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Products and lengths in halfgroupoids (first part), by S. P. Zervos *.

*Avexovadn 00 1ol “Axadnuaizot x. K. IT. Haxaiodvvou.

I. REFERENCES AND CONTENTS

Our basic reference text is R. H. Bruck’s «A4 Survey of Binary Sy-
stems» (Springer, second printing, 1966, p. 1 - 8). Abbreviated reference
to it: R.H.B. The terms «lemma» and «theorem» always refer to results
stated there, while we preserved the term «proposition» for results sta-
ted here.

In section III, we define the natural notion of product in a half-
groupoid (in multiplicative notation). In the special case of a groupoid,
such products reduce to the classical «words» [see, for words, A. G.
Kurosh, «Lectures on General Algebra» (Chelsea, 1963), p. 138]. In spite
of its simplicity, this notion of product is not at all used in R.H.B.
However, its usefulness is attested by, for instance, propositions 1-3,
which immediately give for some theorems proofs simpler and more
natural than the ones in R.H.B. Section IV has, merely, a preliminary
character to section V. This last section constitutes the main part of the
present paper ; here, the introduction of the new, as far as I know, notion
of the length of an element in a halfgroupoid (in two versions) permits
to us the beginning of a close investigation of the structure of the gene-
ral halfgroupoid. This will be continued in forthcoming papers.

II. TERMINOLOGY AND NOTATIONS

The Bourbaki set-theoretic terminology and notations (in particular,
we use «families» instead of R H.B.’s «collections»), with < in place of
<, this last symbol meaning here c and ==. M = either N (i.e. the set
of all natural numbers), or the set of all elements of N < than a given
one . u,v and ¢ will denote elements of N (possibly, of M; this will be
explicitly indicated). Abbreviations: Iff = if and only if. Resp. = res-
pectively. | denotes the end of a proof.

* 5. 71 2ZEPBOY, I'tvépeva xal pwhun elg tég douds pidg mepindds wpLopévng
dowTepintic mpdEewsg (pépog mpdTOV).
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The algebraic terminology is, in general, that of R.H.B.. However,
in the notation for a binary operation (called, also, for reasons of sugges-
tiveness, «multiplication») we write a.b or a+b in place of his ab; and
we denote by (A,") or (A,*) the halfgroupoid defined resp. by or * on the
set A, to avoid confusion between the halfgroupoid and its carrier.

Abbreviations and notations. hgr= halfgroupoid.
subhgr = subhalfgroupoid. (A,) < (B,’) means: (A,’) is a subhgr of the
hgr (B,). (A,) = (B,’) means: (B,") is an extension of its subhgr (A,").

(Purther abbreviations of this sort will be introduced later.) mec (A, , A)=
the maximal extension chain ((Av,’))veN of (A,,”) in (A,). Gen
(Ao, A) = (UAv,’). (This will be justified later.)

veN

Further terminology and notations will be introduced in the sequel.

III. PRODUCTS, AND THEIR SYSTEMATIC USE

Definition 1. Given a hgr (A,’), any finite sequence of elements of
A, and parentheses (it is possible that no parenthesis or even no paren-
thesis and no * appear in this sequence) which is defined in (A,") and
equal to an element of A will be called product of elements of A or, more
simply, product in (A,"). The elements of A appearing in this sequence will
be called the factors of the product and, also, of the element of A repre-
sented by it. Notation: a=prod (A,"). Abridged notation: a=prod A.
Every a€A is, trivially, prod A.

If (A,) = (B,") and b=prod B with all its factors belonging to A,
we shall write: b=prod (A, B). The following «transitivity» of prod
holds, then, obviously: If (A,") = (B,’) = (C,") and ¢ = prod (B, C) with all
its factors being prod (A, B), then ¢ = prod (A, C). Notation: Prod (A, B)=
the set of all the elements of B which are prod (A, B). The following
«transitivity» of Prod holds, then, obviously: If Ay =@ yre ),
B < Prod (A, B) and C = Prod (B, C), then C < Prod (A, €),

Proposition 1. Given mec (A, , A), U,\]‘\v = Prod (A, , A).

VE

Proof. 1) Every element of A, — A, is, by the definition of A,, a
product of two elements of A,, hence, prod (A,, A). Suppose that, for
some p, A, < Prod (Ao, A). Then, A,y —A,, which, by its definition,
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consists of the products, defined in (A,") and not already belonging to
A,, of two elements of A,, is also contained in Prod (A,, A). Hence, it
is inductively proved that Ur\j% < Prod (A, , A).
Ve

2) Every product, defined in (A,"), of two elements of A, is also
defined in (A,,’). Suppose that, for some u, every product, defined in
(A,’), of at most u+1 elements of A, is also defined in (A, ,’) and consider
a product a, defined in (A,’), of at most p 4 2 elements of A, . a is also
a product of two factors, each one of them being a product of at most
u+1 elements of A, , hence belonging to A, ; hence, a€A,;,, while the
prod (Ao, A) =a is defined in (Au4q,’). It is therefore inductively proved
that all prod (A,, A) are defined in Gen (A,, A) and that, consequently,

Prod (Ao, A)= UAv. | Corollary of the proof : All prod (A, , A) are
" veN

defined in Gen (A, , A).

Proposition 2. If (H,") = (0,") S (K,’), a necessary condition for (0,’)
to be closed in (K,’) is Prod (H, K) < ©.

Proof. Suppose (0,") is closed in (K,") and let ueK be a product of v
elements of H. For v = 1, ueH, hence, trivially, ue®. Forv=2, u=
= n,.n, with (n,, n,)eH? hence [since (0,’) is closed in (K,’)], ue®. Sup-
pose, now, that for v =, every element of Prod (H, K) with at most u
factors belongs to © and consider ue Prod (H, K) with at most u 4+ 1
factors. Then, u is also a product of two factors, each one of them being
a product of at most u elements of H, hence, an element of ©. Hence,
also ue®. This completes the induction. |

Propositions 1 and 2 give immediate proofs of the following results
mentioned in p. 2 of R.H.B. Given mec (A,, A), 1° Gen (A, , A) is closed in
(A,"), and 2° every subhgr closed in (A,") and containing (A, ,") also contains
Gen (A,, A). Proof. 1°. Every product, defined in (A,’), of two elements

of UAvis, by proposition 1, prod (A,, A) and hence, according to its
veN

proof, is defined in Gen (A, , A). (Note. The direct proof of 1° is equally
simple.) 2°. Apply proposition 2, with (H,") = (A, ,’), (K,")=(A,") and (0,’)
a subhgr of (A,") closed in (A,") and containing (A,,’). Then, according

to it, Prod (A,, A) = ©. This and proposition 1 imply U Ay = ©. Then,
- veN

since we are referring to a closed subhgr of (A,"), (UAv,)=(0,). |
veN -
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If a and b are prod (A, A), set a.b=c iff a.b=c in (A,).
With . so defined, consider the hgr (Prod (A,, A),"); it obviously coin-
cides with Gen (A, , A).

Hence, we have the following three definitions of Gen (Ao, A),

which are entirely equivalent: 1. Gen (A, , A)=(U Av,’), where ((Av,’))veN
veN

is mec (A,, A). 2. Gen (A,, A) is the intersection of the family of all
closed in (A,") subhgr of (A,") containing (A,,). (This is an imme-
diate consequence of the above proved known results 1° and 2°.)
3. Gen (A,, A)=(Prod (A,, A),") (our definition).

We recall that they say: «(A,,") generates Gen(A,, A) in (A,’).»
In the special case where Gen (A,, A)=(A,"), they also say: «(A,,’)

generates (A,")». [These justify the notation Gen (A,, A)=(UAv,"), used
veN
here.] Notation : We shall, sometimes, write, (B,") = (C,") for (B,’) gene-
g

rates (C,’).
The following lemma 1.1 is proved in R.H.B.: «If (G,.) = (H,) and

g
(H,") =(K), then (G,’) =(K,).» Let us rephrase it, in terms of Prod. It
g g

becomes: (H,")= (Prod (G, H),’) and (K,")= (Prod (H, K),") imply (K,)=
(Prod (G, K),’). But, this is an obvious comsequence of the transiti-
vity of Prod. |

Proposition 3. (A,,) = (A,), (B,*) is a hgr and f is a homomor-
phism of (A,") into (B,"). Then, if a€A is a product of elements a, € A, , f(a)
is obtained if we leave unchanged the, eventually existing, parentheses and

replace . by * and each a, by f( a, ).

Proof. For a = a, . a,, the assertion is the very definition of homo-
morphism. Suppose that the assertion is also valid for every prod (A, , A)
containing at most p parentheses and consider a prod (Ao, A) with n 41
parentheses. This will, necessarily, be of one of the forms: a’. ( )%
( il )i, il ).a’, where every indicated exterior parenthesis
contains a prod (A, , A) having at most p parentheses, hence satisfying
the hypothesis of the induction. This and the validity of the assertion
for a = a, . a, prove it for any of the three forms considered above, so
completing the induction. (This sort of demonstrative argument, with
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induction on the number of parentheses, seems useful in some questions
concerning hgr.) |
Notation. When a=prod A and we are interested in the factors
of a, we can, to indicate it, write a=rproda,. Then, f(a)=prod f(a.)
will have the meaning conferred to it by proposition 3.
The following lemma 1.2 is proved in R.H.B.: «If (G,") = (H,") and
g

if ¥ is a homomorphism of (G,’) into a hgr (K,"), then § can be extended in at
most one way (and, possibly, in none) to a homomorphism of (H,’) into (K,").»
Proposition 3 and the definitions give the following alternative proof:
Suppose that there exists a homomorphism f of (H,") into (K,’). Since
(H,") = (Prod (G, H),"), every a€H is prod (G, H) = proda, . Hence,
f(a) = prod f(a, ). Now, if f extends ¥, f(a, )= 9% (a,) (since a, € G)
and, therefore, f(a) is completely defined by ¥. |

Abbreviations. I.et j take the values f, g, and f, g. Then, (A,')E (B,)
j
means, resp. : (A,”) = (B,’) and (B,) is free over (A,") resp. (A,) generates

(B,’) resp. (A,’) freely generates (B,’).
We recall, also, lemma 1.3: «If (G,") = (H,), (G,) < (H,) iff (H,")
e f

is an open extension of (G,").»

IV. PRELIMINARY REMARKS TO V

We expose here in an explicit way remarks either written in
R.H.B. in an indirectly condensed form, or not mentioned at all but
useful. Since their proofs do not require original arguments, we gene-
rally omit them. We also introduce some new terminology. Abbreviation.
«P.R.» for «preliminary remark».

P.R. 1. For all hgr (A,7), (A,)=(A,) (Reflexivity).

P.R: 2. (Ay) e(A’,) and (A,) CJ: (A ,) dmply (A pe (AL (Tran-
sitivity). 3 k2 3

If in a compatible sequence ((Ay,))veM of hgr, for all v41eM,
(Av,) € (Av41,7), the sequence will be called increasing. Given such
an increasing sequence, a hgr (B,") and a sequence (@y)veM of ho-
momorphisms ¢v: (Ay,)—> (B,’), this last will be called increasing
iff, for every v-4+1eM, ¢v4; extends ¢,. Then, the ordered triple
(((Ay,))veM, (B,"), (pv )veM ) will be called an extension system.
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Every ¢, being a mapping A, —> B, hence, a subset Ry of Ay X B,

URy is a mapping ¢: UA,—> B, extending all ¢, . This justifies setting
veM veM

¢ = U@y and leads to
veM

P.R. 3. Given an extension system (((Ay,))veM, (B,’), (pv)veM), there

is one and only one homomorphism o:(U A, ,)—> (B,), extending all o, .
vVE

P.R. 4. Let ((Av,))veM be an increasing sequence. Then, if, for all
v+41eM, (Ay,") S (Av+,"), also, for all o such that v+ oM, (Ay,") = (Av4g,’);

3 j
and, then, (Ay,)<= (UA,,").
5 ueM

P.R. 5. If ((Av))veN is a complete extension chain, (U Ay ,’) is a grou-

veN

poid. (This is contained in the proof of theorem 1.1 in R. H. B.).
P.R. 6. If ((Av,))veN is an open extension chain, (A,,")<=(UAy,").

T veN
(This is, essentially, contained in the above - mentioned proof in R.H.B.,
but it is more explicit and natural to consider it as a consequence of his
lemma 1.3 and of P.R. 4.)

We recall theorem 1.1 in R.H.B.: «FEvery hgr (G,") freely generates
at least one groupoid (H,"). If (G,") freely generates two groupoids (H,’)
and (H’,") there exists an isomorphism ¥ of (H,") onto (H',"), which induces
the identity mapping on G.»

Proposition 4. (Characterization of all hgr freely generated by a
given hgr.) Suppose (A, ,") = (A,’) and let j take the values f and £, g. Then,
(Ao,?) = (A)) iff there exists a groupoid (B,’), with (A,’) = (B,) and

j

(Ao,) = (B,).
i
Proof. a) Necessity. Suppose (A,,)<=(A,’). By theorem 1.1,

J
there exists a groupoid (B,’), with (A,”) = (B,"). Hence, by P.R. 2,
j

(0,) < (B,).

Sufficiency. Suppose there is a groupoid (B,’), with (A,) = (B,’) and
(A,,)=(B,). Then, for every groupoid (C,’) and for every homomor-

J
phism @: (A,,)—> (C,’), there is a homomorphism f:(B,")—(C,"), exten-
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ding . The restriction of f to (A,’) is a homomorphism (A,’)— (C,’),

extending ¢. Hence, (Ao,") = (A,’); hence, (Ao ,") = (A)). |
f j

V. LENGTH OF AN ELEMENT

Changes in R. H. B.’s terminology : 1) Given a hgr (H,") he calls ae H
prime in (H,") iff a has no divisors in (H,’). This seems to us inconvenient
for the following reason: In the multiplicative hgr (N,’) prime numbers
are not «prime» elements, since, for all aeN, a=a.1l. We therefore
shall replace his term «prime» by «strictly prime». 2) We say «divisor
chain in (H,")» instead of his «divisor chain of (H,")».

Additional terminology. Given a divisor chain in (H,’), its «length» is
1) if the chain is finite, the number of its terms, 2) otherwise, -+ .
Notation. Neo = N U{—|— 00}, ordered as usual.

Definition 2.a. Let (G,) = (H,’). Suppose that, for some yeH,
there exists a divisor chain in (H,") finite over (G,’). Then, denote by
2, the set of all such chains for y, let correspond to every element of
2, its length over (G,’), considered (this length) as an element of Ng
and call gy the so defined mapping =, —> N . Sup. gy (=,) (this supre-
mum is taken in N ) will be called the length of y over (G,’).

Definition 2.b. Iet (H,") be a hgr and ye H. Denote by 3, the
set of all the divisor chains for y in (H,") and let correspond to every
element of E; its length, considered as an element of N ,” consider the
so defined mapping gy : =y = N . Sup. gy (2,) will be called the length of y.

Notations [with respect to a hgr (A, ,’) < (A))]. 1) vy for v, divides
y in (A,"). 2) 1(y) [resp. lao(y)] = length of vy [resp. over (A,,)] in (A,").

Obviously, a) for all yeA, 1(y) [resp. lao (Y)]>1; b) y is strictly
prime in (A,") iff 1(y)=1; and c) if g’ (Z,) is an infinite set, 1(y)= .

Proposition 5. Let (A,,") = (A,), vi € A (i=0,1) and la, (Yo )= v+1.
Then, a) if v,lyoin (A,"), 1ao (v,) <—v; and b) there exists at least one divisor
chain yo ,. .., Yy, for every term v, (0SA< V) of which lao (va)=v+1—1.

Abbreviation (here). Divisor chain = divisor chain finite over (A, ,’).

Proof. a) Suppose there existed a y,|yo in (A,") [then, 1a, (Yo )>2, so
that v > 1] with lao (y,) > v. There would exist, then, a divisor chain
Yiye oo Yvte, i1 (A7), with 0> 1, Yv4o—1 €A, and yv4q € Ao, hence, a divi-
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sor chain vo, v;,..., Yv+o of length> v+ 1over (A,,’); this would imply
lao (yo) > v-+1, contrary to our supposition. b) Suppose all (possibly
existing) divisors v, of yo in (A,’) have length at most v—1 over (A, ,’).
Then, every (possibly existing) divisor chain vy, y,, ... in (A,) would
have length at most v—1 over (A,,) hence, every (possibly existing)
divisor chain v, v,, ... in (A,’) would have length at most v over (A, ,’),
so that lao(yo )<V, contrary to our supposition. When v > 0, there exists
at least one vy, in (A,’), hence (by the above arguments) la, (v,) =v;
in this case, the proof is completed by an obvious induction. T'he case
v=0 is trivial. |

Notations. 1) L2 (A)= the set of all yeA with, in(A,"), lao (y)<v-1.

2) Lio(A) = L&) (A), i.e. the set of all elements of A having, in (4,),
veN

finite length over (A,,’). 3) Finally, A, is defined in mec (A, , A).

Proposition 6. Let (Ao ,") = (A,). Then, L) e A,

Proof. By induction. The assertion is obvious for v=0. Suppose it
is true for all v<p and consider a y,€ A with s (v, )=un-41 (hence, > 2).
According to proposition 5, there is, in (A,"), at least one y,|yo with
lao (y;) = n, while all the divisors of y, have length <u over (A,,’). In
(A,), either y,.v./ =1%o of v,".¥, = ¥o. In both cases, (v,, v,)eAi_,,
by the hypothesis of the induction; hence [by the definition of A, in
mec (Ao, A)], the (conveniently ordered) product of y, and y,” belongs
to Au; hence, yo€A,. |

Corollary. (Avi— Ay) N LY(A) = 2.

We so come to the following (rather interesting for the subject, it

seems to us)

Proposition 7. (A,,’) = (A,") and A= Lko(A) imply (A.,) = (A,).
[In words: If (Ao ,’) is a subhgr of the hgr (A,") and if all the elemenis of A
have finite length over (A, ,"), then (A, ,") generates (A,).]

First proof. 1t suffices to show that A < UA, [then, necessarily,

— veN
(A,)=(UA,,)]. But, yeA i.e. yeLh.(A) implies yeL%2(A), for
veN
some v, hence, according to proposition 6, yeA,. Hence, Ac UA.|

" veN
Second proof (without using proposition 6). It suffices to show that



138 ITPAKTIKA THZ AKAAHMIAZ AGHNQN

all elements of A are prod (A,, A). This we now prove by induction.
For yo,e A with lao(yvo) =1, it is trivially true. Suppose it is also true
for the elements of LY2(A) and consider yo€A with lao(yo)=v + 2.
By the definition of length, there exists, then, in (A,’), a factorization
Yo =¥, . Y¥,- Then, by proposition 5, y, and y,” belong to L(Xg(A), hence,
by the hypothesis of the induction, they are prod (A,, A). Hence,
Yo =="v; . v 1Is also"prod (A,, A)

Note. A = L', (A) is not, however, a necessary condition in order
that, when (A,,") = (4;), (Ao,’) = (A,"). Example. Take A,={a,} and

g
A= {ao, a,}, with a, . a, =a, and a, . a, =a, . Then, (A,,")= (A,’), hence,
(Ao,’) = (A,), but the divisor chain ao,a,, a0, a,,... (with infinitely

g
many repetitions of a, and a,) shows that a, and a, have not finite length

over (A, ,’). Hence, it is possible that 1., (A) == & and (A,,") € (&)

g
Notation. In the sequel M is always finite; m = Max M. When, in
y = proda; , we must indicate the number of the factors a;, we write

proda; . Convention. As usual, v+ © = + oo +v= -+ .
ieM

Proposition 8. Let (A, ,’) = (A,") and y = proda; . Then, [resp. if,
i ieM
for all ieM, lao (ai ) is defined], 1 (y) 1+ Max {1 (a;i )| €M} [resp. also
lao (v) is defined and lao (v) = 1+ Max {1(a; )] eM}].
Ao

Proof. Inductive proof of the assertions.
Note. The above proposition suggests the study of the general fun-

ctional inequality, for positive functions, f (proda; ) & 1 4+ Max
ieM

{f (a )ILGNI}, where 1 may be replaced by a constant; also, when M and
prod may take some «infinite» meanings.

NEPIAHYIZ3

Eic tiyv nagoloav avaxolvwory omovddlovrar af dopal pidg peouxds Mot
ouévng 2omteQuxiic modkewg did tiig eloayoufvng AvotéQe cvotmuatixilg yENoEWS
tiic &vvolag tod «yivopévou» xai dua tiig eloayouévng véag évvolag tod «uixovg»
otougeiov &vtog toadtng doudig.

X
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‘O "Axadnuaixog x. K, II. Hanaiwdvvov dvaxowviv v dc¢ dve foya-
olav elme ta €Efc :

Awa tiig magovong dvaxowvdoews doyetar | magovotacic tdv dnoreleopdrwy

~ - ~ 3 ’ ~ ~ ’ ~ .3 \ 3
tiig goevvnuxilg €oyaoiag tob xadnynrod x. Emveidwvog I1. Zegfol, xatd 1o Erog
1968, éni t@v doudv pidg uepundg dolopévng Bomtepiriic modEewe.

Eiodyer 6 x. ZeoBoc v ovormuatxiv yofioty 1od «ywvopévou» orouelmy
évtog uidg totadtng Soudic, 1 6mola dmhomolel tdg Gmodeifeic yvwor®dv dmotele-
opdrov xal dmréner v Eaywyny véov. To xvoudregov, Suwg, orouyeiov tiig
naQovong dvaxowdoews eivar 1 eloaywyn tig véag #vvolag 1ol «uijxouve», orot-

’ ) 3 ~ ’ ~ s k) ~ 3 ’ -~ 3 ya 7 4
xelov &vrog wdc towaltng doutg. Al adtiig éEdyoviar mhelota évdiagépovia véa
-] / c ’ 2. ’ {3 ) TN ~ 3 ’
amoreréopora, founvevovrar 8¢ fadvtegov ai ailriaw xAacowxdv dmotedeoudrov.
To modtov pégog tdv véov adtdv EEayoufvov Extiderar elc v mapoloav

AVAXO{VOOLY.



