement as well of the rel. (3.3) of that Ref. in the
sense of the following application of Corollary 2.1 above. That is,

one has:

4.1. Lemma. Let (X, A) be a topological algebra space, with X
a Hausdorff regular space whose local sections determine unital complete nuclear
locally convex algebras having locally equicontinuous spectra, and E a unital
complete locally convex algebra with a locally equicontinuous spectrum. More-
over, let K be a closed subset of X, which admits a denumerable decreasing fun-
damental system of open neighborhoods, consisting of A -convex subsets of X.
Then, concerning the spectra of the particular topological algebras considered,

one has the relation :
(4. 1) M(I'(K,A¢E)) = KXM(E),

within a homeomorphism of the topological spaces involved.

Proof : Let (Us),en be a fundamental system of neighborhoods of
K as in the statement, so that one has the relations:

4.2) K =0U,=1limU,, with M(T (U, 4)) = U, n€N,
<

n
n

within a homeomorphism of the topological spaces indicated. Now, one
has, by definition :
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I'(K, A¢E) = 1imI'(U, A¢E) = (by (4.2)) lim I'(U,, A¢E)
—

>
USK

= (Corollary 2.1) lim (I'(U,, 4) ® E),
_)

€
n

so that one obtains:

M(T (K, A¢E)) = M(n_;n(r(Un,A)cgE))
— lim M(T (U, 4) ® E) = lim (M(T (U, 4)) X M(E))
-~ e <«

n n

— (lim M (T (U., 4))) X M(E)
-

— (by (4.2)) (lim U,) X M(E) = K X M (E),
<

the equalities involved being valid within a homeomorphism of the res-
pective topological spaces, and this finishes the proof of the lemma.

In connection with the preceding lemma, we also notice that the
requirements set forth therein are obviously satisfied by a closed subset
K of a complex analytic space (X, 0), with X second countable, such
that K admits a fundamental system of open neighborhoods, which are
Stein subspaces of X. (In this concern, cf. also [7; p. 303, Theorem 2. 1]).
In particular, it follows by the preceding proof and the rel. (3.1), (3,2)
that K is 4 -convex.

We finally remark that within the preceding framework it seems
to fit more naturally results referring to «infinite - dimensional holo-
morphy», where the underlying space X is no more locally compact
(cf. also the relevant comments in Ref. [12]), and besides the topological
algebras involved are not Fréchet ones or not even barrelled (cf., for
instance, Ref. [1; § 5, Theorem 1]).

On the other hand, the same considerations included herewith,
emphasize also the role, which the topological algebra spectrum functor has
in a similar context concerning complex analytic spaces in a finite or
infinite number of dimensions. In this respect, cf. also the recent work
of M. Schottenloher [14].
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NEPIAHYIZX

“Ev Cevyog (X, A) dmorelovpevov ano Eva tomoroywrov ydeov (Hausdorff)
X xal ptav déounv (sheaf) tomohroywx@v dryefodv [8], tdv 6moiwv ta crovyeia
elvan 18intéowg ovveyeis pryadwwal ovvagrioelg &mi tol X, xaleitar y@pog Tomo-
Loy ovvaptnoaxdy alyefodv (topological function algebra space). Kara
tabta, £xouev Vo dgunonuévny Eroywy 10 mAaicov tiig Yewolag @V myadixdv
avalvtin®v xoewv, 1 omoto GroteAel xai v Pacitxnv dpoounv Sua tog Exteder-
wévag oxépelg €ig v magovoav foyaciav.

Ot moagéyouev wiav ocvstnuatxiy épaguoynyv tiig évvolag t@v deopdv
tonoloyu®v alyefodv (avtédt), mooxrewnévou va Adfouev Eva yevixevuévov timov,
dtdovra v «Irnv dhopogiag» (: Funv Sowuxiic déoung) Evog xararliilov Hmo-
ouvolov elg Eva ydoov, dg avorépm (moPA. tag oxfoeic (3.3) »al (3.12) &ic ta
TEONYOUUEVQ).

Ta davoréom Enexteivovy, did tv Yemgovpévny megintwowy, v xhacoiuny
gvvotav tiic $xng olopogglag (envelope of holomorphy) &vog vmoovvérov pudc
wyadixil dvalvtxdic morhanddinrog (X, 0), 1 6mola Svvarar vo 6oLodfi péow
t0l dopatog tiig Gvriotoiyov tomoroyiniic dAyéBeag I' (X, O), 1o 6moiov xal Hmo-
detnvier éniong uiav Paownv Epapuoyny thg tedevtatag 8vvotag (oxstinde moPA.
gntong [4], [2], »udog xai [12], [14]).
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AaBov tov Adyov 6 ‘Axadnuairog x. PiAwv Bacideiov eine ta £Eiic:
Kvowe Ildedpe,

*Eoyactav, cvvretayuévny dyyiotl, tod taxtixod xadnynrod tod Ilavemi-
otnuiov "Adnvédv x. *Avactaciov MdAlov, Exo v Tpiv v Gvaxolvaow Eig
v "Axadnuioav CA¥nvdv, Eoyactav Exoveav tov ovumAnowuévov tivhov «I'ewi-
revpévor dMixow () xadipuara) Sowndv deopdv, OOV TOTOAOYLX®V GUVOQTNOLO-
#®@v *Alyefodv».

Kaloluev ydoov tomoloyux®dv cuvaptnoiox®dv “Adlyefodv xdde Ledyog dmo-
tehodpevov Gno Eva tomohoywdv ydeov Hausdorff xai dmd piav déoumv romoho-
@y *Alyefodv, tdv 6molwv ta otoxela elvar, (datéomg, ouveXEls mLyadixal
oUVOQTHOELS &l ToD (¢ dve tomoloyixod ymeov. Ofrw mwg Exouev, vmo dgnen-
uévny pogeiv, 1o mhatlowov tiic dewolag tdY wyaddyv dvolvtixdv yoewv, dew-



SYNEAPIA THZ 13 IOYNIOY 1974 385

olag dmotelovong, xata tOv cvyyoagéa, tov facixov Adyov €€ ov dgwenidn otrog
S v ovyyoapnv tiig maEovong GvaxoLYMOEWG.

‘O %x. MdAog mapéyer €ig v Gvaxolvooly adTNy cUGTNUOTIXNY EQUOUOYTY
g évvolag t@v deoudv tomoroyixdv *Alyefodv, né oxomov Smwg Adfy yevinev-
uévov tomov, didovra v Aeyoubvmv «Ixnv § xdAvupe Glopogeiag (envelope
of holomorphy)» # «¥unv domnils déounc», xararifhov dmocvvékov tol g
v Fewpovuévov tomoroyixod yhoov.

Kata v magatignoy 1od ovyyoapéme, to dvotéom &mextelvouy, dua v
Yewoovuévny meginrworv, thv ®hacoxnv Evvorav tiic dung 6hopoopiag Evog vmo-
ouvélov mdg myadiniig avalvtixiig modhamddinrog. “H morhamAidtng avtm fumo-
o€l va 6ptodf) néow 1ol @donarog Gvriotoixov tomoroywxfi *Alyéfoag, pdopatog
10 6moiov xai Ymodnhdvel, xatd tov cvyyeagéa, Bactxmy Epaouoynyv tiig Evvolag
e ung 6Aonoopiag.

Avd meprocotépag Aemrouegeiog, Oid TO TEQLEXOUEVOY KAl TNV YQYNOLUOTOLOV-
uévny 8@ Goohoylav, mapoméumousy tov Eviagegduevov eig ta ITpantixa tijg
>Axadnuioc.
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MAOHMATIKA.— On a problem of spectral synthesis in regular
Banach Algebras, by E. Galanis*. *Avexovdddn om0 tob *Axadn-

naixot %. Pilwvog Baothelov.

Let R be a semi-simple commutative, regular, self-adjoint Banach
algebra with unit, with Mg as carrier space. Suppose G is a compact
group, which operates continuously on Mg that is to say that for all
g € G there exists a homeomorphism

T4y : Mg = My such that
(1) TgoTh = T
(ii) T is continuous for the product topology G X Mg.

Looking at (i) we see that no confusion will arise if we write Tyx =gx
[gEG, x EMg] and we shall do this. Now suppose r&ER. We shall
define a function

rg: Mg => € by rg(x)=r(gx)

clearly r, €C(Mg) but equally clearly it is not automatic that ry ER.
Let us therefore impose the restriction ry ER for all rER, g€G.
Clearly it is of interest to consider the fixed points of R under G that
is to say to consider Ry = {rER :rg =1 for all g€ G}. R, is a Banach
algebra under the ||| norm. The maximal ideal space (carrier space)
is easily identified. Recall that the orbit of an element x € Mg is given
by O,={gx:gEG}.

By definition R, z{fe R s.t f|O, is a constant for each x}.

We can thus guess and quickly confirm (note e.g. that if fER,
and f|Ox 50 for all x then f!€R and f!|ox is constant for each
X € Mg) that the maximal ideal space Mg, of R; is Mg |~ ={Ox:xEMR,}
where ~ is the equivalence relation «belong to the same orbity. We note
that the quotient and Gelfand topologies on Mg, coincide so that no
ambiguity arises in talking about the natural topology on Mpg,. This
topology is the only one we shall consider. In particular the map
x: Mg —> Mg, , ax = O, is continuous.

* E. rAAANH, Tlepl évog mpoPAfjpatos pacputinily cvvbécews eig navovindg
*AAyéRpag Banach.
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Let R represented as an algebra of functions on its maximal ideal
space Mgr. For a closed set E = Mg we denote by
1 (E)={f€eR; {1(0)oE}
I(E) = {fER; £(0) is a neighborhood of E}.

Definitions.

A closed set E < Mg is called a set of spectral synthesis (an S - set)
for the algebra R if I, (E)=I(E).

A closed set E < Mg is called a Dithin set (a D -set), if for every
f € 1(E) there exists a sequence g, €I,(E) n =1, 2, ... such that

lim [|gaf —f||]r = 0 clearly, every D-set is an S - set.
n—- o0

In this paper we shall prove the following theorems.

Theorem 1. Suppose E is a closed subset of Mg, . Then E is of

synthesis whenever a1 (E) is.

Remark. J. E. Bjork gives in [1] a counter example which shows

that the converse is false.

Theorem 2. Suppose E is a closed subset of Mg, . Then E is Dit-
kin set whenever n—'(E) is.

Remark. We do not know if the converse of the theorem -2 is true

or false.

We define 2 mappings which by analogy with those of Herz we
call the P and M mappings.

Lemma 1. (i) If fER, then writing Mf(x) = f(xx) for all
x € Mg we have Mf ER.

(i1) If x~vy, rER then fr(gx) du(g) = [r(gy) du(g) (where u is
a Haar measure on G) so that P,(mwx) = Ir(gx) du(g) is well defined.

(iii) Taking P, as in (ii) we have P, E R;.

(iv) If f;,ERy, fER we have P (f;f) = f;Pf.

Proof : (i) Follows from the definition of R;.
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(ii)) We have x =hy for some h € G and so
Jt(gx) du(g) = fr(ghy) du(g) = Sr(gy) du(g) (since is right invariant).

(iii) Observe that by elementary results on integration in Banach
algebras f =J’rg du(g) and rg, — r, whenever g.—>g and by (ii) f is
constant in orbits. (This is where we need the conditions ry € R for
all rER, g&0G).

(iv) Obvious from the definition.

Taking P and M as above we thus have mappings M:R; —> R,
P:R —>R;.

Lemma 2. (v) M is an isometry
(vi) 1P
(vii) PoM = I0g,

Proof : (v) Is obvious.

(vi) 1 ez du(e)ll < Sllrelix du(e) = Siirllr du(g) = lirllx. So that
NPrlle, <Iirllk.

(vii) (P o M(r)) (wx) = fr(7(gx)) du(g) = fr(xx) du(g) = r(mx),
for all r € Ry, X € Mg, .

The key property of P is that it is local in the following sence.

Lemma 3. If r R then supp (P))= ;(supp r).

Proof: Suppose Q is an open set in R then gQ is open (since Ty is
an homeomorphism) and so {x IX~y, VYE Q} = UgQ is open. Thus P
is an open mapping. Pt

The set x (supp r) is closed in Mg ~ and given any x & x (supp 1)
we can find an open neighborhood V of x with V ~x(suppr) = &.
Suppose ny €.V Then ny & x (suppr) i.e. y 4+ x for all x Esuppr in
other words ry(y) =r(gy) =0 for all g€ G. In particular P, (ny) =
— [re(y) du(g) = 0. Then lemma follows.

Proof of Theorem 1. Suppose now f € I(E). Then Mf € I(a'(E)).
Since n—! (E) is of synthesis we can find g;, gs, ... €R such that

() g € Lo (' (E))
(i) g — Mfllx =30
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Let us write f, = Pg, so that f, ER;. By lemma 2 we know (i)’ f. is zero
in a neighborhood of E = ! (E) and by lemma 2 (ii)’ ||f,—f|g, =
= ||Pgn — PM{ ||g, < |lgn — Mi]lr == 0. This completes the proof.

n o)

Proof of Theorem 2. Let f € I(E). Then Mf € I(«~'(E)) and the-
refore since n—!(E) is Ditkin, there exists a sequence (g.) € I, (=~ (E)),

n=1,2 ... Such that
lgan Mf — Mf ||z n‘_-_-;og)
Therefore

1P (g MI) — P (M) 15, 73 0

which by (iv) of lemma 1 and (vii) of lemma 2 is equivalent to

H(Pgn)f-f”nzog-

But lemma 3 implies Pg, € I, (E) and this completes the proof.

NEPIAHVYIZ

OcmooTuey piav futamAiv, avripetadetrindyv, opadiv xai adroovluyi) dhye-
Boav tol Banach R, tig 6molag 6 y®0og 1@V peyiorwv idewddv Eotw Mk . “Yamo-
Yéropev GtL 1) ovumoyng ouag G 080G ovvexdg &mi thg R xat Gollopev v
ovvdomowv 1g: Mr—> C S tig oyfoeng 1y (x) = r(gx) [gEG, x € Mg].

Ocwootney v dAyefoav Ry = {r ER:r,=1, VgeG }, 0 Omolow pé
mv voou thg R elvar éalong pia dhyefoa 1o Banach, pé ydoov peylotov idew-
ddv, Eotw Mg, . Oeswoluev v cuveyi] dmexovioy % Mg > Mg,, 6otCouévny
e thic oyfoewg ax = Oy, bmov O = {gx 1 gE G} N tooyte tol oTOoL-
yetov x € Mg.

Eic t)v magotoav 2oyaciav dmodsixviouev Oti, v E < Mg, elvar xher-
otov vmoovvokov tot Mg, xat -l (E) eivaw dGouovixiic ouvdésews (Gvrior. Dit-

kin), téte xal 10 E elvar douoviriig ovvdéoewe (dvrior. Ditkin).
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‘O "Axadnuairog . Pldwy Bastdeiov, magovoidlmv v dvotéom dva-
®olvoolv, eime to EENC:

"Exo v ruuny  va avaxowoow elig v "Axadnuiav TAdnvdv Egyaciav,
ovvretaypévny ayyhotl, toil x. Edorpatiov Calavi, Siddurogog 10t IMavenotn-
piov Cambridge (PAyyAac) xal mpoogdrmg &xheyévrog Bmrovourot xadnymrod
tob E. M. ITohvreyveiov, &oyaciav #xovcav tov dvemrvyuévov tithov «Ilgol €vog
noofinuarog douovixiic 1 qaopatixiic ocvvdéoewe elc xavovixas Alyéfoac
Banach».

‘H &vvora ALyéBoag Banach mooéxupev, d¢g yvwotdy, dmo thv Epaguoyny
1@V Yepuehwddv oyact@v 1ot padnuariwot S. Banach eic v Svvagrnoiaxiyv
"Avdlvowv. “Qg Bdotg thg #v Adym évvolag Eyomoiuevosv ¥ Evvora Tol wetouxol
x0oov, eloaydeioa 1o 1906 and tov ['dilov nadnuatxov M. Frechet. "EE dAilov
ol perouxol ool Pepelotvrar Eml Tig Evvolag TV AEYouEvmOY OLAVUGUATIX®DY
xwowv. “Idantégwg, nalotuey eic o Madmuarixd ydeov Banach, Siavvouatinoy
10OV, mEmeQUouEYNS N U dtatdEewe, O¢ 7E0C TO oHUN TV TEAYUATLXDY 7| TdV
uyadixdv aotdudv, x@gov dia tov 6moiov ioyvovy xat’ doyag ta €ENg: Y mdoyel
LOVOGUAVTOG GAEROVLOLE, GUVTIONMS YEVIXEVUEVOY uét@ov 7 norm, tod bm’ Sy
dravvopatixol yweov, &ig 1O ovvolov TdV moaynativ®v Goududyv, amelxdviols
vy, Gote: 1) 1 elxov xdde ororyeiov Tob Savvopatinod ymEov va w) eival
agvntixn, 2) 1 elxmv otoryeiov tol #v Adyw ydoov tére xai pdvov va eivar undév,
orav 1o aoyétumbv tov eivar tO UNdevixov otoxeiov 10U dravvoparixod ydEOV,
3) N elxov 10D ywopévov tuxdviog Padpwrol Eai tuxdv otovgeiov Tol YMdEOV,
va elvan 1O ywvouevov g drohvitov tiufg 100 Patuwtod Enl v elxdva tol Yew-
povpévou otolgelov Tol; dtavvopatixot ymeov, 4) va loydy M Aeyoudvn «rorywvix
dvicotngy. To &v Adyw vyevirevuévov pérgov (norm) magéyer <«dmdotaciy» dud
xave Celyog otouyeiov (x, ) tobl davvouatizod ydeov, Exovouv tag ididtnrag :
‘H dndoracig 10b Cevyovg (x+C, v+ T), i royov T tob dravvopanxod yweov,

va elval 1) dndotactg 1ol Cevyoug (x, ) xul 1 dmdotactg tov Cevyovg (Ay, M),
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du tuyov fadpwtov A, va elvon ) amdlvtog Tl tod Al thv dmdotacty tol
Cevyoug (y, ). ITeddniov elvar Gri 6 Eyov yevirevuévov uéteov ydeog, NHumogel
va dewendf mdvrote Umo Ty dvagepdeioav Evvowav bg «ueTourdg yMdoog»  dud
v Yewendeioav dndoraciy. "Ex tdv yoomv tovtov «mhiosig» elvar Exeivor,
dua tovg 6molovg ndde axohovdia Cauchy oroyeiwv 1od ydoov elval cvyxhivovoa
elg otouyeiov tol idiov ydeov. Mée v tddtnra tol mhvigovg, dg HNV cuviixny,
npoottdepévny el tag avageodelong téccagac dud TO yevixevpévov pérpov oup-
alno®vouey toOv GoLopov tod ymeov Banach.

‘O ovyyoagetg tilg magovong dvaxowvdoewg dvaxweel amd uiav, olito Aeyo-
wévny, Nwardiiv dvrupetadenxtv, opaliv xal adroovlvyi) *Alyefoav Banach,
radmg éntong xal amd tOv ydeov @V ueylotwv adrilg idewddv. *And v “Alye-
foav adtnv poppdver ué 1o adro yevixevuévov uérgov Eréouv “AlyeBoav, dmoder-
xvvouévny éntong g “Alyefoav Banach. ‘O ovyyoagels Sempel Enerta xatrdA-
Anhov ouveyd) drewoviory Tol ydeov TdV peylotwv dewddv tiig modtng Alyé-
Poug eig tOv ydoov tdV peylotwv Wdewddv tilg devtéoac, Pdoel 8¢ tdv dedouévoy
adT®v amodewmviel Gtu xAetotOv Vmoovvodlov tob ywEov TdV neylctmv idewddv Tiic
g dvw devtéoag Adyéfoug, dvrtistougolv eig Hmoovvolov douovixiic cuvdéceme
10l dnewvovilouévou ymoov, eivar émtong dopoviriic ovviéoeme.

Aenropegeiag &mi tiig anodeikews, dg énlomg »al tijg el adtyv KonowwomoLoL-
uévnz oohoyiag, Héhew etioer 6 Evdiagpepduevos el 1 IMoaxtina tiic *Axadnuiac.



