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ABSTRACT

Closed-form solutions are given, regarding steady-state elastodynamic crack problems.
The configuration of the problem treated consists of an infinite body containing a semi-
infinite crack under plane extension. The loading was formed either by constant stresses,
acting normally to the crack faces, or wedge-imposed constant displacements, both moving
with the velocity of the crack tip. The state of stresses at the crack tip was taken to be,
either singular, or bounded. In the last case, the Dugdale hypothesis was adopted. In the
domain of elliptic wave-equations the solution of the problems was reduced to a solution
of a Dirichlet problem, whereas in the case of hyperbolic wave-equations, viz. for transonic
crack velocities, a Hilbert problem was formulated and solved.

1. Introduction

When a time-dependent force is applied to a body, which is assumed to
be rigid, every point of the body responds instantaneously to the externally
applied load, and the effect of the applied force is to produce a uniform accel-
eration of the rigid body, together with an angular acceleration about its
mass-centre. In many physical situations the assumption of rigidity leads to
results, which are sufficiently accurate. However, there are other physical
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sibuations, in which effects cannot be described only by means of rigid-body
dynamics. An important feature of this type of problems is that, when a time-
dependent force is applied to the body, all its points do not respond instanta-
neously to the applied load, and the disturbance takes time to propagate
from its source to other positions of the body. Another typical case is the case
of a moving crack, the motion of which results in a continuous change of
stresses along the body.

The theory of elastodynamics was originated by Poisson, Cauchy, La-
mé, Stokes and other authors towards the end of the 19th century and since
then it has remained an active field of research. The major stimulus to this
activity has been the field of geophysics, particularly earthquake phenomena.
More recently the theory has been applied to a variety of other engineering
and physical situations. Much of the early work has been summarised by Love
[1], Kolsky [2] and Eringen et al. [3].

Two general classes of dynamic-crack propagation problems have been
considered in literature. The steady-state type of crack propagation assumes
constant crack-length and loading-conditions, and thus results in a field
intensity, independent of time and crack velocity. Some of the earlier analyt-
ical studies, concerning steady-state crack-motion, are due to Yoffé [4],
Radok [5] and Craggs [6]. Sih [7] gave a unified approach to their problems
by using the Muskhelishvili approach with complex stress functions [8].

The transient type of crack propagation assumes a continuously increas-
ing crack length at a constant rate and time-independent loading conditions
again. The field intensity now has a square root dependence on time. Transient
crack problems were treated by Baker [9], Broberg [10] and Craggs [11],
among others. More recently, Sih and Chen [12] presented solutions of the
latter configurations, derived in a more elegant and simple manner.

It is noticeable that the spatial distribution of the stress- and displace-
ment-fields, resulted by the steady-state and transient solutions, is identical.
This somewhat justifies the policy to assume steady-state elastodynamic erack
situations. In particular, the case of a steadily moving semi-infinite crack
(Craggs’ model) is obviously closer to reality, than a constant crack-length
configuration ( Yoffé’s model).

On the other hand, although the elastodynamic solutions imply the
physically non-justified existence of singularities at the crack tips, they have
been proved adequate to describe the field existing at the core region [13].
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However, an alternative approach is the introduction of the well-known Dug-
dale’s model.

The present paper communicates closed-form solutions in problems,
concerning steady-state crack propagation in infinite elastic bodies. The crack
1s assumed semi-infinite, and propagating in plane extension under the action
of normal to the crack faces constant stresses or displacements. In Section
3 the fundamental solution of the problem refering to an infinite plate (Craggs’
model) is derived by using conformal mapping. The crack-tip velocity is in
the subsonic regime, whereas both singular and strip-yield zone behavious of
stresses is assumed for the crack end. In treating the singular-elastic case of
this problem, Craggs [6] failed to extract in a straightforward way the singular
part of the field. He determined this part somewhat arbitrarily, based only
on physical grounds. However, Sih [7] gave a direct solution of the problem
by reducing it to a Hilbert problem.

In Section 4 the configuration of a semi-infinite crack, opened by a
moving wedge, was considered again for subsonic crack-tip velocities. In Section
5 the problem of two semi-infinite cracks propagating collinearly was solved
by the method presented in Section 3. It was assumed that Dugdale’s plastic
sones were developed in both crack ends.

In Sections 6 and 7 of the paper of solution of the problem considered
in Section 3 is presented for crack-tip velocities in the transonic and super-
sonic regime. In this case the wave equations become hyperbolic and the
simple Dirichlet-problem formulation is not applicable. The solution here
was obtained, without using any transformation, by considering a non-homo-
geneous Hilbert problem [8, 14, 15]. It is worth mentioning that this part
of the present study was motivated by the exploratory experiments by Winkler
et al. [16], which have obtained crack speeds greater than the body-wave
speeds in the medium. The same researchers also have presented a model,
explaning physically this important phenomenon [17]. The requirements for
hyper-velocity cracks are: energy directly delivered to the crack tip, i.e.
crack-surface loading, large input energy, relatively to the fracture energy,
and a weak fracture plane.

The important feature of transonic crack-propagation is the change of
the strength of the singularity from the common case of z,7% to zy™,
where v is a complex number.
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2. BASIC PRELIMINARIES

Assume that a body is set into motion by a crack moving with a constant
velocity v on the x'—axis. After a long time of steady motion of the crack,
a steady field may be deveoloped around an observer attached to the crack
tip and transient effects may be omitted.

A moving coordinate system (x, y), which is attached to the moving
crack tip is introduced as x = x’ —vt, y = y’ where (x’, y') is a fixed coordi-
nate system. With this transformation the wave equations in plane elasto-
dynamics, which involve three independent variables x’, y’ and t, become
(see for instance in [3]):

2 2 2, 2,

e LIt BAE TS B
where ¢, ¢ are scalar and vector potentials respectively and M; = v/¢; (] = 1,2)
are the Mach numbers. The ¢, and ¢, parameters are the longitudinal- and
shear-wave velocities in the elastic medium. In terms of the shear modulus
1, Poisson’s ratio v, and mass density g, ¢; and ¢, are given by:

[2p (1—v)[p(1—2v) ]%, for plane strain
{ [2w/p (1—v) ], for plane sress

C; =

—
o
~

¢y = (nfp)%
Then, the stress- and displacement-fields can be found by:

W= (39/8x) + (39[3y), uy = (3¢/dy) — (34/dx)
oufie = (2—2M;2 + My2) (3% /9x2) + 2 (8%/axay)

oyl = (Mg® —2) (9% /[dx*) — 2 (0%} /0x0y)
T fi = 2 (8% [0x0y) + (M2 —2) (3%)/3x?)

Without going into further details, the above equations can be set in a complex-
variable form, due to Sneddon [18] and Radok [5]:

u, =2 Re Q, () — 28, Re Q, (z,) (4.1)
uy, = —28;, Im Q (z;) +2 Im Q, (z,) | (4.2)
o =20 [(26% — B% + 1) Re Yy (z;) — 2B, Re 'y (29) ] (4.3)
oy =—2p [(1+ B%) Re 'y (z) — 28, Re Q5 (2,)] (4.4)

Ty = — 20 [28, Im Q') (2,) — (1 +B%) Im Q5 (2,)] (4.5)
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Bi= (1 —M?)% and z;=x + ifyy

The functions € (zj) and Q'j (zj) are sectionally analytic functions and
therefore it is valid that V2 (Re Q'j) = 0, V2(Im Q';) = 0 in the domain of
analyticity.

For |zj| — o, the complex potentials take the form [3]:

Zy
(5)
, A,
@, (m)= 52 +0( - )
w Zy
where:
A _cx°°+cy°° B Ty >
R —py) 28,
(6)
o 2
=2 P ey g

2B, 4B, (BAH—B%)

Finally, it may be noticed that the notation of [3] is adopted here, but
with wj being substituted by €.

3. FUNDAMENTAL SOLUTION

Iig. 1a illustrates the geometrical configuration and the loading condi-
tions of the problems considered. The crack is opened under the action of
normal stress p, applied to a segment o of its lips. The crack velocity v is
assumed subsonic. Therefore, both equations in (1) are elliptic and the problem
may be solved as a boundary-value problem of the potential theory. Two
cases may be considered, as regards the nature of the near-tip stresses. In
the first case the stresses are singular, whereas in the second case they behave
according to Dugdale’s hypothesis [19].

As it is well-known the preceding model assumes that: a) Yielding
occurs in a narrow wedge-shaped zone R, b) The material in the zone is under
a uniform tensile yield stress, oy, ¢) A Tresca yield criterion is obeyed and d)
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The material outside the zone is elastic. This simplified model was applied
to dynamic crack configurations by Goodier and Field [20], Kanninen [21]
and Willis [22], among others.

The boundary conditions for the singular elastic case can be written as:

oy (x,0)=—p for — a<x<O0
oy (x,0)=0 » —oo <X < —ao
(7
Tey: (X, 0) =10 p —oo <X < o
By Oy, Ty = 0 » lzj] - o

whereas, for the strip-yield zone case it is valid that:

8y (x,0) =6, for —R <x <0
oy (x,0)=—1p » —a<<x<—R

6 (5,00=0  » —@<x<—a (8)
Tey (%, 0) =0 p — o <X < o
Ox, Gyy Ty =0 » |z > o

The solution of problems (7) and (8) is derived by considering the respec-
tive Dirichlet problems and by using the conformal mapping technique. Then,
Eq. (4.5) yields for the real x-axis:

28; Q5 (z5) — (1 +B%) Q5 (2) =0 . or ©)
2
Q' (29) = r:l‘%zz Q' (z)

Egs. (4.4) and (9) give:

2u R R
’P.—(:) Re 'y () = ki Re 'y (z,) (10)

1+ 6% B
where, the well-known Rayleigh equation R(v) = 4B, B, — (1 + B%)? has the
roots v; = 0 and v, = cg, viz. the Rayleigh-wave velocity.
By virtue of the boundary conditions (7) and (8) and Eqs. (9), (10), the
Re-part of the sectionally analytic functions Q'; (z;) are given by:

6y (%, 0)=

To;et for —a<x<0, y=0
Re Q' (zj) = (11)
0 » o LX< —a,y = ()
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in the singular elastic case, whereas:

TPl for —R <x <0, y=10

Re Q' (z) = § Tof: » —(e+R)<x<—R, y=0 (12)

0 » —o<x<—(a+R), y=0

in the strip-yield zone case. The boundary values of the harmonic function
Re ; are given by:

’l‘mel. o _lp‘(gﬁ_&) ’]‘mel. — V__:pﬁl -

% R (v) w R ()
(13)

7 2
Tmpl' _ oo (148 2)~ T02Dl- _ 6o By
2u R (v) R (v)
Consider now the transformation:

Wj = ZiZj]/'é. Z; = — szlli (14)

By means of (14) the infinite plane cut along the negative real axis
(— o < x < 0) maps conformally onto the upper half plane of Fig. 1b. The
harmonic conjugates Re Q'; (z;) and I'm Q'; (z;) correspond to the harmonic
conjugates U; (w;) and V; (w;), respectively. The upper and lower crack faces
in the z; —plane map onto the negative and positive real axis respectively in
the w; —plane. The point (x, y) = (0,0) is a branch point of the transforma-
tion (14). Although the mapping (14) is not conformal for the branch point,
it is conformal for any infinitesimally small neighbourhood of this point.

By considering the Schwarz integral formula (Poisson’s integral formula
for the half-plane) the harmonic functions U; (w;) and V;(w;) can be expressed
by (see for instance in [23, 24])

Ui (u, v;) = Py —w(a__uj)z_*__‘v? dg (15.1)

1 f*‘” v; F; (8) "

ol = | A
) 19 g ==

mlll B s e R (15.2)
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where F; (£) are the boundary values of Uj(wj) for vj —0 and the singular
elastic case that is:

Toel for  2a% > |u|, v;=0
F; €)= e
0 » Q0% < | u;|, v;=0

whereas for the strip-yield zone case we have:

,

ToP  for 2R% > |u;|, v;=0

Fj (£)= Tojel' » 2[ (a—i—R)’/:—R‘/z] > inl, Vj:() (17)
0 » 2(@+R):<|y|, v;=0
\
P
oA bkiidit - ”
~ crack | WIHINQ X L
A k-a- upper half-plane
ibjy 4
AN -
A 0 A"y
p_ T
o A vinbinti -
A crack  SHEE{TO i
k-a-LR-
(a) (b)

Fig. 1. a) Semi-infinite cracks possessing singularities or strip-yield zones at their ends
and moving in an infinite elastic medium. b) Upper half-plane which maps conformally
on to the infinite-plane cut along its negative real axis.

Particularly, in the singular elastic case the stresses become infinite,
when approaching the point z = 0, i.e. the crack tip, coming from the internal
points of the body and an additional to (11) feature of the problem must be
taken into account. In this case, Eqs. (15) with the boundary conditions (16)
give only the regular part of the potentials and consequently of the stress
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field. The boundary conditions, set by the physical problem, will determine
the treatment of such a singularity. The singular part of the stress field and,
consequently, of the potentials Re Q'j (see Eq. (10)) is due to the geometrical
singularity at the point (0,0) in the original z—plane. This geometrical singu-
larity has not any influence on the stresses at the crack faces, since their
points are boundary points and they are subjected to appropriate boundary
conditions, see Eq. (7). The geometric singularity “acts” only at the origin
(0,0) and influences only the stress field of the internal points of the body.
The above considerations based on physical grounds, justify the assumption
of a delta-function singularity in the transformed w-plane and at the point
(0,0).

Then, by virtue of (15.1), the total (regular and singular) real part of
the complex potential in the transformed wj —plane is given by:

Tel VjT 0i 200 da V_i[\j +o 3§ (a"—ao) da -
Ul (wj, vj) = ——— w Eer et T T
T —2a% (€ —u;)*+ v; T J e (E—w)+v;
.:E tan-1<%°i/z.“uj)+ tan ‘1<—~—-—2a%+uj)]+
T V;j V;
S SRS, (18)

T (Eg— )2+ vy

where § (£ —-£,) stands for the Dirac-delta “function”, £, = 0 and A; = —4a%
T, is a factor spatially independent, which is introduced for the satisfaction
of all the boundary conditions in the original problem.

Noting from (14) that u; = — 2r% sin (6;/2) and v; = 2rj% cos (8;/2),
Eq. (18) gives:

) ( g) B %)h cos (0;/2) (19)

The Im-part of (j(zj) can be derived in the same manner Its singular part
is of the form r; % sin (6;/2). The result in (19) is identical to that given by
Craggs [6] and Sih [7], which as it has already mentioned, followed a different
approach.

Knowing Re Q'; (z;) and Im Q'; (z), stresses and displacements can be
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derived by the Sneddon-Radok equations (4). For instance, (4.4) and (19)
give:

The scaling r;— and 0;— coordinates are related with the r— and
f—coordinates in the physical plane as follows:

tan 6; = @; tan0, r; =r (cos® 0+ B sin® 0)% (21)

In the strip-yield zone case it is not necessary to consider singularities
and the complex potentials can be directly serived from (15) by taking into
account (17):

Re Q= —

T

Topl- (2 (R[rj)% cos (6;/2)
tan1< (Rjr;) —1 >_

(22)

kg

Tojel 2[ («+R)%2—R% ] r; % cos (0;/2)
———tan™! ( )
[ («+R)%—R% ]2 —1

Introducing (22) in (4) one can evaluate stresses and displacements.
Particularly, for the displacements, by integrating Q’;, or solving the appro-
priate Neumann problem, the constant of integration contributes a rigid
body displacement to the system.

An interesting feature of the dynamic crack propagation is the well-
known tendency of the state of stresses to diverge from the hydrostatic tension
state, encountered ahead of stationary cracks [4]. This phenomenon is respon-
sible for crack branching in high crack-tip velocities.

Fig. 2 shows the influence of crack-tip velocity on the ratio o,/o, ahead
of the moving tip for the singular elastic case and the strip-yield zone case.
It is seen that the increase of the plastic-zone size, R, causes a decrease to the
tendency of reducing ratios o, /oy, for increasing crack-tip velocity.
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Fig. 2. The ratio oy/ox ahead of the moving crack tip plotted against crack velocity for
the singular elastic case and the strip-yield zone case.

4, DYNAMIC CRACK OPENED BY A FRICTIONLESS SYMMETRIC WEDGE.

Consider a semi- infinite crack, propagating under the action of a wedge,
which imposes constant displacements at the crack faces. Assume also that
the wedge is moving without friction, it is smooth, and it does not contain
corners, that is the usual assumptions of the theory of elasticity are made
here. In particular, it is assumed that the deformed surface of the crack does
not differ from the undeformed one in any marked degree, so that the loading
is assumed to be applied to the boundary y = 0 and not to the faces of the
deformed crack. The geometrical configuration and the coordinate system
for this problem are shown in Fig. 3.

The boundary conditions can be written as:

Ty (X,0)=0 for —ow<x<® (23.1)

uy (x,0) =] (x) » —0<x<0 (23.2)
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where j(x) is an arbitrary, but known function, i.e. the shape of the moving
wedge.

Because of the symmetry of the problem about the real axis we seek
a solution of the form:

Q5 () =G D (z) (24)

where Cj are constants spatially independent, to be determined. Then:

Re Q; (z) = EL[.%)?—E?_(ZJ,U. Im Q; (z) = C’,[?L(E’)?Iim_(ﬁlﬂ (25)

[@X
x

A
moving wedge v

Fig. 3. A crack opened by a moving wedge in an infinite elastic medium.

Note also that:

D (2)) + D (23) = D (25) + P (z5)

D (z;) — D (z,) = O (2z3) — D(2,)

for —0o <x< 0, y=0 (26)

Differentiation of (4.2) and consideration of the boundary conditions
(23) give:

By [y (x) — Q@ (%) 1+ [ (x) — QX (x) 1=1i7 (x)
for —o <x <o (27)

28, [Q;(x) — Q@ (x) ]— (1+8%) [Q (x) — Qe (x)]=0
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or:
B Gy [D(x) — D (x) ]+ Cy [D (x) —D(x) | =i] (x) (28.1)
28, C [ (x) — D (x) ] — (1 B) Cu [® (x) — D (x) ] =0 (28.2)

These relations yield the system:

—B G+ Cy=1

(29)
28, Cl—(1+‘322) C,=0
which give for the unknown constants C;.
1+ g% 2
C — Cp= —=— 30
gy T g ki
Then (25), (28.1) and (30) give:
Gy
Im Q5 (z;) = 11 (x) (31)

With relation (31) valid, one has to solve a simple boundary-value problem,
following the procedure of Section 3.

5. TWO DYNAMIC COLLINEAR CRACKS

Fig. 4a shows an infinite body, which contains two dynamic cracks,
moving with the same velocity v. Constant stresses of magnitude p are applied
to a segment « of the crack faces. Moreover, strip-yield zones with length
R have been created ahead of the crack tips. The crack motion is assumed to
be in a steady state, so that the distance 2b between the tips of the two cracks

may be taken constant.
Then, the boundary conditions can be written as:

oy (x,0)=0, for b<|x|< (b+R)

o (x,0)=—p » (b+R)<|x|< (b+R+a)

6, (x,0)=0 » (b+R4a)<|x|< (32)
Ty (X, 0) =0 » —n X< ®

Bx; Oy, Ty =0 » | Z;| = o
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Fig. 4. a) Two semi-infinite dynamic collinear cracks possessing strip yield zones at their
ends. b) Upper half-plane which maps conformally onto the infinite-plane cut along seg-
ments of its real axis.

1
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The configuration in Fig. 4a can be conformally mapped onto the upper

half plane, v > 0, by the transformation [25]:
e = PEERE e (33)

bw;
IFollowing the procedure in Section 3, a simple Dirichlet problem can be for-
mulated, which, when solved, gives the complex potentials Q’;. However,
the o,/ —ratio at the point (x, y) = (0,0) of the original z; —plane can be directly
evaluated for the point (u;, v;) = (0,ib/2) of the w; —plane. This ratio was
plotted in Fig. 5 versus crack velocity for two values of the quantity b /.
The figure clearly shows that as the two dynamic cracks approach each other
the o, /. —ratio fairly decreases.

1.0 j | ; ]
| | v=0.34
i | R =constant
0.8 | k\
|
? | bla=2
.06
o b/a=1
5 |
0.l+ \ \
0.2
0 0.2 0.4 0.6 08 09
vfc, —»

Fig. 5. The ratio oy/ox at a point which is equally distant from the tips of two moving
collinear cracks plotted against crack velocity.
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6. SEMI-INFINITE CRACK, PROPAGATING WITH TRANSONIC VELOCITIES

In the case of a source propagating with a velocity greater than the shear-
wave velocity, but lower than the longitudinal-wave velocity, the Mach
numbers are:

M, =ufe, <4, My=vje,>1 (34)

Consequently, the second of the wave equations (1) becomes Ayperbolic and,
then, the Sneddon-Radok equations (4) need some modifications. Accordingly,
the solution obtained in Section 3, or in[6] and [7], is not valid for the transonic
regime. However, the first of the wave equations (1) still remains elliptic and
the scalar potential ¢ can be expressed again by:

o = o (z) + o (2) (35)

where:
o (1) = [ O () dz, (36)
The solution to ¢ can be written as:
¢ =F (x+ myy) + G (x — myy) (37)

where m, = ib, = (M2, — 1)% is a real number and F and G are arbitrary
functions (see, for instance, refs. [24, 26]). The straight lines (x 4 m,y) =
const. and (x — m,y) = const. are the characteristics of the second differen-
tial equation in (1), i.e. curves along which partial information about the
solution propagates. Fig. 6 shows the “natural” set of coordinates for the hyper-
bolic equation, formed by the characteristics.

It is seen in this figure that G is constant on wavefronts x = myy +
const. that travel toward larger x, as y increases, whereas F is constant on
wavefronts that travel toward decreasing x. Any solution may, therefore,
be expressed as the sum of two waves, one traveling to the right in x, and the
other to the left information (shear stresses) propagates along with the waves.
But, since the medium in front of the moving crack is not disturbed by shear
stresses, only backward running shear waves exist, and therefore the function
G (x — myy) is eliminated.
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The displacement- and stress-fields can be written as:

uy =2 [Re Q () + myQy (x + myy) ] (38.1)
Uy =—2 [B, Im Q (z7) + Qy (x -+ myy) ] (38.2)
ox = 20 [(28% + m%+ 1) Re Q') () + 2myQ’y (x + myy)] (38.3)
oy =2u [— (1 —m2) Re Q) (z,) — 2m,Q, (x + myy)] (38.4)
=2 [—28 Im @, (z) — (1 —m%) @, (x4 myy) ] (38.5)

1
where Q, (x + m,y) = 5 F' (x + myy).

Determination of the functions Q,(z,) and Q,(x -+ myy) is now more
difficult than that for subsonic crack-tip velocities. It is well-known (see,

M2y &

moving source

Fig. 6. The pattern of characteristics in a plane with a transonically moving crack.

for instance, refs. [24, 26]) that the type of solutions of Dirichlet or Neumann
problems is not suitable for hyperbolic equations. Consequently, the problem
can not be treated in the same manner as those in the preceding Sections.
However, the more general Hilbert problem may be proved adequate to apply.

The boundary conditions are stated in (7). The condition of vanishing
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of shear stress along the real x-axis, combined with (38.5), gives:

—2
Yy (x 4+ myy) = " rr%) Im Q' (z), for y—0 (39)
T 2

Then, from (38.4):

4
6, = 2u [— (1—m?,) Re Q', (z,) -+ »( 1@{%‘22_5 Im Q' (z,)], for y =0 (40)
A 2

This means that there is a linear relationship between the Re- and [m-parts of

the sectionally analytic function 'y (z,) along the cut L (line of discontinuity).

Therefore, we can treat this boundary-value problem as a Hilbert problem.
Noting that:

1y = 1 P
Re @y (m) = | Qa(a) 4+ Q1) |, Im Q' () =5 | @1 () Qs () | (61)

Eq. (40) becomes:

oy = o[ Q) (1) + @, () 1+ d[ Q) (1), (3) ], for y—>0 (42)
where:
‘ 4B8ymy —1i (1 —m?)?
v (1 —m2,), e o SRS LT e
( w( m?%), ¢ +d (1 —m2,) "
(43)
_ my, L Gfymati (I —mh,)
i (1 —m?%)’ i (1 —m2,)
or:
oy = (¢ +d) Qy (2)+ (¢ —d) @, (z,), for y—>0 (44)

Taking the boundary values of &, —stress along the line of discontinuity L we
have:

o," = (e+d) Q4" (x)+ (e —d) Q" (x), for x€L, y—=>0F e

a,” = (c+d) Q" (x)+ (¢ —d) Q" (x), for x€L, y =0~
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By using the Schwarz reflection principle, (45) yields:

6,t = (c+d) @y (x)+ (c—d) Q" (x), for xEL, y -0+

o, = (c+d) Q¢ (x)+ (e—d) Q" (x), for x€EL, y -0~

Now, by taking into account that:

(46)

Q' (x) =W, (X, —F) —iW, (X, — §) =W, (x, —¥) +iW, (X, —y) =@~ (x)

(46) becomes:
6" = (e d) Qy* (x)+ (e —d) Q) (x)
, XEL
oy = (c+d) Q' (x)+ (e —d) Q) (x)

Adding and subtracting the two relations in (50) we take:

(47)

oy o, = (c+d) [Q) (x)+ Q) (x)]" + (c—d) [Q, (x)+Q (x)]7 (48.1)

6y — oy = (o4 d) [ (x) — @, (X)TF+ ([d—c) [ (x) —Q; (x)]" (48.2)

But 6,7 —o6,” = 0 and thus:

Q' (2)—Q', () =0 or @ (z;) = (), allover the z-plane

Then, by virtue of (49), (48.1) becomes:
(¢ +d) [Q ()T 4 (¢ —d) [Q; ()] = X

o T T i
[ (x)] +E4T?1[ 1 (%) ] R |

[y (x)]7 —g[Qy ()" =T

where;

(49)

or
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(50) is a non-homogeneous Hilbert problem with the following solution [8,
14, 15):

P Xo (2q) ) fdx - ) .
0y ) = 5 [ S N P 6
L

where X, (z;) = z,y! is the Plemelj function for the semi-infinite crack L,
v = log(g)/2xi and P (z;) = Tnz + Go_y 2,0 + ... + [, which for a single
crack becomes P (z;) = I';z; + I'y. In the latter polynomial I'; = A,, where
A, has been defined in Eq. (6) and thus for the present problem I'; = 0, since
6, ® = 6,® = 0. Further, the single-valuedness condition of the displace-
ments requires 'y = 0.

The quantity y expresses the complex singularity of the field, and it is
given by:

1 1
ot e e W o o Bié
4 27 log W+ 27 (

1
G2
~

where:

W :{ [ 168%m?, — (1 —m?) *]*+ 64@@22(1 — mzz)f} "
[ 168%m? + (1 —m?) 4]

(54)
P tan_l {-8[3_19.2_.(4:—‘ IB%A)Z,
168%m?, — (1 — m?)*
The integral in (52) has the form:
0
1 2 Xl_Y . -
[ (zy) = — | — dx=H, + Hyz;, + Hoz;®+ ... (55)
27i X —17
— o
Then, the sectionally analytic function Q'; (z;) is found to be:
Q' (z;) =t (Hgzyr ™ 4 Hyzyy + Hozvt14- .. 0) (56)

Stresses and displacements can be evaluated by Eq. (56) by inserting the real
and imaginary parts of Q'; (z,). As in the case of transonically moving loads
in the surface of an elastic semi-space [27], terms of 3(x + m,y) will be arise
in stresses and displacements. This implies that a part of the solution (of
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shear character) represents a plane shock-wave, x + myy = 0, attached to
the load and associated with a jump in displacements and an impulse in
stresses. This wavefront called a head wave, or Mach wave, is well-known in gas
dynamics. Fig. 7a shows schematically such a wavefront propagating back-
ward to the running crack tip.

It may be emphasized that, in contrast to the case of a transonically
moving load in the surface of an elastic semi-space [27], the singularity of
stresses in the problem considered here is changed with respect to that in the
case of a subsonically moving crack. This fact can be clearly observed from
relation (56). This important difference between the case of a crack moving
in an infinite body and a load moving on the surface of a half-plane is due to
the different types of singularities in these problems.

Finally, the ratio oy/ox, showing the reduction of the stress-triaxiality,
ahead of the transonically moving crack tip, can be easily evaluated directly
from Eqgs. (38.3) and (38.4) as:

oy 11_132 -1 (57)
Ox 28% + m? 41
This ratio was plotted in Fig. 8 and shows again the tendency of

c—stress to increase with increasing velocities.

7. SEMI-INFINITE CRACK PROPAGATING WITH SUPERSONIC VELOCITIES

In this case both Mach numbers, M, and M,, are greater than unity.
Based on the analysis of Section 7 we can write the solution as:

¢=TY(x+my), ¢=T,(x+ my) (58)

This shows that the stresses and displacements are constant behind the plane-
shock wavefronts, x -+ m,;y —vt = 0 and x 4+ m,y — vt = 0. Only terms of
3(x-+m,y) and 3(x-+my,y) will arise in stresses and displacements, in accordance
with the case of a supersonically moving load on the surface of a semi-space [27]

Since the field here is spatially independent, the supersonic case presenst
less interest, from the view-point of stress analysis, than the transonic case.
Fig. 7b presents the longitudinal- and shear-Mach wavefronts attached to
the moving crack tip.
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4
Mach wave My <1
\ M2 > 1

C, tan'm,

P
— -
crack ] 0 X

(a)

M1 > 1
My > 1

<V

crack | 0

(b)

7

Mach waves
Fig. 7. Mach wavefronts formed behind transonic and supersonic cracks moving in an
infinite elastic medium.
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Fig. 8. The ratio oy/ox ahead of a transonically moving crack tip plotted against crack
velocity.
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8. CONCLUSIONS

A class of elastodynamic crack problems was solved in this paper. The
method of treating these problems has a unifield character, whereas the con-
figurations concern semi-infinite cracks in infinite bodies. Analytic-function
theory was proved an adequate tool to solve such problems in closed from.
However, crack problems in fiinite bodies need heavier mathematical methods,
such as Integral Transforms or Integral Equations. In the latter cases, so-
lutions in closed form are not generally obtained.

The particular case of a transonically propagating crack presents the
interesting feature of the change of singularity of the stress field. On the other
hand, the analysis becomes extremely simple, when the crack movesin the
supersonic regime.
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