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ABSTRACGT

Let (X, d) be a complete metric space, 7 : X — X be an orbitally continuous mapping
and let ¢ : [0, +c ) > [0, + 0 ) be a nondecreasing and right continuous function such that
@(t)<tfor t>0 and lim,_,  [t—@(t)]=co . Furthermore, suppose that there exist fixed po-
sitive integers p and ¢ such that:

d(Trz, Tay)< maz{g[d(Trz,Tsy)], pld(Trz, Tr'z)], g[d(Tsy,Tsy)] : r, ¥’ € P;s,s" € Q}

holds for all z, y € X, where P={0,1, ..., p}, Q ={0,1, ..., ¢g}. Under these assumptions
our main result states that 7" has a unique fixed point. Furthermore, it is shown that the
condition for 7" to be continuous is unnecessary if P = {0, p} or Q = {0, ¢}. Our work gene-
ralizes corresponding results of the first author, Fisher, Ivanov, Kaminski, Pal and Maiti
and several other authors.

Let (X, d) be a complete metric space and 7 be a selfmapping on X such
that

d(Tz, Ty) < ¢ld(z, y)] (1
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for all z, y € X, where ¢ : [0, +0) — [0, +00) is a function satisfying
o(t) <t for all > 0. (2)

Banach fixed point pririnciple states that if ¢(¢) is linear, that is, if ¢(t)=24-¢
for some 0 <2A<1, then 7 has a unique fixed point. Many authors tried to
replace the condition of linearity for ¢ by more general conditions ([1], [2],
[61, [7], [10], [11], [12], [13], [15], [16]). Boyd and Wong proved the following
result.

THEOREM 1. (Boyd and Wong [1]). Let T : X— X be a mapping salis-
fying (1), where ¢ satisfies (2) and @(t) is upper semi-continuous from the
right. Then T has a unique fized point in X and for each x€ X, {T"x} converges
to @ unique fized point in X.

Similarly as Banach fixed point theorem, the theorem of Boyd-Wong
also have applications (e.f. [2]). So the study of mappings satisfying a con-

tractive condition more general than (1) plays an important role in fixed
point theory.

The purpose of this paper is to consider mappings which satisfy a signi-
ficantly weakened contractive condition in the Boyd-Wong’s theorem, ad-
ding the assumptions for ¢(¢) to be nondecreasing and to satisfy the condition

lim [7 - ()] = + 0.

t— o0

Our main result is the following.

THEOREM 2. Let (X, d) be a complete metric space, T : X — X be an or-
bitally continuous mapping and let ¢ : [0, +00) — [0, + ) be a right continu-
ous function which satisfies (2). Suppose that there exist fixed poritive inte-
gers p and q such that:

d(TPx,T1y) < max {gld(T"z, T°y)], eld(T"z, T"2)], e[ d(T*y,Ty)]: (3)
r,reP;s s e 0}

hold for all x, y € X, where P= {0,1,..., p}, Q= {0,1,..., ¢}. If (1) in ad-
dition satisfies the following conditions:

@(t) is a nondecreasing function, (4)

lim [t - ¢(t)] = +o0, (5)

t— o
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then T has a unique fized point, say ue X and lim,—. T" x=u for each z € X.
Further, if P= {0, p} or Q = {0, ¢}, then the assumption that T is orbitally
continuous is unnecessary. Furthermore, if P= {0} and Q = {0} then the
conditions (4) and (5) are also unnecessary.

PROOF. First we shall show that for any given z e X, the orbit {7"x},Z0
is bounded.

Let n be any fixed positive integer. Then there are positive integers
i =1(rn) and j = j(n) such that

&) = diem {=, Tz, Tz,..., P"g} = (s, Pa). (6)

Observe that by monotonicity of ¢ we can write the inequality (3) in the fol-
lowing form:

ATV, Try) < gimax{d(T"z, Ty), d(T"a, T"a), d(Toy, T9):  (7)
r,r e P and s, s € Q}].

Without loss of generality we may suppose that p < ¢, i < j and that n > ¢
and j > ¢, since the case j < ¢ is trivial.

First assume that i > p. Then from (7) and by the monotonicity of ¢ we
have &, (z) = d(TPT" "z, T¢ T"2) < ¢ [diam {T""z,..., T'x, T",..., Tz}]
< @[0™(x)] which is in contradiction with (2) for d,(x) > 0. Therefore, i < p.
Since by the triangle inequality,

d(T'z, T’'x) < d(T'z, T"z) + d(T"z, T'z)
and as j > ¢, using ® we have

ba(z) < d(T'z, T"2) + d(T"z, T*T" ). (8)
Since from (7)

d(T?z, T'T""2) < g[diam{x,Tx, . . ., TPz, T "z, ..., T'x}),

and as ¢ is monotonous, we have

d(TPz, T°T" "2) < ¢[6"(2)].
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w
=1}

Now, by (8) we obtain

On(2) — ¢lon(2)] <= d(T'x, TPx) < K, )
waere K = max{d(Tz, T"xz): me P}. Since the sequence {0,(x)} is nonde-
creasing, the lim §,(z) exists. Suppose that lim §,(x) = +oo. Then (5) implies
that the lefthand side of (9) becomes unbounded when 7 tends to infinity, and

that the right-hand side is bounded, a contradiction. Therefore, lim,_, .. On(2)
= 0(x) < +oo, that is

dx) = diam {z, T, T2x,. .., Tx,..} < +o0. (10)

Now we show that {7T"2} is a Cauchy sequence .Set

a, = &(T"z) = diam[{T"x, T"'z,...,}] (11)

(n=0, 1, 2,...). By (10), {a,} is a sequence of finite nonnegative numbers.
Since @, = @y, it follows that {a,} converges to some a > 0. We shall prove
that @ = 0. Let n be arbitrary and let r, s be any positive integers such that
r,s>n+ p+ ¢. Then from (7),

a&(rx, Toy) = d(TT-Pp, FIP—4g)
< gldiam{T"Px, T™-P+lg, ..., Toy}] < ¢[(T""2)] < ¢[(T"2)]

and hence

sup{d(T"z, Tsy) i1, s = n+ g} < gd(T )],

that is, @, ;, < @(a,). Hence, as « < a, ,, we have a < ¢(a,). Suppose that
a > 0. Then by the right continuity of ¢ we have

a < lim ¢(a,) = pla) < a,

ap—at

a contradiction. Therefore, @ = 0. Thus, we have proved that

lim diam [{T"z, T"+12,...,}]1=0

n—» oo



136 ITPAKTIKA THX AKAAHMIAY AGHNQN

and consequently the sequence {7"z} is a Cauchy sequence. By the comple-
teness of X there is some ue X such that

u=Ilm =z, (12)

where x, — T"x. If T is orbitally continuous (c.f. [5]), then

Tu =lim Typ =1lim 2344 = u,

which means that u is a fixed point of 7.

The uniqueness of a fixed point of 7" follows from (3) and (2).

Suppose now that P = {0, p} or Q = {0, ¢} and that 7" may be discontinu-
ous. Without loss of generality we may consider only the case P = {0, p} and
0=1{0,1,2 ..., ¢}. Then from (7) with z = u, where u is defined by (12), and

y=T"-%2 we have
dI?u, T"x) = d(TPu, FT™1z) < gldiam{u, T"u, T %;. .., Tz} ). (13)

Suppose that d(7"u, Tu) > 0. Since lim,_, . "2 = u, for n large enough we
have:

diam{u, 7%, Tz ..., T3} < d(u,TPu) + max{dw, T2):1=0, 1,..., 4]
By monotonicity of ¢, from (11) we get
d(T?u, T"x) < gld(u, T?u) + max{d(u, T"z)1=0,1,.... ¢}]. (14)

Set ¢, = d(u, TPu) + max {d(u, T"ix):i=0,1,...,q) Then ¢, d(u, T"u)
when n —o00. Now from (14), we have

d(TPu, u) = lim d(TPu, T"x) < lim @(¢,) = lim @(c,) = ¢ld(u, TPu)] < d(u,T"u),

U— 0 n—s oo cp—>d(u,Tp,)+

a contradiction. Therefore, 7"u = u. Since {T"u} must be a Cauchy sequence,
it follows that 7u = u.

Let now P = {0} and Q = {0}. Then (3) becomes the Boyd- Wong’s con-
tractive condition, and so Theorem 2 becomes Theorem 1.

REMARK 1. If a space X is bounded, then the condition (5) for ¢ is un-
necessary.
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REMARK 2. The following simple example shows that if in Theorem 2,
p =2 and T is not orbitally continuous, then 7" may have no fixed point.
%

Let X =[0, 1] and let 7': X — X be defined as follows: 7(0) = 1; T(z) = 5

il z # 0. Then it is easy to see that 7 satisfies (3) with p = ¢ = 2 and ¢(t) = ;,

4

but 7 has not a fixed point.

REMARK 3. If T: X— X in Theorem 1 satisfies (3) with p # ¢, then it
also satisfies (3) with p = ¢.

PROOF. Suppose that p < ¢. Then we have

d(T1z, Try) = d(TP TePx, Tiy) = d(T7z, Tay),

where for notational simplicity we set z = T%Pz. Since
max {g[d(T"z, T*y)), ¢[d(T"z, T"2)] : r, 7" € P and se Q}
= max {@[d(T"z, T*y)], p[d(T"x, T"z)]: ¢q—p <71, < gand s€ @}
< max {g[d(T"z, T%y)], [d(T"x, T" x)] : r, ' € Q and s € Q},

from (3) we get

d(Tx, T'y) < max {gld(T"z, T*y)], pld(T"z, T" )], pld(T*y, T*y)]:
r,r'eQ and s, 5" € Q}.

REMARK 4. Independently, Matkowski ([10], [11]) and Ivanov [7] intro-
duced the condition (5): lim,_, . [ — @(t)] = + oo. In [6] the first author
showed that each of the hypothesis (4) and (5) in Theorem 2 is essential,
even for p=g=1.

As a consequence of Theorem 2 it is easy to obtain the following result:

THEOREM 3. Let (X, d) be a complete metric space and let ¢ : [0, +o0) —
[0, + o) be as in Theorem 2. If T : X — X is continuous and satisfies the fol-
lowing condition:

d(T2x, T?y) < agl[d(z, y)] + beld(Tx, Ty)] + celd(x, Tx)] + held(y, Tx)]

where a, b, ¢ and h are nonnegative reals such that a + b+ ¢+ h <1, then T
has a unique fixed point.
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REMARK 5. Taking in Theorem 2: ¢(¢) = 4.t with 0 = 2 < 1 we obtain
the fixed point theorem of B. Fisher [8] and A. Kaminski [9]. For p =1
(and ¢ arbitrary) we obtain the theorem of Pal and Maiti [14].

REMARK 6. Taking in Theorem 2: ¢(¢) = 4- ¢ with 0 <A <1 and ¢ = p,
we obtain the fixed point therem, given in [4]. For p = ¢ =1 we obtain the
theorem in [3].

REMARK 7. The following example shows that Theorem 2 is not only a
formal generalization of the corresponding theorems of the first author [3],
[4], Ivanov [7], Fisher [8], Kaminski [9] and Pal and Maiti [14].

EXAMPLE. Let X = [0, 1] be equipped with the Euclidean metric d and
let 7: X — X be a mapping defined as follows:

T(x) = x— L 22, for xe X and x # 2.,
2 3
)
3
Furthermore, let ¢ : [0, +-00) — [0, +00) be defined as follows:

o(t) = t— 312, for 0<t<1

gy =4, for t> L

Then it is clear that ¢ satisfies the conditions (2), (7) and (8).
Now we shall show that 7 satisfies (3) with p =¢=3. If 2, y € X and

z# 2, Y # £ then we have
3 3

d( Tz, Tg/):ix——y—é—(wz—y‘z)}:|.1'~y[|1— %(.‘L'“f‘ y) |

that is,

d(Tx, Ty) < gl(d(z, y).
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Using (2) and this inequality we get
d(T%z, T°y) < g[d(T?x, T?y)] < ¢*[d(Tx. Ty)] < ¢*[d(z, y)].

Since from (4), ¢(¢) < t implies ¢*(¢) < @(t) and ¢3(t) < ¢(t), we have

d(T3z, T3y) < ¢[d(x, y)] for all z # i and y # i

Since 73 (g) :—g, d[T(g), R (—32»)] = ;, for any z € X we have

N RTORAE
:w[d[T(g), ~(<)n

Therefore, for all x, y € X we have that T satisfies the following condition:

dT (g) T8 (2)) = { g T ()

ATz, T%y) < max {gld(x, y)), gld(Tx, T?z)], gld(Ty, T?y)]}.

Since T is orbitally continuous, we can apply our Theorem 2. On the other

hand, since d[T (g ), T%0)] =1 = diam (X), T’ does not satisfy the condition

(3) with p = 1. Also for any p, ¢ = 1, T does not satisfy the condition (3) with
p(t)=24-1t, for any 0< 1< 1.
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HEPIAHYH

M ypoppiksc THICVGTUATIKEG Gnelkovicelg Eml peTpk®dv L Opwv

"Eotw (X, d) évag minpne petpinds Y &pog,
T: X — X plo tpoyloxa cuveyie amelxbvian, xul

@ : [0, +00)— [0, +00) pia ph ghivovoa xal cuvexhs éx dekiiv ouvdptyoy

Tétota (doTE

o) <ty t >0 »al lim [t — (t)] = +oo0.

’E € 4 o € /4 N ) A 3 \ \ 4
mhéov, GmoBétope 8tu Omapyovy Oetixol dxéparor apbuol p xal ¢, tértorol

&ote 7 oyéon

b - s -5\,
a(13 7 ) = max {(p [d(yg’ T )} (p[d(Tx, g )} <p[d(Ty’ £ )}
r,r’eP;s,s’eQ}
va loyde vk Sha ta 2, y € X émov P={0,1,...,p},Q0={0,1,...,q}
Trd 1ig ¢ dve Tpotimobéserg, To xbpLo dmotéheosua THg dpyasiag elvar dtu 9

gmewbvion T Exer Eva povadixd ctabepd omuelo. *Ent mhéov ol cuyypagels dmodet-

xwdouy &1L 7 cuvBien 8t ) T mpémer va elvar ouveyd)g 88y elvan dvaryrador &v
P={0, ¢} % ¢={0, ¢}

‘H 2pyasta tév x.x. Cirié xal Ume yevixeber dvdhoyo dmotehéopata TéHv

Ciri¢, Fisher, Ivanov, Kaminski, Pal xai Maiti, xafd¢ xal &wv ouyypapéov.



