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MAG®HMATIKA.—On the Problem of Connection between Geometri-
cal Optics and Wave Optics for Anisotropic Media, éy Nicholas
Chako*. >Avexowvddn 1m0 100  Axadnuaixod x. Todvy. Zavddu.

1. INTRODUCTION.,

In several papers[1,2] we have shown the procedure of affecting the
transition from the equations of classical mechanics and geometrical optics
to the respective equations of quantum mechanics and wave optics, and
vice - versa. This relationship comes about through the equations of varia-
tions of Poincaré for classical dynamical system, or geometrical optical sy-
stem, via Einstein’s famous relation E=hv and the similar role played
by A (wave length of light) in optics. On the other hand, the transition
from an equation of the wave type to the corresponding dynamical, or geo-
metrical optics equation, is carried out through the asymptotic solution of

. . 2
the wave equation in terms of a large (small) parameter k = —xi or the

2 i s
Planck constant _hi‘ Both procedures lead to a certain condition to be sa-

tisfied, namely the Birkhoff-Chetaev criterion [l]. Tt is in this sense that
the asymptotic character of classical dynamics and geometrical optics is
revealed, and not as is often stated through the well known Moll- Debye-
Sommerfeld transformation [1,6]. Furthermore we have also shown (l.c.) the
close association of the equations of variations and the so - called transport
equations which determine the various amplitudes entering in the asym-
ptotic solution of the wave equation. Indeed, the leading transport equa-
tion satisfied by the principal amplitude is of the same form as the equa-
tion of variation of the corresponding classical system satisfying first order
stability. Moreover, the equations of variation for higher order stability
correspond to the higher order transport equations in the so-called
higher order amplitudes entering in the asymptotic expansion of the
wave function. This leads to the important result that the solution of
a classical dynamical system, or geometrical optical system, obtained by
means of perturbation theory, is closely connected to the full asymptotic so-
lution of the associated wave equation of quantum mechanics, or wave op-

*N. TEAKCY, ’Eni tod mpofifiparteg tiig cuoxericeng netafd Mewperpinfic "Onninfic naxi Kopa-
Topnxavirfig &lg &vicdrponax péoa.




SYNEAPIA THXE 5 NOEMBPIOY 1964 423

tics, the transport equations playing the same role as the equations of va-
riations for the classical system. For full details see ref.[L7. In fact, our
results are derived for more general equations of wave type and embrace
all the wave equations of mathematical physics.

Here, we shall be concerned only with the problem of the geometri-
cal optics equations for anisotropic media and their associated wave equa-
tions. The case of isotropic media has been fully discussed elsewhere [1].
Our treatment will be based on Maxwell equations rather than the corre-

spond wave equation for anisotropic media.

2 THE TRANSPORT EQUATIONS OF THE ELECTROMAGNETIC
FIELDS IN AN ANISOTROPIC MEDIUM.

The propagation of electromagnetic waves in an anisotropic medium

is giverned by Maxwell equations

(2.1) Vol B o = 5 o By

€ c

v.D = 0, V.B = 0.

Here, we have assumed no sources in the medium. The relation be-
tween D and E and B and H are given by the linear relation
(2.2) D=ct(x,t)E, B=plxm, t)H
where the dielectric constant & and the permiability p are functions of
coordinates and time. Here, we shall assume € to be a vector function and
n a scalar. In general € and p are tensors. We shall not discuss this case
on account of the complexity of the problem ™.

The fields € and H are assumed to be continuous functions for all
x; and t, except for their first partial derivatives which we assume to be
discontinuous for those values of the coordinates and for all values of t on
a certain surface 2 given by the equation
(2.3) @(x;,t) =0, or a constant C.

As t varies, the surface ¥ moves and changes form in the physical
medium determined by ¢ and p. The surface X is called a wawe - surface or
wave front representing the electromagnetic wave. For any fixed value of

(+) In sect. 4 the transport equations are given for the general case, ¢ and p are

tensors.
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t, X separates the space in two regions A and B. In each of these regious,
the derivatives of the field E and H are continuous except where the coor-
dinates are on X, in which case they suffer discontinuities. If we denote
the values of the derivatives of E and H on A by a subscript 1 and on B
by subscript 2, we write

0E; oE; ) 0E; o0H;
(2.4) [ 0x; } = (—6x; "3 (AQXj >1 =, P {—E)—)Tj' SVl Sy

] N ‘9

[aEi] {aHi} {ani} (e ) g
—— | =u 9, |[—| = v; ot = i uj X, Gte.
ot 1 ot 2 6Xl .

where u; , v; may be considered as components of the vectors u and v.
Relations (2.4) are known as the geometrical and kinematical compatibility
conditions of E and H on ¥. Furthermore, since € and p and their deriva-
tives with respect to x; , t are assumed continuous on X, we have accor-
ding to (2.2) the relations

0D; 0E; 0B; oH; 0D; 0E;
= R e N b e P N R

9B, oH;
[0t}=“i[at }
(2.6) [Din]=( & uj )“’Xj,[Bix]--F(ui vi ) Pxj, [Dit]=(6i uj )mt,

[ Bie | = (mi vi )t

Inserting these expressions in (2.1)-(2.2), we get the dynamical com-

patibility conditions, namely [4]

(2.7) E(Ei ui)q’xi=0’ E(Hi.vi)q?xi=0
3
(28) Z [u‘“ Pxiy, T Ui Pxy, ] e w0 )'(:t_ il
; P
)y [ Vier Pxy, T Vi q’XH—z] — (&.u )Tt =0

== ¢
The functions u; , v; are determined by these equations once we
know @. To determine ¢ let n be the normal to the wave surface . It w
is the velocity of propagation of ¥, then n and w are given by
- Px; Pt 2 2
(290 nj=ni =1, w=-22 (A=\/2 Px; ) )
ey A A i=1 (ox;)
and equations (2.7) and (2.8) are briefly written as follows:
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(2.0) ((e)n)=0, (v)n=0, (2.10) (0 W) ="o (uv), (M1 v) =~ —(e)

where n = (n,, n,, n,) is the normal vector. Eliminating v, we obtain the

equation satisfied by u [4]

(2.10) nlnu)—u=—p (‘:—:) (e.u)

3. HAMILTON’S CHARACTERISTIC EQUATION, OR THE EICONAL EQUATION.

In order to determine ¢ we proceed as follows. Let us write (2.10) in the

form

(3.1) (mu)n; — v = — pj (VCV—)Z (& u)

This is a system of three linear homogenous equations in the unknowns
g, u, and u,. Since u; are independent it can be satisfied if the determi-
nant of the coeffients vanish. The result of elimination of u; yield the fol-

lowing equation in gyx; @t (4]

2

= (ew);

2
D

@; — vi A?

3
(31) H = El =", ¥

This is a first order partial differential equation in Px; o Pt - It i1s Hamil-

ton’s characteristic function for the determination of ¢, or the multiplier
equation of Birkhoff[3] associated with Maxwell equations (2.1). At any
point of the field there correspond to any direction of space given by nj
two velocities of propagation w determined by the equation

n?
(3.2) . =0.

M
oy
L

e

W — ¥
On the other hand the equations of the rays are obtained from the

solution of the first canonical equation

(1.9) dxi  6H 0H 6H
3:3 a -

op; oy Oepy

Performing the differentiation one arrives after some reductions to the fol-

lowing result

N‘l
wlw' — %) )

dx; Pe; [ Q’i 1

1
6% ~"w (& Tw—va) ﬁ]=“i i
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where

A °  \' L. Py S
34 “‘j=1<(p:_Y1?A,>’N=3Z< nj )2
i=1 w' —
Thus there are two rays associated with the two velocities w = (w,, W»)
in any direction of space. If we multiply (3.3) by n; and sum over i, we get
(3.5) (n.x) =w,
that is the normal component to the wave front of the vector x is equal
to the transport velocity w of the wave front. On the other hand it is easy
to show that u, v are orthogonal to x, the velocity of electromagnetic
energy carried along the rays.

4. TRANSPORT EQUATIONS OF THE ELECTROMAGNETIC FIELD ALONG THE RAVS.

The transport equations of the field in the medium defined & and p can be
derived in the same way as in sec. 3 of [7]. To do so we express the field
functions E and H and also D and B at any time t in the form

41 ’ 1
(41) BEp=Eatuoe+ 5ru ¢ +...,He=Hatvet+tgve+..,

(42) Ds=Da+ (s.u)(p-l-—;l— (en)o’+...,Bs = Ba +(uv)o+ (nv) e+ ...,

where u’, v/, etc,, are determined from u, v by application of compatibility
conditions as shown in [7]. In sec. 3 we have seen that u, v satisfy egs.
(2.7 - 2.8). Since the system is linear and homogeneous in uj , vj, the deter-
minant of the coefficients must vanish. Let us denote it by AeB (x;  t, ¢)=0.
The matrix Ao and the operator ToP are:

Exx®t T Exxt Exyq’t—’-exyt E:{zq’t_|_exz,t 0 T @z Py
4 -+ 0 -
equ)t+ Eyxy Eyy®¢ Eyyy Eyz® Eyzt Pz Px
'(py Px 0

szmt+ Ex¢ EzyP¢ +Ezyt €229 +ezzt . -

_ Bxx®  Hxx, Hxy®' Hxy, szq)t—'—lixzt

0 Pz Py . g

=l 0 Byx® THyxy Byy®THyye Byz@ Hyz
Pz Px

Py - Px 0 l'lzx(pt-*_l‘lZXt l—lzyq’t—'_l-‘zyt pzz¢t+Pzzt
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The operator TP has the same structure as the matrix A®P if we re-

place ¢, ox , ¥y, @, by -e , _'.9_, etc. If U® is the matrix (vector), the

ot 0ox
elements of the first row being Ey, Ey, E; , Hy, Hy, H, and the rest
zero, the Maxwell equations (2.1) take the form ToBU® = 0. and eqs.
(2.7-2.8) are given by AePux ==, u® stand for the row matrix with ele-
ments of the first row being u,, u,,..., vy and the rest are zero.

If we substitute (4.1)- (4.2) in eq. (2.1) and take account of the compa-
tibility conditions, we atrive at the following system of equations for the
determination of u® :

43 E A% ous + ¥ Aabye =0, % Q_Aifi fy'e + Y AoBy'e + F(ue) =0, etc.
ap a‘Pij oxp = a.p a(pxﬁ oxp =

(¢« =1...6,8=1...4)

where F(u®) = TeBua. This equations are the transport equations. The

leading equation is called the prancipal equation and u® are the principal
amplitudes. The other equations are linear non - homogeneous in the higher
order amplitudes. For a detailed discussion and their relationship with the
equations of variations of the corresponding geometrical (ray) equations
see ref. [7].

The system of equations (4.3) are generalizations of the transport equa-
tions for inhomogeneous isotropic media derived by a number of authors
(see ref. [s], [6]). For homogeneous anisotropic media € and p are constants
and (4.3) are considerably simplified. A more general problem is treated in
ref. [7], where different kind of expansions from (4.1)- (4.2) have been con-
sidered.

The equations of the rays is given by the system of equations

dx;j dt —dox; —dipg
PO Pve... W PN
6AB T QAP 0  0Aah 0Aap

O, Ot 0x; ot

where x; t, Px; » @t are expressed in terms of the parameter ¢ and ini-
tial values of x; t, @x; , @t. In terms of o (4.3) take the simpler form
duk
do

duo

(4.5) % _do— = AoBya =0,§

|- %‘, Auﬁuj‘{ - F(ui‘;__1)=0,(k= 1,2,...;u3=1%),

d : o
where 4, Mmeans differentiation along the rays.
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Finally, the method outline above can be applied to Dirac equation
of quantum mechanics. The transition from dynamical equations to obtain
Dirac’s equation has been derived by the author[2l. A similar procedure

will carry over the Hamilton equation (4.3) or (3.1) to Maxwell equations (2.1).

SUMMARY

In this paper the framsport equations of propagation of the electroma-
gnetic field have been derived for the general case of an anisotropic and
in homogeneous medium. They include as special cases, the problem of
propagation in crystalline media, as well as Dirac’s equation in quantum
mechanics. Qur treatment has important applications in obtaining asympto-
tic solutions of the propagation of electromagnetic waves in the ionosphe-
re as well as in acoustical problems, where the 7efractive index depends on
time as well as on the coordinates. We have also indicated the procedure
of obtaining the transition from the equation of the rays (geometrical op-
tics) to Maxwell equations.

HE PTAH YIS

Eic mhv moapoloav épyaciav 3idovrar ai EEiodoeig peragopdc (transport) -
hextpopoyvnTivod Tedtov elg THV Yevixdy TEPImTWOW &VicoTPéTOL Xl dvopoLoYE-
volg péoov. IleprauBdvovton d¢ pepinal mepimrdicels 16 mpbPAnua g Siadboewms
elg xpuoTadhixa medto xol 7 EElowotg Tob Dirac eig Ty xBavropmyavixny. Ilept-
Eovran onpavtiol Egoappoyel eic Thy EmitevEy dovpmToTxGy Moewv Tig dto-
d6cews NAerTPOPAYWNTIREY WV UdTwY €ic TV lovbopatpay xabdg xal elg dxovoTt-
xa TpoPAfuata, 8mov 6 defwtng Swbhdoewe EExpraTar dmd TOv Ypbvov kol Tag
ouvretaypévag. “Emiong dmodewmvierar mae Sdvatar va émitevyfolv al EEicwoeig
tob Maxwell and iy &Elowow tév dxtivey tic Newpetpiniic *Onrinic.
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