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MECHANICS.— A study of the topology of a laser - damaged surface, by Pericles
S. Theocaris*, Institute of Mechanics, National Academy of Athens.

ABSTRACT

We consider scattering from an initially plane surface of a thin plexiglas
plate damaged by an impinging coherent light beam of a laser. The morphology
and the characteristic dimensions of the damage speckles was studied during the
evolution of the phenomenon by interferometry and the creation of diffraction pat-
terns. The cusped interferogram created by superposition of the egoluting two
initial diffraction patterns, created during two successive damage steps, forms
caustics corresponding to hyperbolic umbilic catastrophes. An experimental study
of the evolution of the damage phenomenon clarifies the mechanisms of elastic
and plastic deformations of the affected zome.

INTRODUCTION

Laser beams are capable of producing interesting and useful effects. Inve-
stigations of the effect of laser beams have multiplied over the recent years.
By laser effects we mean here the interactions between high-power laser beams
and matter. As a consequence of this interaction, phenomena of heating, mel-
ting, vaporization and plasma production may be created. Some of the most
interesting phenomena associated with lasers involve effects produced when
a high-power laser beam is absorbed at an opaque surface.

The temperature rise, produced by the absorbed flux of the impinging
light beam on an opaque surface, if this flux is below the levels producing
melting and vaporization of the substrate, may be evaluated by a classical
thermodynamic formalism. Indeed, we can regard the optical energy as being
instantaneously turned into heat at the point at which the light is absorbed.
Since the heat distribution occurs instantaneously for each laser pulse, a local
equilibrium is established, fact which justifies the application of usual equa-
tions of heat flow. This theory ceases to be valid only for pulsed lasers with
a picosecond duration of the pulse. Then, for lasers operating in a mode-
locked condition, it is common use to simply integrate over several pulses
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and rise a smooth envelope of the mode-locked train as a pulse shape for tem-
merature calculations. During the calculations of the temperature rise it is
a good approximation to assume that the thermal properties of the absor-
bing material are independent of the temperature. In this case it is also assumed
that the energy lost from the surface through reradiation or convection is
negligible. For long pulses, or for lasers of continuous emission, heat can be
conducted over a large area, which contributes to a reradiation even for low
levels of power concentration. In this case, the large area influenced by the
impinging energy contributes significantly to a heat loss.

For many cases of practical interest we may regard the problem as one-
dimensional, that it is assumed that the transverse dimensions of the laser
beam are large compared to the depth to which heat is conducted. Further-
more, it has been established that for many types of laser, the laser pulse,
normalized to unity at its peak, has approximately the same shape, when
considered as a function of its duration. This shape is generally accepted as
a standard for normal emissions. This shape, of an unsymmetric bell-form,
presents a maximum at a laser pulse duration equal to 0.2 the normalized
pulse duration.

The first phase of the phenomenon of absorption of laser radiation, which
is described as heating of the surface of the material in the regime where no
phase transformation occurs, is followed by a second phase, which corresponds
to a higher regime of absorbed flux densities, creating melting of surfaces absorb-
ing laser radiations. This phase is followed by a third one when vaporization
of the material of the surface takes place. The situation of melting, without
vaporization, is produced only over a fairly narrow range of laser parameters.
Indeed, the flux density must be high enough to raise the surface above the
melting point, but not much higher, sufficient to excite the material to vaporize.
For normal lasers, with a careful control over the parameters of the laser,
reasonable melting can be obtained, although the depths melted are generally
limited. For continuous high-power lasers any desired duration of exposure
can be attained by shuttering, and therefore effective melting can be produced.
Therefore, for laser melting with a maximum penetration, continuous lasers
may be the most feasible solution.

There is a great difference in the behaviour of surfaces struck by different
laser pulses depending on their duration times. Typically very-high-power
short pulses do not produce much vaporization, but instead, remove only
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a small amount of material from the surface, whereas longer lower-power pul-
ses from normal-pulse lasers produce deep narrow holes in the material.

At low laser flux densities, the amount of vaporized material depends
more on the thermal conductivity of the material, than on the latent heat
of vaporization. As the laser flux density increases, it reachers a value at which
the heat is supplied too fast to be conducted away. Then, the dominant factor
becomes the latent heat of vaporization. Considering that the latent heat of
typical materials used in such procedures is much smaller than either the
latent vaporization, or the quantity of heat required to raise the temperature
to the boiling point of the material, then, it is reasonable to neglect the influ-
ence of the liquid phase created during lased attack, fact which simplifies
considerably the calculations.

However, in many cases much of the material is removed in the liquid
state rather that in the vaporized state. The molten material on the walls
of the perturbation, ejected because of the pressure, increases the amount
of the material removed and eventually creates a blowoff phenomenon, when
the blowoff material is emitted from the surface by the laser heating. The
molten and resolidified material is concentrated at the rim around the lip
of the shallow crater, and this phenomenon is clearly indicated in the expe-
riments presented in this paper. Moreover, this material is contributing a
significant amount to the volume of material removed from the crater.

The blowoff material created during the early stages of the action of the
laser beam develops a recoil pressure, which raises the boiling point of the
target, above the usual vaposization temperature. This increase in vapori-
zation temperature of the vaporized material is sufficiently high, so that the
surface is prevented from vaporizing further and the material continues to
heat to a high temperature above the normal vaporization temperature, as
further laser light is absorbed at the target surface. Eventually, the target sur-
face will reach a critical point, where vaporization can occur. Although the
surface of the target is effectively cut off from the incoming radiation for a
large fraction, since the energy in the pulse is continuously absorbed by mate-
rial in front of the surface, at the end of the pulse: the blowoff material becomes
progressively very hot and it begins to reradiate thermally, fact which causes
further vaporization.

Modern methods of processing materials are actually using the above
described phase of the laser beam effects for industrial and scientific appli-
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cations. Indeed, this directed energy source concept has provided means for
performing such operations without intimate contact between the energy
source and the workpiece, fact which raises the attractive possibility of eli-
minating knives, drills, flames, chemicals and other instruments, from certain
delicate operations in various fields of physical and applied sciences, as well
as in medical sciences.

While the already mentioned phenomena, created by using convenient
laser beams constitute the basic ones, there are also some further additional
phenomena, which are intimately related, being consequences of the parti-
cular state of action of a certain laser beam on a certain material. These phe-
nomena are mainly the sputtering during evaporation, the evaporation
of entrapped water, the heating of entrapped gases, chemical reactions,
phase changes, shock wave propagation and plasma production, when a
laser radiation strikes a solid target. All these phenomena have been exten-
sively studied in the numerous publications and the existing literature
related to this interesting chapter of science.

On the other hand, the scattering of ion beams from solid surfaces can
give useful information about this particle (ion)- solid interaction [1]. It is
accepted as a good approximation for describing the phenomenon of inter-
action of ion-solid surface that the interaction potential between ion and solid
is zero outside a surface ¥ considered as roughly flat, but is perturbed in a
random manner by thermal effects due to speckles created by a laser-beam
damage. An eikonal approximation of the exact quantum scattering from the
surface 2 is described by the model introduced by Garibaldi et al. [2] for spe-
cial forms of surface X based of the theory of the classical surfacc rainbow stu-
died by Smith et al. [3].

In this paper, by assuming more realistic flat surfaces, we establish the
topology of the classical rainbow in the two-dimmensional space of directions
of the scattered particles. In was found that the rainbow in such a space con-
sists of two caustics [4], one inside the other. The inner curve has the form of
a cuspoid curve with several cusps, while the outer curve is a smooth one.
Furchermore, the diffraction spots lying near rainbows appear intense and
distinct near cusps and become softened to almost smooth curves far away
from them. Employing Kirchhoff diffraction theory we have mneglected as
insignificant multiple reflections between different parts of the surface, assump-
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tion which is justified for our case where the total variation A® of the speckled
slopes is small and the incident light beam does not graze the surface.

A series of tests were executed on thin flat plexiglas plates, whose initial
average surface was roughly flat. A collimated light beam, emitted from an
CW Argon-ion laser, was impinging the surface. By increasing the energy flux,
emitted from the laser beam, speckles on the surface of the plate were created,
whose areas are extended as the light flux is increased. The topography of
the disturbances was defined by a series of interferograms formed on a refe-
rence screen placed some distance from the workpiece, so that the reflected-
light beam from the speckled region to be received on this screen. Additional
measurements of the deformed by the speckles lateral surfaces of the work-
piece were performed by using a rectilinear surface graph-recorder of the
Talysurf type, whose very fine stylus scans the surface of the testpiece along
parallel lines at different orientations. Interesting results were derived, where
the experimental data confirm the validity of the theory and establish the
laws of deformation of a surface under the influence of a laser light beam.

THEORY

We consider scattering from a local corrugation, created by a laser damage,
on a flat surface £ of a hard opaque material. Simplified diffraction theory
enables to study diffraction effects, and incoherence to be treated within the
same framework. The classical rainbow is a curve C in the two-dimensional
space of the deflections G of impinging light on the surface of a perturbation.
A topological study of cerves C shows that C has cusps, whose position depend
on the form of the surface studied X. Moreover, the scattering of light in the
perturbation is singular on X, with the singularities there softened by
diffraction. The diffraction functions may be described along their smooth
parts, as well as at the cusps of G.

The surface X under examination is considered as perfectly flat, contain-
ing a random perturbation, because of the inelastic effects created by thermal
influence, due to an impinging laser beam. The topology of the classical rain-
bow in the image domain consists of two caustics, one inside the other, in which
the inner curve has several cusps, while the outside curve is a smooth one.

We use a simpler version of a rippling-mirror model, in order to derive
a simple approximate formula describing the pattern, according to which
multiple reflections between different parts of the surface are neglected as
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insignificant, since surface slopes are small and the incident beam is normally
impinging the flat surface. Therefore, the angle variation, A®, does not exceed
a few degrees.

We consider a system of Cartesian coordinates r=r (x,y,z), for which
the plane z=0 defines the horizontal plane of the reflector, whose points are
located by R=(x,y) and the rippled surface under study is defined by h(R)
above the plane R, where h expresses the height of the perturbation.

The incident beam is expressed by a single plane wave ¢ (r,t) of frequency
w,, corresponding to an energy E,=hwo, and a wavevector k,. Its wave-
length is given by:

n h
)‘U = —————
% (2mE0)m

where m is the mass of the particles. The horizontal component of k, is kn and
ka the vertical, which is negative, since the wave is approaching > from above.
Iinally, the amplitude of the wave is denoted by a, which is specified by k
and . Indeed, the scattered particles emerge in different directions k and with
different frequencies o, because of the shifts due to Doppler effect, caused
by the time dependence of h. Therefore, they may be represented by a wave-
function, which is a sheaf of plane waves receding from X, so that their vertical
component kn is positive real for K(k and positive imaginary, if K)k.

For a periodic lattice of disturbances, where the scattering is elastic

(w=0wy) the light intensity I is expressed by [5]:

2 N\
kg 0 k, @) = “‘*‘”&%ISG |8 (k-0 1)

This relation indicates that the emergent particles appear as a series of
diffracted beams on directions k =ky+ G, where G are two-dimensional vectors
of the reciprocal surface lattice and the strength of the Gth diffracted beam
is expressed by ISg|%. Then, the diffraction amplitude Sg is given by:

- ’:?Q,‘“‘ exp{_i [c-r + (ko Hkp) h(R)]} @)
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In this relation A expresses the area of the unit cell. For 2 and h small,
the number of the observed diffracted beams is expressed by:

mAE
N=—0"22

3
2:th2 ©)

and is large, so that the diffracted beams are densely distributed in direction
Moreover, the respective deflection G=(k-k,) may be regarded as a quasi-
continuous variable. But, when k,=k is large, the integrand of Eq. (2) is ra-
pidly oscillating, as R traverses the unit cell, and most of the area of inte-
gration gives no contribution, because of destructive interference, except iso-
lated points Ri(ky, G), where the phase of the integrand is stationary and
where we obtain contributions to Sg. The station-ry points R; are given by:

G = - (k) Vh(R)) (4)

Relation (4) expresses the condition that the surface point R reflects

a classical particle specularly from k, to (k4 G). Therefore, it may be estab-
lished that only classical paths contribute to the diffraction integral of Eq.

(2), when kg is large and relation (4) constitutes an implicit equation for G,
since it is valid that:

k=K K #+6)]"

Then, the dependence of k, on G is weak for gently varying surfaces S, as
it is the case with the perturbations considered here, when the points R; are
sufficiently separate between them. We could therefore expand the phase
in Eq. (2) up to squares of terms (R-R;)? and we derive the expression for the
diffraction amplitudes Sc given by:

- exp (-i [G* R + (kH+k) h (R
G~ Ak H+k;) 4 " (KR }m

S )]

where the summation is over all points R;, which are reflecting points with
deviation G. Finally, vi takes the values yi=i for a minimum, y; =-i for a maxi-
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mum and yi=1 for a saddle point. For gently varying surfaces X, K(R) is the
Gaussian curvature of X at R, that is the product of the two principal curva-
tures at R and it is positive for X concave or convex and negative for T
saddle-shaped.

What is observed in experiments is |Sc|?. Equation (5) in the extreme
limit indicates that experiment would datect only an average of the inter-
ference oscillations, which are tending to zero, while it remains a steady term.
Then, Eq. (5) gives:

2 4n? 1
S, .= (6)
Gdas ™~ 2 (lkml’sz)z 2:' Iﬂ((Ri)l‘

which indicates that the Gaussian curvature of £ at R yields an inverse mea-
sure of the strength contribution from the path i.

For a given K,, the intensity scattered with deflection G becomes infi-
nite whenever any contributing surface point Ri(G, K;) lies in vanishing
points K(R). Then, the equation:

:'«R)=az—ha—y-l——J =0 (7)

defines a line L on this surface, whose image point G lies on a respective line
C, which is strongly illuminated and constitutes a caustic in the G-plane, that
is the locus of rays for which angular focussing occurs and the observed scat-
tering should be dominated by this line €' on G. The respective lines C are
called the rainbow lines. Along these lines lie the most densely distributed
diffraction spots, fact which justifies their names [4]. Figure 1 presents the
configuration of the surfaces G in space.

According to relation (7) the surface 2, that is the landscape above the
R-plane, will have summits, where strong repulsive forces are exerted by the
incoming particles, immits, where minima of the repulsive forces exist, as well
as saddle points [6]. Now, the lines L are the points of zero Gaussian curva-
ture, where one of the two principal curvatures of X vanishes, while at the
summits or immits both curvatures are either positive or negative. Therefore,
between a saddle and a summit, or an immit, lines L must cross an impair
number of times, the least being one.
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Thus, lines L consist of closed curves surrounding regions of positive K
containing summits and immits, while the open region of negative curvature
containing saddles. The curve L, around summits will generally not have the
same shape as the curves L, arount immits, because summits and immits are
not symmetrical features of X.

Fig. 1 Schematic of the hyperbolic umbilic caustic surfaces.

While the rainbow line C in G is generated by L of Eq. (4), the two closed
curves L, and L, are generating two closed curves C; and C,in G respectively,
where C, lie within C;. Figure 2 presents a general form of rainbow lines C, and
C, originating near summits and immits of the surface . From relation (4)
it can readily be found that the image of C is a single rectangle given by:

G _i_zi‘.‘l’.(lk 1+K,) (8)

X

where a and b are the interlattice distances and hp for an initially flat surface
is expressed by:

hy=¢hy(R) =h cos[ J {%—J 9)
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where ¢ is the elevation due to the perturbation, which is not symmetrical in
summits and immits. Then, for ¢ different than zero, the rectangular rainbow
line, given by Eqs. (8), must split into two different curves, as indicated in
Fig. 1. Using catastrophe theory [7], we state that singularities in the two-

Gy

By
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I'ig.2 The caustic curves derived by the intersection of the caustic surfaces by a plane nor-
mal to the axis of the light bundle.

dimensional case of plane G are lines C, which are smooth except at cusps,
whose simplest cases are the points x=y=0 on the curve y?=x3.

The rainbow surface must have two sheets C; and C,, which are touching
each other along €=0, at a corner, and therefore these catastrophes are of the
type of the hyperbolic umbilic surfaces. Thus, we expect the rainbow lines to
take the form shown in Fig. 2. Then, it is easy to derive that:

16n%2h /2 167 h 16m%e h
R e 0 e ) 10
Ac alo and Ax a)»o , Ay bko (10)

However, diffraction effects obscure the details of the rainbow line (',
because G is an intermittent variable, consisting of a series of reciprocal lattice
points. Interference between waves emerging from different points in the
same lattice cell in R blurs out the rainbow line into a diffraction pattern in
G, while interference between waves emerging from equivalent points in dif-
ferent cells quantizes G, so that this diffraction pattern is sampled at discrete

2

points. Figure 3 presents the contours of the cusp diffraction function |C

given by relation (13).
Near a smooth portion of the rainbow line C relation (5) breaks down,
since two contributing surface points R; and R, coalesce. In such a case it
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is necessary to establish a uniform approximation to SgR, based on Eq. (2),
which is valid on and near the line C, while relation (5) is valid far away
from C. In this case the result is that the contribution Sg®R from R, and R, in
Eq. (5) must be replaced by an approximate formula involving Airy functi-
ons A; [8] and their derivatives Ai.
The diffraction amplitude Sg® near the rainbow line is given by [4]:
TRAERL .
’R_Zrtﬁ exp.'L%ikq’ﬁ“’z'I"”' (JW L ﬂ]{mz-tb,)] :
b Ak, Wk,) {

YG

’ 1 % 1/6
w] [ A (3
<A|{'%(¢2'¢1) ].i(,q'ﬂ ()" (3@2@,)) XM[-{;@Z-%)) }

where @ denotes the phase in Eq. (5) expressed by:

=[G R+ )R ] (12)

For a convenient selection of the signs of the Gaussian curvatures &, and
Iy and positive roots for (@y-®,)?* the Airy functions have a negative argu-
ment and are thus oscillatory functions [9]. In this case relation (11) descri-
bes the supernumerary rainbows [10]. For deflections G on the dark side of
C, there are no real paths R, and R, and taking a real negative root of (©y-®,)2/3
the Airy functions have a positive argument and decay exponentially into
the shadow. Figure 4 presents the refraction caustics from a laser speckle
on a plexiglas plate. Fig. 4a gives a general view of the pattern, while Fig. 4b
the detail of the inner caustic C.,.

Finally, along the rainbow line €| relation (11) remains finite and tends
to the value of order (hy/29)!/3, larger that the classical region away from
C, where h, expresses the maximum excursion of X from the R-plane. On the
other hand, near a cusp of C, where three points R; are coalescing there, rela-
tion (11) breaks down and, instead of Airy functions, we must use the following

function describing the diffraction near the cusp catastrophe of the third
order [11].

s [ (e 2 )
C(x,y)Eiexp lt‘g %—+ytJ dt (13)

S
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Fig. 3 The diffraction pattern at the vicinity of a casp of the internal caustic C, where the
classical rainbow line is developed.
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Fig.4 (a) Interferogram of the reflected rays from the speckle created by a laser beam and
the pair of caustics formed by the diffraction patterns of the interferograms. (b) Detail of
the inner cuspoid caustic C,.
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where the x, y-variables are smooth distortions of Gx and G,. It turns out
that on the cusp itself the quantity |Sc|? rises to a value of order (hy/rg)'/%,
larger than in the classical region away of C, so that the cusps are the most
strongly diffracting parts of the rainbow line.

Figures 4-6 present contour maps of |C(x,y)? at different steps of cvo-
lution of the damage phenomenon on an initially flat plexiglas plate attacked
by an Argon-Laser light beam. In the scme figures a queantization of equi-
valent points, which are not sufficiently closely packed, creates distinct dif-
fraction spots on G appearing along the rainbow lines and especially near
the cusps. While in Fig. 4 the laser light beam is impinging normally to the
flat surface, the patterns in Figs. 5 and 6 are with different amounts of obli-
queness of the impinging light rays.

LASER DAMAGE OF SURFACES STUDIED BY FRAUNHOFER DIFFRACTION

On the basis of Babinet’s principle [5], it can be shown that the radia-
tion reflected from an infinite perfectly reflecting surface containing a speck-
le of a few microns depth, which works as a total absorber, produces the
same diffraction pattern as the radiation propagating in the opposite direction
through a hole of the same dimensions in an opaque plate.

A speckle, many microns deep, might be considered as a total absorber
and hence scattering from its pit might reasonably be expected to result in
a single-opening diffraction pattern. Since the pits created by speckles deve-
loped during the first and subsequent phases of laser damage are always shal-
low, their depth being of the order of a few microns, as compared to their
surface dimensions, a simple model for such a system would be to consider
the diffraction of radiation, reflected from the surface of the specimen, and
the bottom of the pit. Since the morphology of the pit is with abrupt slopes
at the periphery, like a shallow crater, it is possible to ignore the effect of
scattering from the sides of the pit. Therefore, the part of radiation reflected
from the base of the pit can be considered shifted in phase relatively to the
part of radiation reflected from the surface of the specimen by an amount
of 2kd where k is the radiation wave number and d is the depth of the pit.
This model is a typical and simple one for single grooves and diffraction gra-
tings [12]. More rigorous theories exist for geometries of the discontinuity
close to the reasonance domain. However, since the pits created by laser da-
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The same patterns as in Fig. 4 but under different angles of incidence of the light

bundles on the reference screen.
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Fig. 6 The same pattern under large angles of inclination of the references screen.
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mage studied here are represented by shallow craters in general, and the dimen-
sions of the pits are far away from any comparable dimension of resonance
of the radiation, it seems reasonable to use this simple approach, which yields
satisfactory results.

Let us define the Oxyz-frame with the Oz-direction coinciding with the
opposite to the normal to the initial surface of the specimen, which is repre-
sented by the Oxy-plane. The system of polar coordinates r, 0 will be used
in the following because of the angular symmetry of the pit. We assume that
the intensity of the incident beam at the specimen surface has a Gaussian
distribution of the form (see Fig. 7):

[

- e
I=Ioexpk a2

where I, is the on-axis intensity and a is the radial distance from the beam-
axis to a 1/e intensity point. In the Fraunhofer approximation the scattered
intensity in any 6 =const plane, containing the Oz-axis, can be expressed by:

2
I ©o
L=—2| [ At exp (- ikrsing) dr (14)
where:
g A ] for Il <1,
A(r) = exp 2a2J
£
A(r) = exp [ Pwh 2ikr, forlIrl> 1,
and 2r, the diameter of the defect.
By adding and subtracting the integral:
T 2
Ie 3 ‘
-=— - ikrsin® (15)
Jonl w0
0

within the absolute value signs, the integral in Eq. (14) can be converted into
thr sum of two integrals, where the first integral extends from negative to
positive infinity, whereas the second integral extends from from negative to
positive infonity Carrying out the integration and the respective algebra,
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we obtain finally three terms, from which only the third one, corresponding
to the diffraction of a Gaussian beam truncated by a pit, is not negligible.
Using asymptotic fexpressions for the error functions appropriate for the
case where a))rodr, I(0) can be approximated by:

2
sin (krosine) 1
10)=E, sinzkd{ —k;_sx_ﬁe-—] (69
0
where E,=32ma’ryl;/A%.
Equation (16) represents the conventional single-defect diffraction pat-
tern [5] with the overall intensity modulated by the pit depth.

When a small isolated quasi-circular defect is present in the illuminated
spot on the surface the intensity I in a transverse plane passing through point
0, can be approximated by:

I(r) = I(r) + 1(r) (17)

where I,(r) is the background intensity distribution in thr absence of the
defect and I4(r) is the intensity distribution pattern from the surface defect.
The intensity distribution in the Fraunhofer diffraction pattern from the

2m'or .
25 (M

=1, F_r]—
0

defect can be expressed by:

(18)

M

where I, is the intensity at the center of the pattern and 2r, the diameter of
the defect.

The intensity distribution I4(r) is a typical diffraction distribution shown
schematically in Fig. 7. The I4(0)=I, intensity is very small.

EXPERIMENTAL EVIDENCE OF FORMATION OF LASER SPECKLES

An experimental investigation of the formation of diffraction patterns
and their rainbow caustics was undertaken in order to ascertain the theory
developed. The experimental set-up used in the tests was simple. A Neon or
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Argon gas cw-laser lightbeam was passing through a collimator and a diaphragm
regulating the intensity of the light bundle. The light beam is impinging nor-
mally on the surface of the plexiglas specimen and the partly reflected from
its surface light beam is received on a ground glass reference screen, or on the
viewing frame of the recording camera.

By regulating the light intensity of the laser beam we adjust the light
intensity of the impinging beam to be sufficient for creating a speckle of the
flat surface of the plate. In order to facilitate the creation of the speckle phe-
nomenon, coloured plexiglas plates were used, so that the almost totality of
the impinging energy was acting on the surface of the specimen.

The formation of the speckle crater resulted in a progressive variation
of the angle of incidence of the light rays in the zone of development of the
speckle, which when reflected, formed an interferogram containing all infor-
mation concerning the instantaneous shape of the crater and its evolution
as the light flux from the laser beam was increased. Figures 8 and 9 present
a series of interferograms indicating the development of the laser speckle on
a flat surface of a coloured thin plexiglas plate. For a light flux emitted from
the laser kept constant at some level, the interferogram started and inter-
ference fringes were created at the beginning of the process with a high speed,
as the phenomenon of deformation of the surface accelerated at the beginning.
As the process evoluted, the formation of fringes was retarded, tending to
some limit, where the interferogram is stabilized corresponding to the respe-
ctive level of light flux from the laser.

In the first steps of creation of the speckle, where the pit is formed by
elastic deformations progressive reduction and withdrawal of the light flux
of the laser reduced progressively the shape and number of fringes of the in-
terferogram, up to its complete extinction (Fig. 8).

Increasing the level of the light flux beyond a certain limit, up to which
the speckle deformation was elastic, permanent destortions of the shape of
the surface of the plate were established. It was observed that it was a zone
of light flux producing permanent deformations of the speckle, for which the
respective interferogram was a continuous one with a smooth change of the
interfringe distance (see Fig. 8b).

However, when another upper bound of light flux can be reached, for
which a second more brillant interferogram was emerging from the center
of the initial interferogram, this new interferogram was again progressively
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(a)

(b}

Fig. 8. Interferograms at the initial phase of creation of the protrusion and their

respective shapes.
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increasing in size and number of fringes, up to a certain limit of energy
(sec. Fig. 9). Finally, if the light flux continued to increase, this second
interferogram lying inside the first one, tended to a limiting form, above
which the material eventually changed phase, becoming liquid and boiling
drastically and fiercely. In this level of deformation of the speckle, the
interferogram was continuously changing by forming internal secondary re-
gional interferograms, pulsating inside the big crater of the stable interfe-
rogram. Figures 5 and 6 indicate the successive steps of formation of inte-
rferograms with liquified phases inside the craters.

In order to study the topography of the speckles created by laser damage
the lateral faces of the deformed plate were experimentally examined. For
this purpose use was made of a rectilinear surface graph-recorder of the type
f Talytsurf No. 4. The instrument disposes a very fine stylus, which scans
the surface of the workpiece along any radial line. With this instrument and
with the selected magnification, variations of thickness of the order of less
than one micron were easily detected. Thus, in Figs. 10 and 11 the respective
thickness profiles of the corresponding interferograms were plotted from the
graphs of the instrument.

It was decided to sweep the neighborhood of the speckle by parallel equis-
paced tracings in different orientations in order to create the relief map of
the deformed zone. Figures 10 and 11 present the profile graphs of rectilinear
parallel equidistant traverses for two different steps of development of a typi-
cal laser speckle. The first pattern in Fig. 11 corresponds to the formation
of a hill due to the expansion of the material heated by the laser beam, while
the second represents the later phase, when at the top of the hill a crater is
formed where later-on the material of the plate is liquified.

Finally, a series of photographs with a scanning electron microscope
shown in Fig. 12 were presented in an arrangement of z-modulation of the
instrument, which is capable to present the topography of the scanned surface.
Again, these scanned microphotographs present in relief the different shapes of
the laser speckles, that is the speckle at its initial step of deformation present-
ing an almost flat hill, the second when a flat top is formed at the height of
the hill, and finally the third step when a distinct crater is developed at the
center of the hill.

This extensive experimental evidence corroborates the theory of creation
of speckles under the influence of a laser light beam impinging normally on
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Az

Fig. 9. Interferograms of the initial and subsequent phases of the phenomenon of

creation of the speckle when a crater starts to develop.
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the workpiece. The properties of the rainbow caustics predicted in the theory

may be strickingly confirmed by the experiments with laser light damage.
The two dimensional space of deflections due to speckle defines the li-
miting curve shown in the figures, which is a classical rainbow caustic, sho-

wing cusps, whose positions are depending on the form of the crater of the
speckle. While the scattering of light around the speckle is classically singular
the effect of diffraction consists in a softening of the singularities as we recede
from the cusps. Figures 4 to 6 indicate the formation of the diffraction patterns
from reflections ¢t neighbouring areas of speckles, consisting of the inner
cusped rainbow caustic (', es well as the detailed patterns at the neighbour-
hoods of the cusps, where the quantized diffraction patterns are very distinct.
While the internal rainbow caustic (', is a four-cusp curve, the external one

(', is a smooth one. The distances Ax, Ay and Ac, given by relations (10),
can be readily evaluated from the interferograms.

By rotating thr reference screen, where the interferograms are formed,
so that the laser light bundle is impinging obliquely to the screen, a trans-

formation of the caustic pattern is achieved, where, for small angles of rota-
tion the rainbow caustics become elliptically formed (see Fig. 5). If the angle
of angular displacement of the screen is increased, the pattern becomes very
complicated, ¢s it is indicated in Fig. 6, since the configuration on the screen
corresponds to an oblique intersection of the caustic pattern in space. In this
configuration zones corresponding to a value of the pertrubation parameter,
¢=0, appear as very restricted areas. The similarity of the experimentally
obtained pattern of Figs.4 to 6 with the configuration of a typical hyperbolic
umbilic catasctrophe in Fig. 1 is striking, thus, confirming the idea that the
rainbow caustics correspond to intersections of the rainbow caustic surface

in space by different planes and this caustic surface belongs to the category
of the hyperbolic umbilic catastrophes.

Then, the shapes of the rainbow caustics can give detailed information
about the form of the speckle created by the laser light damage, by defining
the varation of the values of Ax, Ay, Ac for different intersections of the
rainbow caustic surface by different planes c=zi. In practice, the details of
curves C' become blurred to a different degree, depending on the choice of
the value of the perturbation parameter . Furthermore, in a finer scale it
is also possible to observe the beginning of quantization of the rainbow cau-

stic into diffraction spots, which occurs because the laser beam illuminates
several unit cells in the speckle.
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Fig. 11, Talysurf tracings of the variation of the thickness of the speckle hill by successive

traverses (a) initical step (b) step with crater.
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(c)

Fig.12 Interferograms of the speckle during the attack of the laser light as they are seen
by a scanning electron microscope at z-modulation (a) initial step (b) initiation of crater
(c) development of crater.
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IIEPIAHYIX
Melétn tijc tomoloyiag Eémigavei®dy Orod Tiv inidpaciv axtiveov Laser

Eic mhv dvaxolveoty adTiy peletdtol 7 [LOPQY OTLYUATGY OYLLOVRYOULEV®Y
énl Astov émpaveldyv mpocPourhopévev Hmd axtivey Laser. “H popgodoyio xal ai
AOPUKTNOLETIXOL DLAGTAGELS TGV O7ULLOVPYOVUEVGY GTLYLATWY TOLOVTGOV XUTHGTPO-
@V pedetdvroar xatd THv EEEMEWY Tol gauvopévou TposBolic Tig Emipaveiog o
6y axtivov Laser 1§ Bonlela dmwrindy pedddwy cupPoropetplog xol mepthhdoene
TGV TPOGTLTTONGHY axTivay. “Amodeivdetar Sid T TNy ©opdv GTL T& dnELoVpYoL-
pevee supBoloypdppate Ex TG Topapoppovuévns Emipavelns oynuatilovy dmetl-
xovioelg cupBoliic, Snuiovpyodvra xaueTIXdE, #TOL XATAGTEPOPAS AvVeTEpXG TREEWG
7ol Timov T&V dmepfoluxdw Supaloelddy Emipaveidy, GLLPGVLE TPdS THY Xhx-
oty pabyuatieny Oewptay xatactpopdy Tol René Thom [7].

Al Emodverar adtal Tepvépevar Omd Emmédwy xabétwv mpdg Tov &Eova THG
onTindic déoune oymupatilovy Sbo xapmdrag, Teg xahovuévas lyvn odgaviov Tdéov,
36t of vépor nuiovpylag Twv elvar of adtol pé Todg vépoug Todg Siémovrag TV
Sprovpyiay TéY YYeoTEY odpavieny ToEw elc TV dTpocaipay, puivbusva T& 60T
Tp®Tog dpehétnaey xal Ewxe T dpbiy Mo 1ol pavopévov Ty 6 "ENny copog
Dooryxiorog Mavpbluxog mpd tob Erovg 1575, #roug Tob Oavdrov Tod copol [13].

Ta Tyvy odpaviov TéEou dmorehobvror &md Sumhijy xoaumilgy, Thv ulav évtdg
i &g, "Evd 9 EEwtepunt) elvan Aelx mpocopordlovan mpdg wbxhov # ENeuy,
7 éowtepuen) elvar gaupoedns TeTodoxelos xaumily & T pauey Eotpauéva TPOS
76 €Ew. Al dmootdaeLg, elte TGY %opuEBY TEY papdy, elte TEGY XOoLM@Y TGV TEC-
Ghpev xapmilwy, drd Tie dEwtepixiic xauoTidic didouv ayéaets, 3 Gv tmoroyileTon
EmounpiBic 6 Bog xal % pmoppodoyia TéV oTIYUdTOY TwY XaTaoTEoRGY &5 dxTivey
Laser.

Kara mv mepinrwow 1 ouyxevipopéwng Séopng tév dutivey éml tig Aetag
émpavetag Tol Soxtulov dmuiovpyeitar Tomnd cuyxévtpwats dvepyelug eig TO 67-
petov mpoomrdoews, &yovon GO¢ Grotéhesua v Oépuavely TiHg meploxic %al ™y
Sbyrweoly Tng, Snutovpyolioa Abpov, Tob bmolou T& yapaxtneroTind peyébn bmo-
royiGovran €x THg dpyiniic cLEPOATc TAY Avaxhwuévev axtivey, ol omolal GYNUxA-
Tilouv &ml TETAGUATOS GUUUETEIXOY XUXAXOV GLUBOAGYPOLULLY.

"Eov ) mpoonintovsn dvépyeta tmepPaivy Gpiouévyy otabumy xal ypévov Tpoc-
TTOCEWS, 6 oynuaTi{duevos Adpog EEehicoeTar elg xpatipa Npatatetov, elg TO xévtpoy
adTob. Al dvaxhdpevor Gxtiveg éx ToD %paTipos ToVTou d7wlovpyoly deTEROY GUUL-

Borbypappn, QoTEwdTEPOY TOD TPMTOL, xal Odpdxevrpoy pE To mpdrov. "EEéMEg
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&y dbo ovuBoloypuupdtey Snuiovpyel &v cuveysta Tag dmexoviceg mepiiacewg
UE TRG YopurTNPLOTIXGG XapumOAag 0dpaviov TéEov.

Al SuSoyal pdoeig Tob pawvopévon dnurovpyiag tob otiypatos Laser pehe-
Tévrar, af piv dvo mpdtan éml T} Pdoet THe dmTinic Oewplag oupBoriic Fraunhofer,
7 3¢ tedeutain Bdoer THg Bewplug xutacTpopdv xal Tie dmhomomuévng Bewplag
nepfrdoews xate Kirchhoff, % émola &yer dpappoynyv 8¢ dpatde Sxtapayds Tig
¢mnédou Aelag Empavelag, &g elvar N mepintwoig dmd EEéracwy. “H mpoominrovon
axtwvoPoria Laser Ocwpeitar mapovotdfovoa ARV xatavopny &v T6 YOpe %aTd
Gauss.

Merpopatinal peréroar pé dmidc Sxtabers loyvodsas Sux tiv fewpiav Fraun-
hofer #wxav upBodoypdupata peydhg motéryrog xat edarolnoiug. Al wdral
Suutdlerg ypnarpomornoay xal Sid THv pedétny TV gavouévey repirdoens.

Mpog Suroradpwoy tév drotehesudrov éx Té@v dnTdy metpapartixdy pelé-
dwv &yéveto &v cuveyety O’ Exacrtov melpapa peréty tig Tomoypaping Tol oTiypa-
tog, 19 Bonbela Mav edashitov unyevqudrey adtopdton xataypugic TGV AvG-
poh@y THe émipavetug, Sk capdoews Tyg uE Mav Aemrov xal edaichnTov GTOAOV
Tomoypapiod pnyaviuatog thmov Talysurf No. 4. Ta &v Aéye Swrypdupare dme-
deiEav Ty euueeviay Tév Bewpyridy dmotelesudTmy xal THY OTTIRGY TOLOVTOY.
Térog, perérn 16y oTryudroy Sid To YhexTpovined pixpooxrorniov cupwoews TOD
épyaostnpion *Avtoyiic ‘Yaxéy tol E. M. Iohuteyvelov, sl Siapbppwoty t0d dpyd-
vou %t THY z-xaredfuvery mposmrdoswng Tob putds Laser, #wxe cupBoroypdp-
pate Tautbonua wé te edpebévta Sk Tév Aowmdv pebbdwv. ‘H totadty TavtéTig
TBv dmoteheopdtoy xatadcmevier THY dxpiBelay xal Ty peydAny edaslnoiav Tig
pebédov, 7 dmola elvar ) mpdtn %0l Eoov yvwpilopev dpapuoyy i webbdov i
ovpBoropetplag Sk tHv perétny Tév Sadixactdv Epupuoyic TéV dxtivev Laser
el ouyxoMoei 3 Suxtphoeg xal év yéver Stapoppdioes, Téoov elg Ta duye Hhxd,
boov xal eig Thv EuProv Gy,

Téhog, Séov drwg dvapeadF 811 8 cuveyloews Tiic mposPoldic T Emipavetag
700 Soxiplov 67O tiic cuyxevtpwuévng déouns Laser, ép’ Eoov 7 poy Tijc omTUxig
evepyelag elvar Smepdve xpiotpwy Splwy, petd THY TAEY dvdmTudy ToD %pEaTiiP0S
elg Ty Statapay Ay, Snuwrovpyeitar i Tob Aol évtdg Tl xpatiipog xal év ouve-
xeta Evrovag Bpaswde Tig Taxsione GAns. Awk Tob Tpdmov adTol & xpatip ooy wpEL
eic T Bdboc T mhandg uéypr mMjpovs Sxtpnosde s ‘H Sadiasia adrh dmo-
tehel Tov Buody pnyavicudy Suxpoppdosws T@Y cwpdtey & dmosTacens S
yehoemg pwtdg Laser, ws0650v % dmota &yeu ebper ouepov edpeiag Epapuoyas sig

TV Teyxvohoyiay xal THY laTpuxny.




