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MAG®HMATIKA.— More on univalent starlike functions, by Nicolas K. Artemiadis*,
Regular member of the Academy of Athens.

1. INTRODUCTION

Let & be the class of functions f(z) = z + n2=2 anz" which are analytic and

univalent in the unit disk D = {z € C: |z| < 1}. For f € & the set f(D) is a non-
empty open connected proper subset of the complex plane €. A point w € f(D)
is called a star center point (s.c.p) of f(D) if and only if:

tf(z) + (1 — t) w € f(D), zeD, 0<t<l
For f € &, let St be the set of all s.c.p. of f(D). Define
Fo=1{fe ¥:0e8y

where $; is the interior of Sr.

In this paper the influence that the size of St has on the Taylor coefficients,
an, of a function in &, is examined.

We first prove three lemmas which will be used later.

In Theorem 1 we obtain estimates of |aa|, depending only on the entire set
§tfor f € Po.

In Theorem 2 it is shown that is fi, f, € %o and §f, & §f2, then
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B(f2, n) < B(f}, n), n=12,..

where B(fi, n), B(f2, n) are the estimates obtained in Th. 1 for the n'" coefficients
of fi and f; respectively. In other words, Th. 2 asserts that the larger S gets the
more restrictive are the coefficient bounds given by Th. 1.

Finally we give examples of functions in &, and discuss the obtained results.
2. PRELIMINARIES

Lemma 1. The set of all star center points of a function in & is convex,
therefore simply connected.

Proof. Let g € &, z1, z € D such that g(z1), g(z2) belong to Sg. We show
that the segment [g(z1), g(z2)] is contained in Sg. Suppose [g(z1), g(z2)] € Sg and
let w € (g(z1), g(z2)) such that w & S;. Since g(z1), g(z2) are s.c.p of g(D) we have
w € g(D).

By the hypothesis on w there is zo € D such that [g(zo), w] € g(D). Observe
that if the points g(zo), g(z1), g(z2) are colinear then there is nothing to prove.
Otherwise there is w; € (g (z0), W) such that w, & g(D). We have

[8(z1), &(z0)] C g (D)
because g(z1) € Sy and g(z0) € g(D). Let w, be the intersection of the segment
[g(z1), g(zo)] and the staight line determined by the points g(z;), wi. These two
sets intersect because w; is an interior point of the triangle {g(zo), g(z1), g(z2.}.
We have w; € g(D). Since g(zz2) € S; it follows that w; € g(D) which is absurd

because it contradicts w; & g(D). Hence S; is convex. This proves the lemma.

Lemma 2. Let f € &, £: D — $; be a one-one analytic function such that &(0) =
0, (D) = §f, and let zo, z, be complex numbers such that |z < |z;| = r < 1.
Then the segment [f(z1), £(z0)] is contained in f(D;), where D; = {z: |z| < 1}.

Proof. For &(zo) = 0 the lemma is known (see [2], p. 220). Let p and 6 be
two real numbers such that 0 < p < I, — 1 < 8 < =, pe'®z; = zo. Put

O(z) = tf(z) + (1 — t) &(pe'®2), zeD,0<t< 1.

Clearly @ is analytic in D. ®(0) = f(0) = 0, and for each z the point &(pe®z) is a
s.c.p of f(D). Hence @ is subordinate to f, so that ®(z) = f(¢(z)), where ¢ is ana-
lytic in D, ¢(0) = 0, and |@(z)| < |z|. We have
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®(z)) = tfz:) + (1 — t) E(pe'®z) = thz) + (1 — t) E(z0) = fo(z1)
and |@(z1)| < |z1|. Hence ®(z:) € f(Dy). This proves the lemma.

Lemma 3. Let n be an integer greater than two, and let x be a real number
such that (1/2) < x < 1.

q
Put gp(k—x)=(p—x)(p+l—x)...(q—x)
where p, q are natural numbers such that p < q
Then
*) In(x)<0

where r,,(x)=—n!n+ng2(k—x)+2x[g3(k—x)+2!2g4(k—x)+...+

n
+@=-2@ -2 k-0 +@— D~ D]
Proof. We proceed by induction on n. Clearly (*) holds for n = 3. Assume
that it holds for n. To prove that it holds for n + 1 it suffices to show hat
It (%) < Ta(x)
or equivalently
nt+l n n
1) (n+ l)gz(k—x)—ng?_(k—x)—f-Zx. n!n+2x(n—x)[g3(k—x)+
+2!2g4(k—x)+...+(n— I (= 1)]<(n+ ¥ n=E 1) —n ln
Now by the induction hypothesis we have
2x[g3(k—x)+2!2l£[4(k—x)+...+(n— NECESNES
< s s
<nln—n Ez (k — x)
Hence (1) will hold if the following (2) holds
nt+l n n
2 @m+ l)gz(k—x)—nkl_:IZ(k—x)+2xn!n+(n!n—nl£[2(k—x))<
S@+1H)!I@+ 1)—nn
which is equivalent to

ntl
3) ¢(x)=kr__12(k—x)+nzx.x—(n+1)!<0
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Observe that ®(1) = 0. Hence (3) will be proven if we show that ® is nondecrea-
sing, i.e. if @ (x) = 0. We have

n+l ) wt &
oo =ain+(H ) ~on- a0 B

To show that @ ’(x) = 0 for (1/2) < x < 1 it suffices to show that

rﬁl 1 nil 1
Ve — s el =
4) n!n (k > ) Z, = 0

2

We, again, proceed by induction on n. It is easily seen that (4) holds for n = 3.
Assume that it holds for n. To prove that (4) holds for n + 1 we show that

n+2 1 n+2 1
) (n+1)!(n+1)—gz(k—7)°l§2 2 >n!n —
. 1

n+l n+1
1 (k_i). N =l

or equivalently

n+1 l
6) m+DH'm+1)—nm=11 (k——)-

k=2 3 2] =2 1
2
nt+l 1 n+1
If in (6) the expression {:[2 (k = —2-) is replaced by n!n / kZ= [ We get
I ]
@) @ + 1)@+ 1)i—nin=
n'n IR
ngl ] -(l’l'*'?) kzzz __I-+1
k=2 | 2
2

Since by hypothesis (4) holds for n, it follows that (6) will hold if (7) holds. But

(7) is equivalent to

28
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1
I 2k+1°

n
®) n+1

= n =3

SE:

which is easily seen to be true by induction on n. It follows that (6) holds, and this

proves the lemma.

3. THE MAIN RESULTS

We wish to give coefficient estimates for the Taylor expansion of a function in
S

Let f € So. From Lemma 1 it follows that St is a simply connected region.
Also $;# C since (D) # C.

Let a be any point of $t. Riemann’s Mapping Theorem asserts that there is a

unique analytic function
) 8o ¢ §f == D

having the properties:
(@) guae)=0 and gou(a)>0
(b) g« is one-one
© 2 @)=D

Put u(f, @) = [1 — |ga(0)[*] / g(0)

Theorem 1. s
Let f(z) =z + nZ:2 anz" be a function in &, and let a be a point of $t. Then

i o0<p( o<l

@) Ifp(,a)=1 then |an| <1, n=I,2,..

(iii) u(f, @) =1 if and only if §; = f(D)

(iv) Ifp(f,a) <1 then |an] <An(f,a)+ Roo1(c)=M,(f, a), n=2
K —

-

. n 1
where  An (f, @) =1+ (0 — 1) IT —.o=1/01+u( a),
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— n'n n 20
Ri(o) = .
© 'ﬁl n+1—c+n+1—c
k=2(k—c)

- " 212 ” m=2)!(n—2) +(n—l)!(n-—l)
2—a @-—"9)@—9) = @ om0 @2 —o)l@—9)
(v) |an{< B (f, n), n = 2, where B (f, n) = inf (Mn (f, ))
QEST
Proof. Put g = g,' where g, is the function defined in (9). Then g:D — S

is analytic in D and has the following properties:

@) g0 =ca gO)=1/gu(@>0
(b)) g in one-one

(c’) &D)=5

Let go(0) = B. Then BE D, g() =0

Put +p
_ z
(10) G(z)—g(~————1+EZ ), zeD

The function G : D — ¢ is analytic in D and has the following properties:

@) GO)=gPB)=0:G0)=g B (1 —IB)=0— 1B’/ gu0)=
(1 — [gu(0)I*) / ga(0)

(b”) G in one-one

() G(D)=$¢

Clearly G is subordinate to f. It follows that
(11) G(2) = f(o(2))

where o is analytic on D, ©(0) = 0 and |0(z)| < |z|. Put

)

G(z) = );l bu2®, z€D.
We have since G“(0) does not vanish
(12) 0< by =G’(0) =n"(0) =[1 — |8.(0)|*] 7 g(0) = p(f, @) < 1

This proves assertion (i) of Th.1.

0

The function G(z) / by = b (bn / by) " belongs to the class &y and maps D

n=I
onto the region (1 / by) &= fw/b:we §f} which is convex since St is convex.

It follows that
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(13) [bn /by <1, n=12,..

Observe that o is univalent in D because the composition of two univalent
functions is univalent.

Summarizing the properties of @ we have:

(i) o is univalent in D.

(i) |o(z)] < |z| so that o (D) C D
(iii)) o(0) =0

iv) 0<o’'(0=b <1

If in addition we had ®(D) = D then we would have
o(z) = z, o' (0)=b; =1
and it would follow from (11) and (13) that G(z) = f(z) so that an = by, |an| < 1.
This proves assertion (ii) of Th. 1.
Next assume that o(D) is a proper subset of D. Then it follows from the
condition for equality in Schwarz’s lemma that o (0) < I.
The above imply:
i) o(D)=D iff 0’0 =1
(14) @) If o' (0)<1 then 0<b <1
(iii) |ba|] < |bi| <1

and assertion (iii) of Th. 1 follows from (14) (i).
Let z,zo€D suchthat |z <|z|=r<1. Put G(z)=wE€E §f,
f(z) — w = Re®", z=re'®

It follows from Lemma 2 that w is a s.c.p of f (Dy). Therefore

a% arg [f(z) — w] 2%20

We have log [f(z) — w] = log R + it

so that I a% log (f(z) — w)| =0

In view of —a— = jue'® i =iz i
00 dz dz
we get Re [z £°(2) / (f(z) — G(z0))] = 0

The last inequality holds for all z, zo in D provided that |z| > |zo|. Therefore if &

is a real number such that 0 <A< 1, we have
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Re [zf(2) / (f(z) — G(— A2))] =0, zeD

Put

(15) F(2) = [ (2) / (fz) — G(— Az))] = nizlo 2",z € D
It is easily seen that F is analytic in D and that co =1 / (1 + bj}A).
Due to the inequality
Re F(z) = 0, ZiE D

We have
(16) el 2 ¢ = 2
SR T hen
From (15) we get
zf’(z) =Z=] nanz” = nE:l [on = ba (— X))z - Z:o cnz"

The last equation gives the following relationship between the coefficients an,

bn, Cnt
NOn =k§l foxk — (— A b eok, n=1,2,..
or
n—1 n
(17) (n — co) on = él Ok Cn—k _k2=:1 (— M)¥ bk co—x

If we set A = 0 then (17) and (16) provide the well known inequality |oa| < n,
n=23, ...
From (17) we obtain, on account of (13) and (16),

200 n—1 1 n .
lan| < 2 ox| + 2 A% |cak| b
=gy =l n — co k=1
% %! Anbico 1 %
& 2 on| +— - Y. 2b; cok
n—cy k=1 n— Go ni—¢ep k=l

Now if we let A — 1 we get, since bo=1—o0

n—1 — —
20 ¥ Iak|+(1 o) (2n 1)’

n—o kKt n—o

WV
)

(18) lon| <

From (18) we deduce the following

(19) lon| < An (f, @) + Ra—1(0) = Mn (f, 0) < An (f, @)
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The last part of (19) follows immediately from Lemma 3, because Ry(o) is nonpo-
sitive forn = 1 and (1/2) < o < 1.
To prove the first part of (19) we proceed by induction on n. It is easily seen

that for n = 2, 3, (18) provides

1
oo <1+ . =A;(f,a) + Ri(o) = A, (f, o)

212
Ll s Sk L () Ar 10 = As(f,
|| 2= (G=9) 3 (f, @) + Ry(o) i(f, o)
because Ri(c) = Ri(c) = 0, which proves that (19) holds for n = 2, 3. Assume
that (19) holds for n. We get from (18), after some calculations:

1 & | |_{_(l—cs)(2n-+—1)
n+1—oc k=l - n =G

|oan+1] <

< Ant1 (f, @) + Ra(0) = M+ (£, )

It follows that (19) holds for n + 1.
This proves assertion (iv) of Th. 1, while assertion (v) is obvious. The theorem Is

proved.

Remark. If in (13) and (16) equality holds fon n = 2, 3, 4 then for
C1=C2:(23=20, b2:b4:_b1, b3=b1, A=1
it is easily checked that (22) is sharp for n < 4. Indeed we find
1 4

T wslttoEaEeg

o =1+

18 n o’—o
@ —e)B —9) @ —0) 2= a)(3 — o)id — o)

o =1+
However the sharpness of (19) for all n remains open.
We make the following conjecture which we believe it is true.
Conjecture. Let f € P, a € St. Then
*) lan] < An (£, @) + Ro—1 (6) + Ha (0) , n=2

where
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n—2 n+3—k

for n =5 and Ha(c) =0 for n <5.
Furtheremore if equality holds in (13) and (16) and if
ch =20, byg=—by, byg-1=b;, n=1,2,...,,q=1,2,..,
then for the a, obtained from (17), (*) is sharp.

Theorem 2.

Let fi, f2 be functions in %o. Let B(fi, n), B(f;, n) be the corresponding
bounds to the Taylor coefficients of f; and f, respectively, as these are defined in
Theorem 1(v). Suppose §r, C St Then

(20) B(f2, n) < B(fi, n)

Proof. Let a € §f,. Let G be the function obtained from f, exactly the same
way as G was obtained from f in (10). Similarly, since a also belongs to St,, let

G; be the function obtained from f,. We have
Gi(D) = $;, C 8t = G2 (D), Gi(0) = G2(0) = 0

and both G, and G, are regular and univalent in D. It follows that G; is subor-
dinate to G, so that Gi(z) = G(9(z)), where ¢ is analytic in D and |@(z)| < |z|.
We have G1(z) = G 2(z) (9(2)). 9 (z), or

G1(0) =p(f1, ) = G2(0) 9" (0) = u(fz, @) 97(0)
since [@ (0)] <1 we have
(21) u(fy, o) < (2, o)

Put
e M . SRR
T, @) 0 1+, o)
We have from (21)
(22) G1 = 0

Now the function Mu(f, @) = An(f, @) + Rn—1(s) defined in the statement of

Th. 1 can be written as follows
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Mg =1+l 58
n—6¢ n-—go¢
1 212 @— 21 @—2
[2—c+(2—0)(3—c)+'" @ —g).in—1"—c)

It is easily seen that the derivative of Mn(f, o) with respect to ¢ is nonnegative,

which implies that My(f, @) is an increasing function of . It follows that
23) Maf, @) = Ma(fs, @)

By taking the infimum of the left side of (23) for a € St and of the right side for
o€ éf;, we get (20) because §f, @ §f2. This proves the theorem.

4. EXAMPLES AND COMMENTS
The function

T 1_2)8—1] e, 1<a<?
- 2 |\l —2z & ; -

belongs to the class &o. This is easily seen if we graf f. More precisely let %, ¥,
be the rays which start from the point (— 1/2¢, 0) and make with the positive x-

axis the angles
T T
(2 8)? oy

respectively. Then St is the open set which contains the origin and is bounded by
the rays <1, %». Let T be the symmetric set of §f with respect to the line
1 =
x=——. Then f(D=C —T.
2¢
If we choose oo = 0 € §f, then the function G considered in (10), which maps

D onte §f, is

i =7

G(z)zz—le[(1 _Z)H- 1], z€D,

2 —
and we have p (£, 0)= G’(0) =

€
d =—.
and &=
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Other examples can be found in [2] (p.p. 196, 197).

We close with the following comment.

In [1] the authors present a different approach to the subject:
Given f € ¥ the index § of starlikness of f is defined to be

& = sup {r : f(z) is a s.c.p of f(D), whenever |z| < r}

Let As be the class of all starlike functions whose index is equal to §, 0 <8< 1.
For f € As the following inequality holds:
= W8l =8

o laal < 1T, k(1 +08) 8+ (— o)

The estimates given by (24) depend on 8, or equivalently on the size of f(Ds)
which (in the cases of interest, i.e when 0 < 8 < 1) is always a bounded subset of
St.

On the other hand the estimates in Theorem 1, above, depend on the entire
set Sy. If St is unbounded (see example given above) then f(Ds) is a proper subset
of St. Now it is possible in this case (when St is unbounded) that the ‘“unused”
part of S¢ to “hide” some additional information on the s, including some con-

cerning the sharpness of (24).
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EPIAHYH

MNapatnpiioeig éni tdv Univalent Starlike cuvaptiiceov.

“Eoto & 7 xhdon 1dv cvvapticsov Tiic popeiic f(z) = z + nz_:2 anz” ol
omoieg elvan dvolvtikeég kai univalent (fitot §&v maipvovv Koppid Tiun mopomnd-
VO Ao pa popa) otov povadiaio dicko D = {z € C : |z| <1}; Eav f e & 161¢
10 obvolro f(D) (fjtor 1 eikdva 100 D dud ti¢ f) elvar Eva un kevd, dvoiktd ovu-
VEKTIKO, YV11O10 DTocVVoro Tob pryadikod Emmédov C .

“Eva onpeio w € f(D) kaleitar kévipo dotepdtntog (star center point) tod

ovvorov f(D), tdte kai pévo téte, Stav:
tfz) + (1 +t)ywef(D), zeD, 0s<t<I

Eav f € &, 161 10 obvoro tdv kévipov dotepdtntag tod f(D) cvpuPorile-
tat pE St

“Eoto Yo 1) bnékraon g ¥ 11d v dmoia Eyope:

"EBav fe Py tote 0€S§y,
&mov S eivar 10 £0OTEPLKO TOU Sf.

Ztv nopodoa épyacia éEetdlope v énidpacn mov dokel TO péyeBog Tod
ouvérov ¢ Emi tév GULVTELECTAV, an, To0 Taylor widg ovvapticeng f € Fo.
*Anodeikvibope tpio Ajppota koi d6o Bewpripata.

To Gedpnpa I, dnotehel tOv KOpLo kopud Tiig 6Ang perétng. > Amodeikvie-
Tt 67 adto M Pacikn avicdtnto: |an| < M (f, n), n = 2, 6nov M (f, n) eivan
otabepég @V omoiwv 10 péyebog EEaptdtar pdévo Gnd 1O cHvolo St. “H tehev-
taia adty GvicotnTa deiyvel v Enidpacn mov Exel 10 cdvoro S &mi 100 peyé-
Bovg TV ovvredeotdv o, Ilapabétope oydia dvagepdpeva otrv GkpiPeia
(sharpness) tfig td¢g dve PBacikiic dvicdtntog.

To Gewpnpa 2, Exel dg £Efig: "Eotwoav fi, f cuvaptioeig tic kAdoemg Fo
xai Sg, Sp, T@ dvriotorya cbvora kévipov GotepdTnNTAg TAV CLVAPTHOE®Y OD-
w®v. "Eoctocav M(fi, n), M(f2, n) td dvrictoigo @pdypata T®V CLVIEAEGTAV
v fi xai f, Snmog adtd 6picOnkav 610 Bedpnua I. “Ynobétope 61t St C $s.
Téte M(f, n) < M(fy, n).

Q
To Oewpnpa 2 PePatdver Gt dtav 10 ocbvoro S, mod dvtictoryel of pia
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cuvdptnon f € Po, peyordvel, 618 10 GvticToryo epdypata M(f, n) t@v ovv-
teheotdv thic f pikpaivouv.
Téhog kheivope Tiv perétn adty mapabétovtag pepikd YEVIKQ GYOALO TTOV

dgopodv ta kTnbévia ot avtiv dnotelécpata.



