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SUMMARY

The possibility of causing local habituation, upon immediate applica-
tion of an agent on a locus of its selective action and on an organ that
could be subject to direct comparison test, was studied experimentally. In
the literature available to us no report concerning local habituation could
be found. The site of application was cat’s conjunctiva and the agent em-
ployed physostigmine. Following the determination of the minimal dose
causing miosis, —that is, one drop of a 0.05 % physostigmine salicylate so-
lution —one drop of a 0.04 % solution had been applied on one eye for twelve
consecutive days. The twelfth day one drop of a 0.05% solution in each of
the animal’s eye were dropped. In the eye in which the drug had been ap-
plied previously the caused miosis was not intensive and its duration was
shorter compared to the normal one.

Physostigmine, in doses less than the minimal drastic dose, applied
on cat’s eye for a long period of time, has been shown to cause local ha-
bihuation.

Because of the method’s sensitivity, experimentation should be per-
formed with specific care,
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®@EQPHTIKH ®YZIKH.—Subharmonics of any order in case of non-
linear restoring force. Part 1., by Dem. G. Magiros*. *Avexoivirdn

76 tot % Bao. Alywirtov.

Introduction.
We discuss here the subharmonics of any order in the case of linear

damping, sinusoidal external force, and cubic type restoring force, with
coefficients not necessarily small. By using ideas of Van der Pol*, Mandels-

* AHM. I'. MATEIPOY, Iepi 1dv dnoxppuovindv taAavihceny oiacSAnote Tiewg.
! VAN DER PoL, Pril. Mag., 3, 1927, 65.



78 OPAKTIKA THSE AKAAHMIAS A©HNON

tam - Papalexi’, Andronow - Witt’, we get a proper transformation of the
equation, and for its «steady state» and «transient» solutions use of the
Poincaré’s method for periodic solutions is made.

The conditions for the existence of the subharmonics and their sta-
bility in a steady state are discussed by considering that of the singulari-
ties of the corresponding equation.

The formulae given here can be used for investigation of the sub-

harmonics of any order.

§ 1. The problem.

Many problems in Physics lead to the differential equation of the
form:
(1) O+ kO+c:Q+4cQ+c,Q°=Bsinnt, n=2,3,...,
where the coefficients 12, cy Eg, En, B are not necessarely small. The solu-
tion of (1) is know when the coefficients are small, but it is unknown in
case of not necessarily small coefficients.

We intend to find the solution in this last case.

§ 2. Proper transformation.

We transform (1) by taking a parameter ¢ such that:

(2) 1_<=£k, 1—2,:90,, C;—€C,, Cs=¢Csg

The result of this transformation is:
(3) Q + Q=¢i(Q, Q) + B sin nr
(3e) f(Q, Q) = —kQ +¢,0 - .0’ —¢,0*

The coefficients and ¢ in (2) are finite.

a) In case =0, the solution of (1) is:

. B A
(4) Q=xginx—yeost — 72 Sinur,
with period 2x; n# 1. The arbitrary constants x and y can be determined
by using the initial conditions of (1). x and y are the components of the
. 1 . . .

subharmonic of order -, of which r=(x*+y?)" is the amplitude. The

third part in (4) is the harmonic part of the solution due to the forcing
term of (1).

1 1,. MANDELSTAM - N. PAPALEXI, Zechn. Phys, U.S.S R., 1935, 415.
® A. ANDrONOW - A, WiITT, Arch. fiir Electrotechn., 1930.
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b) In case e+ 0, we attempt to determine a periodic solution of (3) of
the form (4), in which x and y are fonctions of & and t and such that the
limits :

(5) lim x, limy
e— 0 e— 0

are the constants of the «generating solutions in case £=0.
§ 3. Reduction to a first order system.
We take a new variable q according to:
B
(6) =0 — - sim dv.

Substituting (6) into (3) we get:

(7) q+4q = ¢fq, q)
where:
kn
(72) f(q, q) [kq +cq—cig’—eg’— 7 5 Bcosnz

B B2 S B3 0
S ok 1_ sin nv —¢, (“l__n_,)g Sin” Nt — Gy (1_n’)_“ sin” nrt
B B
— 26,77 2qsmnt—--%cg,—qusmm
2
—Hcs(l 3 g sin nr] :

Introduce into (7) new variables u, und u, defined by:

]ulzdc05t+qsint

(8)

[u2=q sint—qcost,

from which we get:
[q:u, sint—1u, cos T

(0) lci:u,cosr—}-u,sinr,
and
l = COSt
10
( ) ' = Sll’lt,

when according to (7), we have:
J.Lilzsfl(ula u,, T")
(11)

ll'lxvzefﬂ(uxy U, t)-

where:
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o (B, ws, )=Hu,, us, 1) cost
- | fa(u,, u, ©) =1f(u,. u,, ) -sint;

The function f(u,, u,, 1) is given from (7«) by using (9).

The equation (3) is replaced by the first order system (11), which
gives advantages in the analysis.
From (6) and the first of (9) we obtain:

. B .
(12) Q=u, sin t—u,cos T4 ; —; sin nr.
The expressions (4) and (12) are of the same form, then we ask for a
determination of the limits:
(5a) lim u,, lim u,
g=> @ &8— @
§ 4. Discussion of a general system.

We briefly discuss, as it is needed for our purpose here, the solution

of the general system :

u,=c¢f,(u,, u,, ©

(w)

ty =gy {u,, 4, v

111(1'0):1111:,,. u?(to):uﬂav

where the functions f, and f, are analytic in u, and u,, and periodic of
period 2x and continuous in t, hence continuous in u,, u,, v, and therefore
|f,| and |f,| have upper bounds M, and M, respectively in the domain:

(p) | u—tye, | <8, | g—tae, | <B2;, vwo2r2T,

and in this domain f, and f, are expansible as power series in (u; —1u,z,)
and (u,—u,x,) and convergent.

The number & is real. The system (11) of our problem is a special
case of the system (N).
@) The formal solution.

We want to find a solution u, and u, of the system (N) such that, if
e —> 0, u, and u, tend to the constants x and y. For ¢ # 0, u,aud u, depend

on ¢ and t, and assume that for t=r. they differ a little from x and vy,

(13) Wr,=X+E, Uyp,=y47
E and n are very small.
Take as formal solutions u, and u, of (N) the expressions:
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[ u,:Xi"’-’,—in" +e X+ ...

(14) {uz=X§°'+sX;”+€2Xf)+--'
where:
(140) Xj°’—_—x +E(g 1) X:f:y + g, vo).

The coefficients X of (14) are regular functions of x, y, & m, v if
x|, Iy, [&

B) The coeficients of the formal solution.

. |ml, l[t—ro| are less than certain constants.

By presupposing the series (14) as convergent, we can find that the
coefficients X of (14) are given by:

X" = [tdr,

X" — [ [f,ldx,

TD

X(z): tf X(l) [fl]l‘l 4 X(l) [fl]ug\ dt,
(15) 1 {:ol 1 2 J

X = [ 1% [y + X [f]u.) dr,

: T 2 g x 2 2 %
3) ; (o) e . L

i —[ Ellfx]ui i 2{3:11?1 Hl]uj Ut X;) X

il =12

The brackets indicate that the corresponding functions and their de-
rivatives are taken at u;=u,r,=x+E, Up=Uyr,=y +n. By carrying out the
integrations in the first two of (15) we find the functions X;h, X, Upon
substituting the Xf‘)X;l) into the second two of (15), the integrands become
known continuous functions of t, then Xi‘), Xf) are defined by quadratures.
With the same procedure we can find X:S), Xf’, ol
Y) Zhe convergence of the formal sotution.

To prove the convergence and to find the domain of the validity of

of the series (14), we use the «method of dominants». We can prove that

the condition for the convergence is:
T
(16) Je| < Difjs—va) ’

(16a) M>2Mi, r<m, i=1,2
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In many cases the domain of convergence of (14) is much larger than
the condition (16) shows.

The inequality (16) can be satisfied by imposing restrictions upon both
¢ and v, or by taking t arbitrarily and restricting e or by taking & arbitra-
rily and then restricting .

8§ 5. Use of the periodicity.

Take now the solution u, and u, of (N) as periodic one in v with pe-
riod 2x, that is:
(17) et O —u,(re) =0,  walto-Li®m)—atalve)=—0%

Applying this periodicity condition to the series (14) we have:

(X (o 4 27) X (e} + X7 (v + 22) =X (e} + ... =0,

(18) g a 2 .
(X (o4 20) =X (o)} + € {X (v + 200) =X ()} ... = 0.
If the Fourier series developments in t of f, and f, are:
i fy=Ao + A cost+ B;sint + ... + Amcosmt + Bmsinmt+...
1

f,=Co + C,cost + D;sint + ...+ Cmcosm t + Dmsinm<z + ...,
where the coefficients A, B, C, D are functions of: tir, =x+ &, tyr, =y + 1,
and such that the developments of (19) are convergent. By taking into ac-

count the expression of X given by (15), the conditions (18) give:

Aolx+E. y+ ) +eqi(x+E, y4+1, ©)+... =0,

(20)
Colx +E, y+m) +eq@alx +E, y+1, ) +... =0,
Provided that the jakobian of (20) is not zero, i. e.
0A, 0C,
% o
&2 ol og, 1| L
oy ou

we can solve the system (20) in £ and n interms of ¢ and to:
(22) E=tle w)y W=l wl,
with the conditions:
E=tle, ra)e=0, w=nlp.r)=0,
If the Jakobian is zero, we consider in (20) terms of 1, 2,... degree in
.

¢, that is the functions ¢,, @,, ...
From (22) and (13) we get:

' P. FATOU, Bulletin Société Math. de France, 1928 - 30, pp. 112 - I15.
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(23) u110=x+'§(8,ro)) u210:y+n(£a 1:o);
t and n are given in series in €, 1, in the interval [0,2x]. ¢ is under the

condition (16). Then is the series (14) the only unknown are the constants
x and y.

8 6. The components of the amplitude of the subharmonics. Conditions
of existence of the subharmonics.

The equations (20) must be satisfied in case: e=Et=mn=0. In this case
the equation (20) give:
(24) Aolx, y)=0, Co(x, y)=0.

The solutions (x,y) of the system (24) give the limits x and y, when
the steady state solutions of the original equation are known in the form (4).

The conditions for real intersections of the curves (24) in the
X, y-plane give the conditions of the existence of the subharmonics of our

equation (3).

S 7. The stability of the steady state subharmonics.
For the stability of the steady state subharmonics we study the sta-
bility of the singularities of the equation :

dw, _ £,
(25) du, i 2

which comes from the system (n). The difficulty is that f, and f; depend
on time t.
But by taking into account the developements of f, f, given by (19),
and that tkeir mean values with respect to lime t over the perod 2n are A,
and C, respectively, the singularities of (25) are that of the equation:
(25) j{; = %&—?y ,
then the singularities are given by the solutions (x, y) of the system (24).
According to the corresponding theory of Poincaré' and Bendixson®
the distinction between the different kinds of the singularities depends

on two numbers o, and o,, the roots of the characteristic equation:

a;—p b

(26) =0,

0y bl_Q

L H. PoinNcarg, Sur les courbes définies par une éguation différentielle. Zuwres,

Gauthier - Villars, Paris, Vol. 1892.
2 I, BENDIXSON, Acta Math., 24, 1901.
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where :
aA.o . aAQ 6Cn aCn

(26&) 0= B¢ , (X,“—W, b‘:Tx_, 00— o7

For non zero roots o, and g, of (26) the «simple singularitiess are
classified in the following classes:
I: «nodal pownts», when oy, 0., are real and of the same sign,
1I:  «saddle points», when o,, 0., are real but of opposite sign,
III:  «speral points», when o4, 0., are complex conjugates, aud
IV: «speral points or centers», when o,, 0., are pure imaginaries.
The condition of the roots being pure imaginaries, which is a neces-
sary condition for being a center, it is not a sufficient condition. There

is the Poincaré’s criterion' for distinguishing spiral from center in this case.

We define the above singularities as «sfable» or «unstables, when any
point on any integral curve moves into the said singularity or not with
increasing time t, i.e. according as the real part of the roots is negative or

positive respectively.

N

p=QOR

pi
T . Fig |

The singularities are shown in Fig. 1, where I is a «nodal stable»,
11T a «stable spirals, IV a (neutral) center, and II a «saddle point intrin-
cically unstable».

S 8. Application to the system (N).

Let us apply the previous theory in the case of the equation f, and f,
given by (11a).

The important here is to give to functions f, und f, a proper form
from which we can get the development in Fourier series. If we replace the

' J. HADAMARD, Rice Institute Pamphlet, 20, 1, 1933, 9 - 28.
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powers and products of sines and cosives of multiple angles in constructing
the functions f, and f, from the function f, we get the following results, if
were strict ourselves to the coefficients which are useful for the construction
of the functions Ao, and Co, which depend on the number n characterizing
the order of the subharmonics:

i 1 3 3 3 B
f,(u,, ws, 7)= {—71(11;—’2* Cill; + g~ Csl1 + g CsUils + 4 Co muz}‘l'
+ ...
il B
(27) +{~—2—C2Tj~mu,§cos(n—2)t+

3 B
+ %Tcgl—_ﬁ,uluagcos(n~3)r+ o

4 il 3 3 3 B?
fg(ul, u,, t): 3 C,uy — —Q—kUQ“‘s—Csu? —§ Cgului*TCg(T_n—g),u,%'F

3 B
—~— Gy (—ui tul)tcosln—3)c +...

i B |
5 Gzl COS(n——2)r+ S
/
\ 8

i "
All these are refered to any order ) of subharmonics. In a next paper
we shall apply the above theory for the subharmonics of order one third.
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