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INTRODUCTION

Pythagoras, in the 6% century B.C., first of all men asked the
fundamental question of science «what is the physical world in essence ?».
Pythagoras was also the first to answer it; «number is the essence of
the cosmos», he said. Plato, in the 4" century B. C., developed the Pytha-
gorean ideas and understood the elementary particles of matter to be
metric forms imposed on formless space .

The ideas of these thinkers were misunderstood and forgotten
until the 19t century when Riemann ® developed the geometry of a
manifold with a general metric form. In 1916 Einstein ® with general
relativity theory understood the gravitational field to be the curvature
of spacetime. However, general relativity theory, as it stood, offered
no way of understanding the rest of physics as geometry.

On the other hand in 1927, Heisenberg ® formulated the uncer-
tainty principle, later elucidated by Bohr, that founded quantum mecha-
nics and the understanding of atomic and subatomic phenomena. The
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conclusion of these and later investigations was that a physical theory
that is consistent with measurement must be probabilistic and not deter-
ministic in the configuration of the relevant physical system as speci-
fied by a set of continuous variables. The consistent theory must fur-
thermore satisfy the quantum principle, the first complete formulation
of which was given by R. P. Feynman ® by assigning probability
amplitudes to entire histories of the configuration of the physical system
described.

The above conclusions when applied to general relativity theory
show that it must be inconsistent with measurement. A consistent theory
was therefore sought. J. A. Wheeler ® realized that the dynamical
variable specifying configuration in general relativity must be the
3-geometry of space. He therefore termed general relativity theory
«classical geometrodynamics» and the theory sought «quantum geometro-
dynamics». The investigations toward realizing such a theory were then
led to first bringing the classical theory to Hamilton’s canonical form
and then using some form of correspondence of classical dynamical
variables and quantum mechanical operators to get the quantum theory.
This work was carried out chiefly® by P. A. M. Dirac, by R. Arno-
witt, S. Deser and C. W. Misner, and by B. Dewitt. However all attempts
were unsuccessful. This failure can be retraced to two basic reasons:
1) These investigators used many assumptions motivated from traditio-
nal field theory. There is a fundamental difference between field theory
and geometrodynamics ; whereas in the former case the dynamical field
developes in the fixed arena of space, in the latter case the 3-geometry
of space is itself both the dynamics and the arena. 2) All linear classical
theories give local quantum theories and all quantum field theories
known todate are of this type. Non-linear classical theories, like general
relativity theory, give however non-local quantum theories. The existing
mathematical framework was insufficient to handle such global theories.

In this paper the theory of quantum geometrodynamics is founded
on the relativity and quantum principles alone, using no additional
assumptions except that of the form of the action of general relativity.
In section (1) the physical interpretation of general relativity theory is
given. Einstein’s equations are distinguished into two sets: 1) Equa-
tions intrinsic to classical geometrodynamics, namely the dynamical
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equations that give a sequence of spacial 3-geometries, once the boundary
conditions are specified. 2) Equations that express fundamental laws of
geometrodynamics and must therefore remain valid in quantum geo-
metrodynamics. These are laws determining the way that known spacial
3-geometries are intercorresponded to form the 4-geometry of spacetime,
and the law that determines the temporal separation of known 3-geo-
metries of space. In section (2) the concept of superspace, the configu-
ration space of 3-geometries, is introduced following J. A. Wheeler ©.
Here, however, the element of distance in superspace is consistently
defined, derived from the action integral as supplemented by the inter-
correspondence conditions. The quantum principle, as first formulated
by R. P. Feynman @, is suited to geometrodynamics. In section (3) the
structure of superspace is investigated. In section (4) the absolute diffe-
rential calculus of global functionals is introduced. Finally, in section (5)
the laws intrinsic to quantum geometrodynamics are derived, expressed
by Eq. (42), a functional differential equation for the wave functional

of the geometrical world.

(1) The Relativity Principle and Classical Geometrodynamics

In this section we shall begin by briefly summarizing the conside-
rations which led Einstein® to the discovery of the theory of general
relativity and then we schall proceed to give the physical interpretation
of that theory.

Consider an observer in a small laboratory anywhere in the uni-
verse. He observes the motion of objects in the laboratory and concludes
that forces are being exerted on them. These forces can be attributed
either to the action of inertia or the action of gravitation or a combina-
tion of the two. In the former case he concludes that the system is
being accelerated and in the latter case that it is not. Thus the observer
can never tell the state of motion of the laboratory from observations
performed on that laboratory alone. Thus the laws of physics must be
the same in two reference frames with respect to which the laboratory
has two arbitrarily different states of motion. The above considerations
lead to the following statement which constitutes the relativity principle:

I. The laws of physics including gravitation remain unchanged

under general coordinate transformations in spacetime.
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Consider now a laboratory freely falling under the action of a
gravitational field. According to the previous considerations, the physics
in that laborarory go in the same way as in a laboratory moving with no
acceleration in the absense of gravitational fields. The reference frames
of both laboratories will be called «inertial» since no forces are present
in either frame. For the latter laboratory, the statement «moving with
no acceleration», in view of the relativity principle, must be given a
meaning that is invariant under general codrdinate transformations in
the Minkowski spacetime that is relevant in that case. Such a meaning
can only be that given by the statement «following a geodesic of the
spacetime» The equivalence of the frames of the two laboratories requires
the previous statement also to hold true in the former case of the labo-
ratory freely falling in the gravitational field. But in that case, this geo-
desic, being different from an ordinary straight line, does not belong to
the flat Minkowski spacetime, but rather to a spacetime endowed with
curvature. This curvature however is revealed not through observations
of the motion of objects in one freely falling laboratory-local inertial
frame-, but rather through the correlation of the motions, or in other
words through the observation of the geodesic deviation of two nearby
local inertial frames. Thus gravitation manifests itself as the curvature
of the spacetime continuum.

The laws determining the metric structure of classical spacetime
were discovered by Einstein® by imposing, in addition to the relativity
principle, the following hypotheses on the form of these laws, motivated
from the analog of the Newtonian theory of gravitation.

1. They must be derivable from a variational principle.

2. They must contain no differential coefficients of the metric

components @g,, higher than the second.

3. They must be linear in these second differential coefficients.

The only laws satisfying the above conditions were found to be

WG = 0, 1

1 .
where WGHW = WRw — ?“’g"" @WR, the WR" being the components

of the (contravariant) Ricci curvature tensor and @R being the scalar
curvature invariant™®R%,, all quantities refering to the 4-dimensional
spacetime continuum.
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The above 10 equations satisfy 4 identities, the so-called Bianchi
identities

BDGH - v = 0. (2)

The classical laws expressed by Eq. (1) represent therefore 6 inde-

pendent differential conditions on the 6 independent metric components

that give the 4-geometry of the classical spacetime. They can be derived

by extremizing the action
8= s | R V=g ax ®)

with respect to the metric components (g, *

To give the physical interpretation of these equations we have
to look at the way that the relevant quantities are measured. Cover the
space densely with timelike inertial observers. Let these observers have
an arbitrary but continuous velocity distribution. Continuity implies that
there exists a global frame of reference in which the velocities of all the
observers are zero. In this «global inertial frame» there is also a global
standard of simultaneity. Only in this frame the coordinate x‘ has the
psysical significance of being, for every point in the frame, the age of
an observer at rest at that point in the frame. It can be prooved that for
a general (non-flat) spacetime only omne such frame exists. Given the
4-geometry of spacetime, the element of proper distance that belongs
to it is interpreted physically as being the proper time interval between
events happenning to nearby observers at nearby ages in the prescribed
frame :

Wds* = — d1* + gma (*x, 7) dx™ dx"; (4)
where dx' is the difference in the frame labels of the observers and dr
is their age difference. In accordance with our prescribed theme we
have to look at how this 4 -geometry is measured.

The observers measure their relative distances when they are all
of a certain age t. Such a set of measurements is tacitly assumed in
classical physics to give a unique set of real numbers that constitutes a
unique 3-geometry of space. The measurements are then repeated at
constant age intervals dtv and a sequence of spacial 3-geometries is
obtained. In the limit of infinitesimal dr, can we reconstruct, from the
data thus obtained, the 4 - geometry of spacetime? In the spacetime we
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are seeking to construct, each 3-geometry of the aforementioned se-
quence must belong to a spacelike hypersurface. The world lines of the
observers must be normal to the hypersurfaces, the length of the segment
of any such world line between any two successive hypersurfaces being
equal to dr.

Make a one to one correspondence between points on each space
and its successor in the sequence. Make the correspondences in such a
way that the difference of the distance between any two nearby points
on any one space from the distance between the corresponding points on
the next space in the sequence, divided by drt, gives a bounded result.
Give the same label x* to all points belonging to different spaces that
are brought into correspondence with each other. The lines x*! = const.
that do the correspondence in this case are then, in the spacetime
wanted, the world lines of the observers that performed the measure-
ments. The element of proper distance of the spacetime thus obtained
by the given correspondence, is then given by :

Wds** = — dr* + gf (*x*, 1) dx*i dx*) (H)

The way of doing the correspondence is however not unique, since we
could have used for that purpose the lines x™ = const., where

M= fit | g, (6)

provided that the functions f' are differentiable. T'he lines x™ = const.

will then be the world lines of the measuring observers in a spacetime
obtained by the new correspondence, with element of proper distance

given by:
) ds® = — dr® + gmn (°x, 1) dxm dx® = — dt* -+ (7)
4+ gf (dx*t — v*i dr) (dx*I — v*idr)

Here we have defined v*i = dx*!/ dt, and the following relations hold

ox*t 9x*i
Zmn = oxm F=a gij

A ox*l  Qx*i dgi
dt = dx™ dx" < dtJ F Viaj F Vi

The proper distance elements of Egs. (5) and (7) belong to different

)
e
|

4-geometries. In conclusion, from a sequence of spacial 3-geometries as
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measured by the observers at constant age intervals, one can construct
not one but a whole class of 4-geometries of the spacetime. Each
member of the class is obtainable from any other member by transforma-
tions of the type given by Eq. (6). Such transformations will be called
«velocity transformations» in the following.

Let us now turn our attention back to Kinstein’s equations and
their physical interpretation. Consider first the equations G* =0 and
G' = 0, equations containig omnly first time derivatives. In the global
inertial frame the equations G* = 0 have the following form

\ii dgmn>
ijmn [ S5m0 "
G < 5 L (U (9)

" — — -
where Giime = — Vg [glg™ — (gmgin 4 gingim) /2] (10)

Let us be given a sequence of spaces with determined 3 -geometries.
We make an intercorrespondence of the spaces and form a 4 - geometry
of spacetime described by the functions g% ("x*, 1) that donot, in general,
satisfy Eq. (9). We may however perform a velocity transformation and
obtain a new 4 - geometry described by functions gi; (’x, t) that do satisfy
Eq. (9), provided that the following equations can always be satisfied

, dginn
(G*ijmn (——dT—+V*m;*n +V*n;*m> =0. (11)

S
The above equations represent 3 differential conditions on the 3 compo-
nents v*i the existence and uniqueness of the solution of which can be

prooved for a general (non - flat) spacetime. Therefore, once a sequence
of spacial 3-geometries is given from measurement, Eq. (9) gives a

unique way of making the intercorrespondence, thus forming a unique
4 - geometry. The meaning of this particular way of corresponding will
be seen in the next section.

The equation G** = 0 is partly redundant, since it can be shown ®
that if the conditions expressed by Eq. (9) are fulfiled and furthermore
the integrated condition [G*' Vg d’x =0, which is

f((;iim" ——ddg;j ——dgrm“ — RVE) d’x =0 (12)

expressed in the global inertial frame, is fulfiled, then the equation
G* =0 is identically satisfied. If a sequence of spacial 3-geometries is
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given from measurement but the temporal separations of the spaces are
left undetermined, then Eq. (12) determines these temporal separations.

The rest of Einstein’s equations, namely the equations G =0,
contain second time derivatives. These equations, in the global inertial

frame, assume the following form

ii dzgmn i dgrs dgkl 1 ( o 1 oip ) -
Hmn S I. rskl,i _— ij ij 13
- de? - i dr drt 2 e g & R)Ve, (13)
. 1 oGkl oG rsij oG skl )
rskl,ij — e 14
where @ j 3 ( ;o - . (14)

Take the covariant divergence of both sides of Eq. (13). The covariant
divergence of the left hand side is equal to the time derivative of the
expression in the left hand side of Eq. (9) and therefore it vanishes
identically if the conditions expressed by Eq. (9) are fulfiled. On the other
hand, the covariant divergence of the right hand side of Eq. (13) also
vanishes identically since that represents the Bianchi identities. There-
fore 3 of the 6 equations Eq. (13) are redundant. There remain 3 inde-
pendent differential conditions for the 3 independent metric components
of the 3-geometry of space. These are the dynamical equations of clas-
sical geometrodynamics that determine the sequence of 3-geometries

verified by the measuring observers.

(2) The Quantum Principle and the Concept of Superspace

In the previous section we assumed that measurement of the rela-
tive distances of the observers gives a unique 3-geometry of space. This
assumption is here reconsidered and found not to be correct. Not a single
3-geometry, but indenumerably many 3-geometries follow from mea-
surement. Fach alternative 3-geometry is assigned with a determined
probability. Thus, we must abandon the proceedure of extremizing the
action integral and obtaining deterministic dynamical equations for the
3-geometry of space; classical geometrodynamics is inconsistent with
measurement. We must now look for a consistent theory and such a theory
must be probabilistic in the 3-geometry of space. The criterion of
consistency of a theory with respect to the measurement of the confi-
guration of the 3-geometry of space is found to be the so-called quantum
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principle, a condition on the way of assigning the probabilities. We
require the new theory to satisfy this principle and therefore the new
theory is called quantum geometrodynamics. Central to the formulation
of the quantum principle is the action integral, the link between classical
and quantum physics. We will first analyze the action integral and then
we will proceed to the formulation of the quantum principle.

The action integral given by Eq. (3) assumes the following form,
expressed in the global inertial frame

-y 1 3 - _d___( i'mni&"_")_ ijmn &gn_’ﬂ
S—l6nfdtfdx{ 28i; drt - dr - dr dr +

(15)
+RVg ]

The above integral represents the action in the «momentum» formu-
lation of geometrodynamics; the term in round brackets indicated that
it is the quantity Gi™® (dgm,/dt), involving the rate of change of the
3-geometry («geometrodynamical field momentums»), rather than the
3-geometry itself that is kept fixed at the limits of integration in r.
To go to the «codrdinate» formulation of geometrodynamics, which is
the formulation needed here, where the 3-geometry is fixed at the

limits, add the quantity

1 dgmn
lJmn 3
16 [‘[2(; dT d x]at limits

and arrive at the desired action

1 s | uijmn 9835 dgmn
§ = dr{fd [GJ = +RVg

i (16)

Noting the resemblance of the action of geometrodynamics with
that of a particle in a potential, we call the first term in the integral in
Eq. (16) «kinetic energy» term and the second term «potential energy»
term. The <«kinetic energy» term involves the square of the rate of
change of «distance» with time of the universe in a configuration space
of 3-geometries, a manifold each point of which represents a 3-geometry.
This manifold has been named «superspace» by J. A. Wheeler . The

distance in superspace, dgg, of two 3-geometries infinitesimally different
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from each other, as deduced from the above considerations is then given by
d = ( [Gim dgy; dgamn d*x )™ (17)

Here we have done a one to one correspondence between points of the
spaces to which the 3-geometries belong, in the manner described in the
previons section, and we have taken the difference dg;;, between the
metric components at the corresponded points. The intercorrespondence
of given spacial 3-geometries can however be done in a multiplicity of
ways, as discussed in the previous section. Each way of doing the inter-
correspondence is equivalent to any other way plus a velocity trans-
formation. The metric component differences dgk , obtained through a
new intercorrespondence, are related to the original metric component
differences dgj;, in the following manner (from Eq. (8))

oti  oft

dmnz——
5 ox™ @xg

[dgs + (viis + viiwi) ds]
Substitution of the transformed quantities dg¥ in Eq. (17) will give a

new result for dgg. Different ways of corresponding given 3-geometries

will give different results for d&/ as computed from Eq. (17). But if d<
is to be the element of distance between points in superspace, it must be
unique for two given points in superspace corresponding to two given
3-geometries, infinitesimally different from each other. Therefore we
must require a particular way of corresponding to be singled out. In
addition we must require the distance of two identical 3-geometries, to
be zero in superspace. The previous two requirements can be met only
if we define the actual distance element to be, the minimum value of
the expression on the right hand side of Eq. (17) as we go through all
the alternative ways of corresponding the given 3-geometries. Therefore,
given one way of doing the intercorrespondence, we must perform a
velocity transformation and look for the transformation vector v*!' that

minimizes expression (17). This gives the conditions
Griian [dg:m + (V:;;*n + V:;*m)d"];*j = Gijmn (dgmn);j =0

to be fulfiled by v*', identical to the equations G* = 0 (Eq. (9)).
In conclusion, Eq. (17) has to be supplemented by the above intercorres-
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pondence conditions to give a consistent definition of distance in super-
space. Thus, the full meaning of the equations G* = 0 is now realized.

Now we are ready to formulate the quantum principle. Form the
product manifold of superspace with the real line of time and call it
«superspace-time». ‘I'his manifold is the evolution space of 3-geometries.
A history of the 3-geometry of space is a path in superspace-time. Such
a path is also a 4-geometry of spacetime. However not every 4-geometry
is a path in superspace-time; only those that are described by functions
gij(’x, 1), in the global inertial frame, satisfying Eq. (9), represent paths
in superspace-time. The quantum principle, as formulated first by R. P.
Feynman © and suited here to geometrodynamics, consists of the follo-
wing two statements:

II. 1. The probability that the universe has a path, namely a
history of 3-geometry, lying in a region of superspace-time, is the abso-
lute square of a sum of complex contributions one from each path in
the region.

2. The paths contribute equally in magnitude, but the phase of
their contribution is the action integral corresponding to each path.

The probability amplitude ¢ [U] that the history of the 3-geometry
of the universe passes through a region U in superspace-time can there-

fore be expressed in the form

(

ol =iim [0 i3 6'(G,,,, 6)} 99, DG, - DG, 19

8t —> 0J U
up to a normalization factor chosen so that the probability of a certain
event is 1 in the limit dt—> 0. In the expression above and in the follo-
wing the symbol 9’ is used to denote the 3-geometry of space. The time
interval of the region U of superspace-time has been divided into (k—1)
subintervals of duration 0Ot, and each continuous path passing through
the region has been replaced by a series of «straight line» (see following
section) segments, one for each temporal subinterval. Thus continuous
histories of the universe are replaced by skeleton histories. The argu-
ment of the action means that the action integral is taken along a
«straight line» segment between the geometrical configuration Q,' of

the beginning of the i" temporal subinterval, and the geometrical confi-
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guration gi+1’ of the beginning of the (i -+ 1)™ temporal subinterval.

Consider now a region U’ of superspace-time restricted to v <t and
such that for T < 1. it covers all superspace but as t—> 1 it converges to
the point in superspace corresponding to the geometrical configuration

gk. Then ¢ [U’] assumes the form of a functional ¢ [gk, ] giving the

amplitude that the universe arrives at the geometrical configuration gk

with the value 7. of time. This functional, given by the integral expres-
sion (applying Eq. (18)).

@ [gk, tk] :ME:]O]&“ exP{'\ikz_il 8’(gi+hgi)}"@gk—l@gk—Q"" (19)

superspace

up to a normalization factor, is therefore the wave-functional of the
geometrical world.

In the limit of large actions only the paths for which the action is
nearly an extremum contribute to the integral in Eq. (18). The ampli-
tudes of paths for which the corresponding action is away from the
extremum interfere destructively. Hence, in the classical limit the history
of the 3-geometry of the universe is restricted to 69/ = 0, which yields
the dynamical equations G'i=0, in addition to the prerequisite condi-
tions G* = 0. The dynamical equations give a first integral

f(Gij"‘“ dg—t" %93 — Rvg) d*x = A (constant of the motion) (20)

From the discussion in the previous section we infer that an additional
condition need be applied in order to obtain general relativity theory
in the limit of large actions. It is the condition expressed by Eq. (12),
namely the constraint A = 0. This condition has the following meaning :
given any two infinitesimally different 3-geometries their temporal
separation is not arbitrary but it is determined by

i
@
where d & is the distance of the 3-geometries in superspace and % is the

functional f R Vg d°x. This condition expresses a fundamental law of
geometrodynamics that must be retained in the quantum theory so that

dr (21)
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in the classical limit general relativity theory is obtained. In the following
we will temporarily disregard this condition and we will find the wave

equation that (p[g’ , ] must satisfy. Then the condition will be applied
as an eigenvalue condition to get from the wave functional cp[g , T toa

new wave functional [g] depending only on the 3-geometry, the tempo-

ral separations determined from the law expressed by condition (21).

(3) The structure of superspace

In this section, the structure of superspace is investigated, super-
space being considered as a set of histories of 3-geometries. Thus, the
concepts introduced will be concepts intrinsic to paths only. We saw
however in the previous section that quantum theory requires the intro-
duction of a volume element in superspace and such a concept is foreign
to concepts intrinsic to paths. The determination of the volume element
in superspace will be demonstrated in section (5).

Points in superspace can be labeled with the «codrdinates» gj;,
namely the metric components specified at all points of ordinary space.
This way of labeling points in superspace constitutes the «metric coordi-
nate system» of superspace. Clearly this is not the only allowable coor-
dinate system in superspace. Any geometric symmetric tensor — function
of the metric tensor and its derivatives up to n’'" order — completely
describing the 3-geometry when specified at all points of ordinary space,
forms a basis for labeling points in superspace. Thus in the following,
unless so specified, the symbol g;; will denote not only the metric tensor
but an arbitrary geometric symmetric tensor, the basis of a general coordi-
nate system in superspace and not mnecessarily the metric coordinate
system. A cooOrdinate transformation in superspace is a change of the
way of describing the 3-geometry and it is clear that the formalism must
be invariant under such a change.

The action integral, or rather the «kinetic energy» part of that
integral, defines, as we have seen in the previous section, the element
of arc length in superspace dg, a superspace invariant by definition, its

square given by
d$2 e S Gijmn dg;j dgmn dax,
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supplemented by the intercorrespondence conditions GU™" (dgmn);; = 0,
in the metric codrdinate system in superspace. The form of the line
element in an arbitrary coO0rdinate system in superspace can then be

derived from its form in the metric codrdinate system and a functional
d £,= d g’j [ gij, dgi;] will in general result, depending on the geometry
g described by the functions gi; and the infiniterimal change in the
geometry, dg , from the configurarion g’ , described by the functions

dgi; . Furthermore, dggzis always of second order in dgi;. The functions
dgij have the properties: (1) the resultant of two successive infinitesimal
changes in 3-geometry is described by the sum of the two corresponding
dgi;’s and (2) a change in 3-geometry that is proportional to another
such change is described by functions dg;; that bare the same proportion
to the corresponding functions describing the other change in 3-geometry.

The functions dg;; are thus the components of a vector d g in superspace,
a supervector, representing the infinitesimal change in 3-geometry from
the configuration g , and defined at the point in superspace correspon-
ding to that configuration. Under a superspace coérdinate transformation

the components of the supervector d g transform in the following manner

’ ag;ﬁﬂ ag;nn agmn
d”mn == d ij d ij)y d ij)y e 22
g 0g; gj+agij,k( gJ) x + i G ( g]) k1+ (22)

Here the unprimed functions refer to the original codrdinate system
and the primed functions refer to the new codrdinate system.

We must note here that the distance in superspace of two geome-
trical configurations belonging to different topologies cannot be defined.
As a result, any two regions of superspace, such that the families of geo-
metries corresponding to the regions belong to different topologies, are
disjoint in supérspace.

The concept of a vector field cannot be defined in superspace. Only
«tangent» vectors dg can be defined attached to a point g in super-
space. Consequently a metric tensor does not exist in superspace. Howe-
ver in the metric coordinate system we have the functions Gimn that
play the role of a metric tensor. These functions will thus be called «the

components of the metric tensor in superspace», keeping in mind that
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they are defined only in the metric description of 3-geometry and they
do not have any invariant meaning.

We introduce here the notion of «parallelism» of two supervectors

defined at two distinct but nearly points in superspace. We construct at

the point in superspace corresponding to the configuration g + d g the

super vector (d g‘* )g+ dgparallel to a supervector (d g* )g defined

at the point in superspace corresponding to the configuration g by assu-

ming that the differences in the components of the two supervectors
(dgf‘;‘)g;j +dgi; — (dgi*j)gij = — Cij (gij, dg,-j , dgf‘; and derivatives), (23)

are functions C;; depending on the codrdinates gi; of superspace and

their derivatives and on the supervector components dgi; and dgi; and

their derivatives defined at the point g in superspace. Furthermore,
the functions Cj; are of first order in both dg;; and dgf; .
If the form of the element of are length A in superspace is given

the functions Ci; are determined by demanding only equality in length

of the two supervectors, imposed however for arbitrary supervectors
d g and d g* -
& [gij, (dgi‘ﬁ)gij] = dgg[gij + dgy;, (dgi"‘j)gij+dgi3] (24)

In the metric coérdinate system of superspace the functions Ci; assume
then the form

Cy = Cii"™ dgmn dgha
1 ( 1) [alemn alepq aqumn}
= e = ’
2 - agpq 6gmu agkl

Here o =

(25)

- 2
where (G = = [gi; 21 — (gic g + gigi) | are the components of
g

the matrix that is the inverse of the matrix with components G¥=» that
. = 1 o .
is to say (G ")iju G = - (88} -+ 8" 8i'). The functions C}"* depen-

ding on the metric gj; of the configuration 9’ only, play the role of

«the affine connection in superspace», and they will be called this way,
ITAA 1972
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although it is always necessary to keep in mind that they are defined
only in the metric codrdinate system of superspace.

Consider now a supervector d g* defined at a point in superspace
corresponding to the geometrical configuration g, and a path 9’ = g(r)
in superspace passing through the point g We can «parallel transport»

the supervector d 9’* along the path g = g(t) by division of the path

into infinitesimal segments and repeated application for each segment
of definition (11) of the supervector parallel to a given supervector defi-
ned at a nearby point in superspace. If (dgij) paraiet denote the compo-

nents of the parallel transported supervector d g*, then

dgij
dt

d
) (dglj) paranier + Cij <g;j (@), (v), (dgij)parane1> =0 (26)

Let us now parallel transport along the path g: g(‘t) not an
arbitrary supervector dg*, but the supervector dg’/dr tangent to the
path g(t) at the point g Consider then a path g= g’(r) in superspace
such that the parallel transported supervector is equal to the tangent
supervector to the path at the same point. It can be prooved that such
a path, satisfying the equation

d’gs; ( . dgy dgy ) _ 7
dr? + G\ &5, dr ' drt =2, (&)

minimizes the distance of any two points on the path. Hence such paths
(geodesics in superspace) will be called «straight lines» in the following.

(4) Absolute Differential Calculus of Functionals

If the limit
Dold)_ 1 (o[G + 1) —01G1)} =1 6,46 e

exists for the functional @ [g], at the point in superspace corresponding

to the geometrical configuration g, for the approach d g’ of the limit,
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we define it to be «the partial derivative of the functional cp[g] with
respect to the approach dg» at the point in superspace considered.
Then the functional (p[g] will be called «differentiable at 9’ for the
limiting approach dg». The partial derivative is an invariant functio-
nal o [g, d g] depending not only on the geometry g, but also on the
supervector dg. Furthermore it is of first order in the super vector dg -

The partial derivative of a general functional x[g, dg] of the

geometry g and the supervector d g, with respect to the approach d g

is defined as follows
DulG9.49] _ . 41 2 e
AL o600

~[9. (aG)gl)} =[G 4] e

It is again an invariant functional w[g, d g] of the geometry 9’ and
the limiting approach dg. Here (dg)9+€d9 is the supervector

defined at the point g + ed g in superspace and constructed parallel,

as in the previous section, to the original supervector (d g)g defined

at the point g

The «second derivative of the functional ¢ [g] with respect to the
approach dg» is defined by substituting in Eq, (29) the functional

% [g, dg] of Eq. (28). Thus from the above definitions partial deriva-
tives of all orders can be generated, all invariant under codrdinate
transformations in superspace. Partial derivatives of n’" order are of
n’" order in the approach dg. A functional ¢ [g] is called «diffe-
rentiable to n’'® order» at the point in superspace corresponding to the

geometrical configuration g, for the limiting approach dg, if the nt®
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partial derivative of the functional exists at the point and for the

approach in question.

Let us restrict the domain of a functional ¢ [g] to a path g’ = g’(t)

in superspace. Then the functional ¢ [g (v)] is an ordinary function of
the affine parameter v of the path. If this function is differentiable to
n’ " order then the value of the function at t4 8t can be expressed in
terms of the function and its derivatives at t by the Taylor expansion
theorem for ordinary functions of one real variable :

o[Fe+o0] =[G+ 5L [Gm]+ -0 SL[Gw] +
“[Gw] + [g(’)](&m (30)

m+1)!

R

n+1

where o [g(r)] is bounded bymax{[ %—m[g( +A6r]‘ :O<l<l‘}-
l )

If now the path g = g(r) is a e¢straight line» then derivatives of
@ [g(t)], with respect to the affine parameter t, are equal to functional
derivatives of the same order of ¢ [g‘], with respect to the approach

dg’/dr, namely the tangent supervector to the «straight line» at the

point where the limit is taken:
dr g = QHCP
d Q@g) dg/ drm

We then deduce from (17) the following Taylor expansion theorem
for differentiable functionals:

Do 1 D
¢[9+5@]:¢[g]+m[g]+g m—,

+%%[9]+(n+ 1[G.49], @2
D

where y ,dg isbounded by max{|————
[g ] @g, d gn-H

(31)

18]+ -

[G (c+180)][:0<r<l,
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expressing the value of a functional ¢ of the 3-geometry at the point
g -+ 69’ in superspace in terms of the value of the functional and its
derivatives at the point 9’ with respect to the approach d g’ =
= (d g/dr) dt, where d g’ /dr is the tangent supervector at the point g‘
to a straight line with affine parameter v joining the points g (== g ()
and g +6 g’ (= g (r -+ 87)) in superspace.

Finally, we define the 2n’t" order «total derivative» of the functio-
nal ¢ [9’] at the point g in superspace, by integrating the partial deri-
vatire of the same order with the weighting factor exp {idgﬁe[ g, d g] }
explained in the following section, with respect to the limiting

approaches d g :

'

&Tn_ = const. feidgg2 &7 .,@(dg). (33)
Dg DG, ag

Here ,@ (d g’) is the volume element that the differentials of the

supervectors dg define, and it is determined in the following sectiomn.
The constant factor in definition (33) is ((i/2)* [(2n—1) (2n—38)...1])".
Only total derivatives of even order can be invariantly defined. The total
derivatives of all even orders are functionals of the 3-geometry g only

and they are of course invariant under codrdinate transformations in
superspace, namely under a change of the way of describing de 3-geo-
metry. They are analogous to the Laplacian derivatives V2" f of a fun-
ction f(x', ..., x™) in an ordinary m-dimensional Riemannian space.

(5) The Wave Equation

Consider the definition of the wave functional, Eq. (19). We can

express it in the form

cp[g, r]:f exp {is/[g(t), g‘(r—ﬁr)]}(p[g,, t——ﬁt],@g', (34)

all superspace

where we have made the substitutions g, g’, T for gk, gk—'l , Tk respe-
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ctively. The action in the exponential is taken over a «straight line»
segment in superspace joining the points corresponding to the geome-

trical configurations g and g', as explained in section 2. For a «straight
line» we have

() -G ero o]
—dgg[gu

g (t) ]} —(] (35)
dg at the

from Eq. (24), since by definition the tangent supervector B
17

point g’ (t +¢) in superspace is equal for a «straight line» to the tangent

d 5 :
supervector _dg parallel transported along the «straight line» from the
T
point corresponding to the geometrical configuration g(r). Using the
form of the action given by Eq. (16) as well as the results expressed by
Egs. (31), (32), (30) we can expand the action in the expomnential of

expression (34) in power series in 8t:

16:8 [G0), G (c—t0]) = 24 [, 4G] + 5 R[G] +
DR

A BX (6‘) T , to n’t" order in or. (36)

99’ dgn—l

Heredg is the supervector (_d_dg) o, where(dg> is the tangent
T T T T

supervector, at the point g(r) in superspace, to the «straight line»
joining the points g(r) and g” (v — ).
The wave functional cp[g”, t—81t] of the right hand side of Eq.

(34) can be expressed in terms of the functional @ [g, 1], of the left hand

side of the same equation, and its partial derivatives, by the Taylor
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expansion theorem for differentiable functionals expressed by Eq. (32):

‘p[g,:T—5t]=m[g,r]—6rg—f[g,r]+...+

(51 0 i ,@(p 4
ti-r =[] @——g’dg[g‘d@,n
(—1)= D"
m 9g,4g"

to n’tt order in §t and m’t order in d g

[G,40,<], 6D

+

Substitution of expansions (36) and (37) in Eq. (34) leads to condi-
tions that must be satisfield to each order in 8t. The terms of zero’'®
order in 8t give the condition

[ Dag) =1, , (38)

determining the volume element ,@ (d g) that the differentials of the

supervectors dg define in superspace. In the metric description of

3-geometry, this volume element assumes the form
D@ag)=c" @) T atdgs (1) x 6™ @ [1 d(dgy @) x ..., 39
128 12>]

indenumerably infinite product over all points of ordinary space. Here
G is the determinant of the — pseudo — « metric tensor in superspace »

Giimn given by Eq. (10). The volume element that the supervectors d g
themselves define in superspace, namely the «volume element of super-

space» 99 itself, is then determined uniquely from the volume element

D (d g’) by direct substitution of d g — namely dgi;’s — for d(dg)——
namely d (dgi;)’s.
The terms of first order in dt give the functional equation
e@ ® 1 Odg

o + 16::‘;0—_'_7{’ (40)

DG’ '
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and terms of order in 8t higher than the first, give functional equations

derivable from the above. As defined in section (2), @ [g, 1] is the ampli-

tude that the universe assumes the geometrical configuration g with the

value t of time. Since the time t is causal, it is certain that for any
value of t the universe assumes some geometrical configuration.

Hence ¢ is normalized as follows

[1e]8. 1" DG =1 (41)

it must be remarked here that the region of integration in (41) need
only be the class of geometries with a given topology, since regions of
different topology are disjoint in superspace (section 3). Thus the region
of definition of cp[g, 1] is the product manifold of one such region in

superspace with the real line of time. We can verify from Eq. (40) that
the left hand side of Eq. (41) is constant in time. Since the left hand
side of Eq. (40) does not depend explicitly on 1, the equation can be

solved by separation of the variables g’ and t. The general solution has

-2 —ikt
the form ¢ [(f 7] = [T e ™[] dn
Now we impose condition (21) of section (2) by requiring that we
extract from ¢ the eigenfunction 1 corresqonding to the eigenvalue
A=0. Thus we get the wave functional [g] satisfying the wave

equation

D R
et ., Y i (42)

,@92 64
Then the wave functional ¢ [g] = fam(p [g, 1] dr is the amplitude that
the universe assumes the geometrical configuration g with any value of
the time tv. Here again the region of definition of v [9’] is any isolated

region in superspace, a region where the geometry g belongs to a unique
topology. If ¢ is normalized, W is also normalized, unless it turns out
that for a normalized @,y is not defined. It can be prooved that the
latter is in fact the case when the domain of v is a region in superspace

with geometries of open topology ; then v is not normalizable, The wave
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functional [g] can be normalized however, if the domain of \y is a

region of superspace with geometries of closed topology. Then,
PIVI=[,1v[G11'DG (43)

is the probability that the outcome g, of a measurement of the 3-geo-

metry of the universe performed without an accompanying measurement
of the time, belongs to the region V of superspace. If two such measure-
ments of the 3-geometry give identical outcomes then the measurements
are tautochronous. If two measurements of the 3-geometry give outcomes

differing by d g, then the temporal separation of the measurements is
(Eq. (21))

i
A

where dg is the length of the supervector d 9’ defined at the point

dr

in superspace to which the outcome of one of the measurements corres-
ponds. Thus, to obtain complete knowledge of the geometrical world it

is necessary and sufficient to know [g’) over all its domain.

In conclusion, the laws expressed by Eqs. (42) and (438), as well as
the law of the definition of time Eq. (21), complete the statement of the

fundamental laws of quantum geometrodynamics.
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HMEPIAHYIZ

Ei¢ mv magoloav &oyactav 1 Yemoto tiig KPavinis I'swpetooduvvapiriig
Jepehioltan povov &mi tilg Goyiic Tig Zyxetmdtnrog ol Tig Goyiic td@v KPdvra.

To mowrov pépog tijg goyaoiag dgogd &lg guoxiy eounvelay Tig Yevixils
Syetnotnrog. Al EEowosig tob Einstein dwaxgivovrar gig dvo opddog :

1) ’Etwdoeig dvagsoopévag eig v ®haowny Newpergoduvauixny,

2) *Etowoeig 2ngoalovoag depehmdeg tiig Iempetooduvamil vouovs xai
3’ adto loyvovoag, xat’ avdyxmy, eig ™y KBavriv INeopetoodvvamniy.

Eic 10 devregov péoog elodyerat, xata J. A. Wheeler, 1) &vvoia 100 Omeo-
1000v 60tlouévng xal tiig 8vvolag Tiig GmooTdoewg €ig TOV VITEQYMOOV

Eic 10 tolrov pépoc doevvdral 1) doun tob Hwegywoov.

Eic 10 térogrov péooc elodystar Gméhutog dmeipootinog Aoyiopog tdv
OUVOQTNOLARDY.

Téhog, elc 10 méumrov pégog ovvdyovrar oi ovupueis tiig KPavrric [Mewpe-
Toodvvapxiic vopor, gxgoalipevol pe Ty eig 1O xeipevov xvpoatmy eElcwaory (42).
‘H wopatny atity gElowoig depehiver v KBavouunv Ieopetooduvamniiv.

*

ITogovordlmv v dvetéon avaxoivooy 6 *Axadnuairog x. ®. Bactielov,
Méyelr to €Efig -

«*0 %. Xoiwotodovhov elvar Research Fellow in Physics xol upéhog tijg
Faculty tob Teyvokoywot ’Ivetitovtov tig Kakipooviag, yvwotod ocuvidumg
wg Caltec.

Eig yevirag yoauudg, e tig magovong doyaciag 6 %. Xototodoviov, Paot-
Couevog 2mi Tiig doyiic Tic Syetxdmmrog xal tiig doyiic tdv KPdvra, émdidret
v founvelav edoutéowv peo®Y TOU Quoxod udopov Gm’ 6,1 1) Yewola tiig Sye-
twotnrog. Eilg my mbavohoyunv adtiy dewolav tov yonoumomotst Alav mooyw-
onuévag yvaoelg Gro 1o "Avareoo Madmpatixd. *AEwonueiotov elvar Tt — xata
v 6poroylav tod dlov — eig v 8v Adye 2oyoctav dxolovdel ovrtog Ty dido-
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oxalay tob ITAdrwvog avalntdv, dw v Eoumveiav t@v @owvouévov tod Quol-
%0V %douov, Ty Umaelv 1dsatod yewuetokod xdouov.

Haganéunwv tovg Bvdiagpegopévoug, dud tag Aemrouepeiag Tob megieyopévou
g foyaotag, eic ta IToaxmna tiig “Axadnuiog, Yo Emeddpovv va dvagéow 8v
oMyos ™y modypatt Govvidy Emotnuovixny 8EEMEW ToD veapol ocuyyQagémg
daviovrog ofuegoy wéhic T eirootodv Frog tiic Hhwtag tov. Ovrog, Eva xal fuiov
€rog mEO Thig Amogoitiioemg Tov amd to upvdaoiov eic *Advag xal xatémy eidi-
#ils €Eetdoswg el v 6motav VmePAndn eic Ilaowotovg Gmo TOV ®admynTv TOU
Mavemomuiov tod Princeton (‘Hvou. IToliteidy) John Wheeler, #al tov xodn-
ynony "Ay. Hamoaréroov, eiyev eloaydi eig 10 8v Aoy [Tavemotiuoy »ai pdiota
auéows @g Graduate Student, nate mogéxxhiowy TV iogvovodv SratdEemv
Eyyoapfi.

‘H Zyxoawgog dvandivypig tig Wdoguiag 1o vengod yupvaoctdmardog dpet-
letor elg TOv TéTe Gvrumededoov tol Teyvixod ‘Emusinmmoiov tig ‘EAlddog
%, Zm. Myaddmovhov, Gotig dméruye v pera tod Kadnynrod Wheeler dmagpmny
xal v elg Iagiotovg cuvdvimoy.

Meta &va oyedov Erog omovddv, 6 x. Xoiwotodovlov ¥hofe 1o dlmhopo
Master of Science S v Gméntnoww Tol 6m0lOV TEOUTOLTETTOL ROVOVIAADG Tyl
uovov 10 mrvylov IMuvactov GAAd xai 6, xatémv TOVAd)LOTOV TETQUETMY OMOU-
ddv yoonyolpevov 2xel, dimdwpa Bachelor. “Eva &roc pere to Master, 6 %. Xot-
otodovlov yiveraw Suddxtmo tiic Phocogiog el Tov xhddov tiig Madnuatixiic
Duowndig, elg Hhwtav 19 Erdv, pg My omavidtato moonyovuévas Gmoveundeiooy
dudxoiory Excellent, téoov dud tag moogoourdg eEetdoelg Goov xal die tyv &l
dudaxtoole dratoiBiiv tov. Smuewwtéov 6Tt mededoog tig EEetaoctindic “Emitoomnic
da v &mi Sudaxrooly éEéracu{ nto 6 Kadnyntig Eugene Wigner, PBoofsiov
Nobel, uéin 8¢ 6 mooavagegdeic John Wheeler, foafeiov Fermi, xadng »al
dihar dtedvolis xdgovg mooowmrdTNTEC.

Téhog, ai péyor onjucoov HOn dnuootevdeicar mévre Emornuoviral foyacion
00 %. Xguotodovhov Ervyov edpevolg xouTintlc xatéotnoav Of adrov evouteon
YVOOTOV».,

*Axolovdwg 6 x. IIpbedpog Aéyel :

«Agv elpar douddiog va ocvintijow v dvaxoivooy tob %. XoistodovAiov
™y ywopévny vmo tod cuvadéhgov %x. Baocikelov, tov 6molov edyaolotd.

Agv dbvapar Suog v maoéhdw dmagatriontov T Yeyovdg 6t 6 veapog
“EAnv dveyvoweiodn mayrooping dg padnupoty iSwoguia xal yévero 1dn eic
Niwtav 19 étdv Siddrtwe tol Princeton, ué tov faduov Excellent.
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Agv elvan dvotuyde maomyv 6 %. Xowotodovhov. ‘H *Axadnmia Supmg tob
otéhher O1° Euod xal v ovvedolg tiic “Olouehelag g, #xel paxpav Gmov edol-
oxetaL, Tovg EMAMviovs Tig  yougetiopovs, T cuyraontiowd tng xal Tdg evyds
me. "Ac tov magaxohovdoiv mavrod xal eig GAnv tov v Comv al edloylor Tiig
nateidog tov, tijg almviag “EAhddog».

Téhoc, Guikel meol tiig idoguiag Tod . Xotostodovhov xai 6 %. I. EavBénng:

CExMONY, Aéyel, xol maoyrolovdnea eig to "Edvixov “Idovna *Eeevvav
dudheEy tod veagod x. Xowotodovhov émi oyetxod Pépatog. ‘Oporoyd 6ti xaté-
Bakov idtartéoav moosmddeay did v magaxorovdon tov Suintiv. Todro dgei-
Aeto, Gg’ Evog pev eig T yeyovdg Ot 6 véog adtog yonowwomololoe TV Eviehds
nodoqatov nadnuatixy didhextov ué eldxods ovuPoliowols, of omoiol dev wod
foav évrelig olxelor, ag’ Etéoov 8¢, diéTL Edvonoleveto va dnpoacdil cagdg elg
mv xowdg Sphovpévny EAAviy yAdooav. Ildvrog tod dméfakov molhag Em-
oelg, G’ Evog uEv S va dtacagnvicm Tovg EmeTnuOviRovg GQLOHOVS, TOUS
6moiovg ¥d1de, ag’ Etéoov O¢ St va damotdow %atd TGoov MTO *ATOY0G T EVNi-
LLEQOS MOLOUEVWY GGTOOVOUIXMY pouvouévay, to 6molo mooéBheme ) yevinn dew-
ola Tod *Aivotdiv. *Ex tiig ovinticewg tadtng diemictwoon Gti al mpoomdleial
tob %. Xototodovhov telvouv va Omeoxegdoovy TV demolav Tijg Zyetivdtnrog,

c

Imhadn va dwotvndoy véav dewolav, 1) 6mola va megilaufdvy éxtog @V yvw-
GTAV PULVOUEVDY TOD HanQO%OOUOV %ol MOLGUEVE QUWOUEVE TOU [IXQOXOGUOV.
Edvénrov tuyydver Gtr pla towodty odvdeoig tiig manrgoguoikilc xal Thg HL%QO-

~ \ T 3\ ’ 3 ~ a \ A \ A - |
guoriic da eivan, gav modypatt dmrevydf, &Eawoetivov yeyovog S tmv TEmi-
oThiuny.

Tovro dAkwote Vmijoke xal 1O Avrixelpuevov tdOV fosuv@yv toU “Aivotdiv
#atd o tehevtaia £tn g Cwijg Tov.

’E 5)\/ c v ’ : 3 e/ € / - 2 / ’

v Ohiyolg, | mooowmx} pov yvaun eivar 6tL 6 VEOG 0UTOG HEXTNTAL Td-

Lavtov 8EatgeTinov 1 6Tl modxettar mepl podnuatinig Wioguiag».




