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vaydn Do tob CAnadnuairod x Kover. [Hanaiodvvov.

INTRODUCTION.

In the present note we extend the notion of quasiconformal functions
to pseudoanalytic mappings of a Riemann surface R into a complex ana-
lytic manifold My of (complex) dimension N ) 1. The main problem of this
extension is the intrinsicness of the definition, that is, the invariance of
the definition under acceptable coordinate transformations. This problem
is answered by the fundamental theorem 2. which serves also as an exi-
stence theorem.

Immediate consequences of theorem 2 are 1) A pseudoanalytic map-
ping accepts uniformization, fundamental property of quasiconformal fun-
ctions [g], 2) The dilatation of a pseudoanalytic mapping which in some
sense measures its deviation from the analytic ones is bounded. In fact
properties 1) and 2) are characteristic and are consequences of the sole re-
quirement of the intrinsicness of the definition. As a first application of

* NIK, OETPIAQY, ’Exni Tév YevSoavaivnind &nsixovicenv,



180 MMPAKTIKA THS AKAAHMIAS A©HNQN

the notion of pseudoonalytic mappings we consider the case in which My
is the complex projective space Pn. This extends the notion of meromor-
phic curves [1], [11] to the pseudomeromorphic ones. We apply a purely
geometric technique initiated by L. Ahlfors [1] and H. Weyl [11] and de-
veloped by S. S Chern (3] in his lectures on the theory of meromorphic
curves at the University of Chicago (1959).

The introduction of a uniformization parameter plays an instrument-
al role for the definition of osculating spaces and associated curves which
however turn out to be intrinsic notions independent of any particular
parameter. We subsequently prove the first and second main theorems for
pseudomeromorphic curves.

A method of procedure, in the case of meromorphic curves, is to
exhaust R by a sequence of compact polyhedra D. with boundaries and
consider the mappings f: De—> Px. We determine the polyhedra De through
a uniformization parameter; in other words, we let the mapping f deter-
mine the «forms of D. This innovation, without substracting anything es-
sential from the results, makes the results much more clear and simple.
In the case N=I our pseudomeromorphic curve coincides with the notion
of psendomeromorphic functions as defined and examined by G. Hilstrom
[1]. However, the convenient choice of D, as said above, makes the results
of the present paper much simpler and more directly connected with the
corresponding results of the theory of meromorphic curves. The technique
applied in this note makes possible an extension of Picard's theorem for
meromorphic functions, to the pseudomeromorphic curves, as it will be
shown in a future note.

I. PSEUDOANALYTIC MAPPINGS

Definttron 1: A mapping f=1£(z) of the complex plane D (z=x-iy)
into the complex plane f=u-iv is said to be guasiconformal if i) it is C'
mapping ii) the Jacobian J(z) of the mapping is positive everywhere with
the exception of a countable (at most) set of points which, however, are
isolated in D iii) if df=pdz+qdz, where z denotes the conjugate of z, the
ratio

Ip| + 1gl
k@)= 1= \qi

called dilatation of f(z) at z, is bouned over D.
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If we put f, = _12 (gi —ig;) , I7 = ; (2: -Hg;)
we see immediately that p=f., q=Iz.

A quasiconformal function is an interior mapping in the sense of
Stoilow [g]. Using Stoilow’s uniformization of an interior mapping [10], we
construct the «graph» of the quasiconformal function. This is a complex
manifold which is topologically equivalent to the domain of definition of
the mapping and carries on a complex structure equivalent to the complex
structure of the image of the mapping. In particular, this graph leads to
the following uniformization theorem, implied by works of Kakutani [8]

and Teichmueller.
Theorvem 1: If £(z) is a quasiconformal function defined on the once

punctured disc D={z/0{ z!{1}, there is a homeomorphism {=q(z) of the
unit disc {z/ z {1} such that i) ¢(0)=0, ii) ¢(z) is quasiconformal at least
in D iii) the function F(C), defined by F({)=fq¢-! (£) is holomorphic in
D' ={£/0< t.{1}; the point L=0 is a pole, an isolated essential singula-
rity or a regular point of F({) if and only if z=0 is a pole, an isolated
essential singularity of f(z) or lim f(z), z— 0, exists and is finite, respectively.

By this theoremr we are suggested the following definition.

Definton 2: Let f(z) be a quasiconformal function defined in a neigh-
bourhood of the point z=0, with this point deleted; let, moreover, {=q(z)
be a homeomorphism of the disc d={¢/ ¢ {1} such that it is quasicon-
formal in {Clo( T' (1} and ¢(0)=0. If the function F({) defined by
P (Q) =fp~"'(}), is analytic in {Jo ("' {1} the disc d will be called uniformi
zation disc of f(z) and € will be called uniformization parameter of f(z) in
a neighbourhood of z =0.

OIf course, a uniformization parameter as defined above is not uni-
quely determined. However, it is a matter of some computations to show
that if w and v are two uniformization parameters of the quasiconformal
function f(z), defined by w=«(z), v=g(z), where ¢(w), g(v) are quasicon-
formal homeomorphisms, then w=¢ ‘¢ (v) is a one-one conformal corres-
pondence between w and v. Now we continue to the definition of pseudo-
analytic mappings.

Definrtion 3: A preudoanalytic mapping f:R —> My, of a Riemann
surface R into a complex (analytic) manifold My of dimension N, is a
mapping which is locally determined by expresisng the coordinates of the
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image point as quasiconformal functions of the coordinate of the original
point.

Remartk - Clearly, the analytic mappings of a Riemann surface into a
complex manifold, as well as the quasiconformal functions, are particular
cases of pseudoanalytic mappings.

The crucial part of Definition 3 is that the quasiconformal functions
which define locally a pseudoanalytic mapping must keep their quasicon-
formal character under any admissible change of coordinates, either in R
or in My, It is however a fact that a holomorphic function of quasicon-
formal functions, taken as a composite function may not be quasiconformal.
For example, the functions f,(z)=kz + z, f,(z)=(1 —k)z + z, k {1, are qua-
siconformal, but F(z)=f, (z) + f; (2) is not.

In other words, there is a question of whether definition 3 defines
anything else beyond the analytic mappings for N ) 1. The answer is given
by theorem 2 which gives the interconnection of the coordinate functions
of the mapping, so that a pseudoanalytic mapping to be defined. As a ne-
cessary and sufficient condition it is the best possible.

Theorem 2: Necessary and sufficient conditions for the mapping
f: R — My, expressed locally by the functions f,(z), f,(z),..., fx(z), to be
pseudoanalytic is that these coordinate functions be C' functions with iso-
lated critical points and satisfy the same Beltrami equation

(1) %% = %
where n(z) is a measurable function satisfying |u(z)| < k{1

Proof: The proof is based on theorem 4B [2], characterizing the so-
lutions of a Beltrami equation. Suppose that the coordinate functions f,(z),
f.(z), . . ., fn(2) satisfy equation (1). Let w be a uniformization parameter
of fi (z) defined w=q (z), around z. It is easy to see that ¢(z) satisfies (1)
and, moreover, it is a homeomorphism. So, according to theorem 4B [2], w
is a uniformization parameter of fj(z) for j==1,2,..., N. The fact that all
fi(z) (i=1,2,..., N) accept a common uniformization parameter is sufsicient
to keep the quasiconformal character of the coordinate functions invariant
under holomorphic transformations. For the necessity of the condition, as-

of of of of s
sume that (a_il)o ( 57’)(} - (a—zL)o ( b;z)o # 0 where ( )o denotes evaluation at zo.
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of of
Let a, b constants such that b ( 5;) =a ( 3s )o

o

Then the function F,(z)=af,(z) - bf,(z) is clearly not quasiconformal.

1I. PSEUDOMEROMORPHIC CURVES

The theory of meromorphic curves was presented by H. and J. Weyl
[11] as a direct attempt to generalize Nevanlinna's theory of a meromor-
phic function. In this chapter we define the notion of pseudomeromorphic
curves and we extend the first two main theorems of Weyl- Ahlfors’
theory [1], [11] of meromorphic curves to the pseudomeromorphic ones.

Defininion 4: A pseudomeromorphic curve (f, R) is defined to be a
pseudoanalytic mapping f: R = Px, where R is a Riemann surface (=one
dimensional complex analytic manifold) and Py is the N -dimensional
complex projective space.

Remark : Tt is easy to show that a pseudomeromorphic function in
the sense of G. Halstrom [7], is a pseudomeromorphic curve for N=1, in
the sense of the definition above. So, the results obtained here will concern
pseudomeromorphic functions as a particular case.

Associated Curves: Let g(p) be a quasiconformal function and w a
uniformization parameter defined by w=q (p) in some neighbourhood of p.
If G(w)=g ¢ '(w) we define the operator Dw on g(p) as follows:

Dwg(p)=G o (p)
where G’ is the complex derivative of G (w). It is easy to see that Dwg(p)
is a quasiconformal function accepting common uniformization parameters

with g(p) and, consequently, having the same dilatation as g(p). Succes-
sive applications of Dy define D‘Jv for j=1,2,... Consider now the pseudo-
meromorphic curve (f, R); we put vav f(p):[vav fo (p), Djv 1,(p)...., vav fN(p)]
and we consider the k-dimensional space

F()A Duf(p)A...A Dy, f(p)

which will be called the k-osculating space of the curve at p. The locus
of the k-osculating spaces is a curve in the Grassman manifold G (N, k) of
the k-dimensional linear subspaces of Py, and will be called the k-associa-
ted curve. The k-associated curve does not depend on the particular uni-
formization parameter used for its definition, as it is easy to show; it is
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intrinsically determined by the curve, The homogeneous coordinates of a

point of the k associated curve are of the form
=D (D, (). D L )

w il w 12
where (i, 15,..., 1x41) is a subset of (0, 1,2,..., N) and jy,js ..., jk+1 is a per-
mulation of o, 1,2, ..., k. It becomes clear that an associated curve is itself

a pseudomeromorphic curve accepting common uniformization parameters
as the curve (f, R) and having the same dilatation with (f, R). A pseudo-
meromorphic curve (f, R) will be called non-degenerated if it is not cont-
ained in a Pnx—1, i.e. if
EADwEA...ADL 2]z 0

In the sequel we shall consider only non-degenerated pseudomeromorphic
curves.

Some preliminary notions : Let Vn4: be a complex vector space of
dimension N-1, equipped with a scalar product defined by (Z, W )=

N i
=" zw,, where Z=(z,,2,,..., zx), W=(w,, Wy, ..., Wx) are any two vectors

i=o
of Vy41. The complex projective space Py, is the orbit space of Vny1—0
under the group Z—>tZ, where t is any complex number # 0. The diffe-

rential form
~(Z. Z) (dZ,dZ)-- (Z,dZ) (dZ,Z)

(1) ds’= (7. 7y
is invariant under this group and defines an Hermitian metric in Px (5).
If (Zo,Zyy..., Zn) is a frame of Vny1 and define the differential forms
wap [4] by
(2) dZs = ZN(Duﬂ Zg
B=o
the metric (1) takes the form
(3) ds’:ZN ®oi Woi

1=
This Hermitian metric determines an exterior quadratic form, the associat-
ed 2-form {5}, given by

(4) Q= —; ZN(Uoj A woj
j=1

from which we derive the volume element of Px [s].
For the Grassman manifold G (N, p), form (1) is written

(s) dsh=(X,, X,) {dX,, dX) —(X,, dX,> (dX,, X,)
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where X, is a decomposable element of degree p-+1 and length 1 of the
Grassman algebra of Vn4i1. Finally (s5) is written (taking in consideration (2))

©6) ds,= ¥ wan ®an, 0= a<p, p+1=h<N)
and the 2-associated form of G (N, p) is given by
(7) Qp= ;- Z(Dah/\(.l)ah, (oL a<p, pti1=h<<N)

where the wqp 's are the ones defined by (2).

The first Main Theorem : 1f Pg_p_l is a fixed linear subspace of Py of

dimension N-p-1, the first main theorem of rank p gives an estimate of
how many times the p-associated curve A, (z), of the pseudomeromorphic
curve (f(z), R) meets this linear space. Let H be the subspace of G (N,p)
consisting of all linear subspaces Py of Px, of dimension p, having a point

in common with the fixed subspace Pl?,_p_l. If Pg is a linear subspace com-
pletely orthogonal to Pg_p_x, X, a decomposable (p+1)-vector represent-

ing Pg (i.e., X, perpendicular to Pr?) and X a decomposable (p-1)-vector
representing an element of H, the differential form
(8) (aX,X) — h(X)dh(X)

1f (Zo,Zy,..., Zn) is a frame of Vx4 and Xa=Zo AZi A ... N Zp

exterior differentiation of X, and substitution from (2) gives

(9) dX;, X)) = D 0o, (0=a =< p)

Finally, after exterior differentiation of (8) and cousidering the fact that
h(X,) dh(X,) is a closed form, we obtain

(r0) d[dX,, X ~ h(X)dh(X,)] = ZiQp

where h (X)

If X is any vector # 0 and if we put X, = ;(( we have
1 '
(dX1:X1> = 91x,? [<de X> = <Xde> ]:(d —d”) log X

where d” and d” denote differentiation with respect to X and X respecti-
vely. Similarly, we have

h(X,)dh (X,) = (d'—d”) log [{X,X,)
So (10) becomes

; p 'X .
(r1) d(d —d") 10g|<X,)£,,)1 =2i Qp
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Consider now the pseudomeromorphic curve f:R —> Py where R is
a compact Riemann surface bounded by a sectionally smooth curve C. The
p associated curve Ay :R —> G (N, p) induces a mapping A, of the differen-
tial forms of G (N, p) to differential forms of R. So, applying Ap on (11)
we get

(x2) A d@-a"log N —2i A3 Qy

Here as well as throughout this paper by an e-neighbourhood of a point
meR (or an isolated boundary point of R) we shall mean a neighbour-
liood of m bounded by the simple closed smooth curve C. defined by

l@(z)| = & where ¢ (z) is a quasiconformal homeomorphism defining a uni-
formization parameter w=q (z) around m. Clearly all s-neighbourhoods of

a point are conformally equivalent. If by X: we denote a point of R such
that <Ap(X: ), X, > =0, assuming that all such points are interior in R, we

isolate them by disjoint e-neighbourhoods so that all C.’s and C are also
disjoint. If Re is the complement in R of the union of all e-neighbourhoods

of the points X:. applying Stokes theorem to (12) and then taking limits

as ¢ —> (, we obtain.

1 3 * , 2.4 \X! 1 . 3 * ’ ”
(13) 2ni /C Ap (@7-d7) log (X, Xo) — 2ai ze_l;n‘l)jcs Ap (d'-d” log
X| A
ny X;>\ = w Vp (R)

where the summation is taken over all C. s, oriented negatively with res-
pect to the interior of Re, and V,(R)=area of A, (R). It remains to see the
value of the quantity under the summation sign in (13). We have

* ’ I . !X[ -1\ % s 4 o @4,
(14) / Ab (d7-d") log | ks, :/CAW P = GE e
J oce

€
Since Ay ' is an holomorphic function, it commutes with d’-d’* and the

second member of (14) becomes

, ‘ |Ap -t (w)| / ’ ‘e .1
1 o S s - 7 e
(15) ./;,Ca(d -d") log [Apy-*(w) Xo)] = | "™ (d'-d"’) log |Apg(w)]

—-fc (d’-d") log KAp @' (w), Xo)!

Now we apply the following lemma [3].
Lemma 1: 1f F(z) is a C! function then (d"-d”’) F (z) = ir F: d@ along

the circle r=constant. where r, 0, are the polar coordinates of z.
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If in (15) we put {(Ap @~ (w), Xo) = w¥ g (w), where g (0)#0, and con-
sidering the lemma above we obtain
2% Pl
j (@’-a") log I(Ap ¢~ (w), Xo)| = zkni + ie/ Togletml g
«Ce

o

and consequently

limf (@ -d”) log I{Ap @ (w), Xo )| = 2kni
e=>oJ ¢Ce

Since |A, @~ (w)| # 0, the same argument gives
lim (@ -d”) log [Ape*(w) =0
£~ 0 q,C,z
So, if we put 2k = np(R,X;), where the summation is taken over all
X: points of R, formula (13) becomes

1
2xi

(16) fCAéi (d"-d") log ﬁ'—x)‘ﬁl + 0, (R, X)) = = V,(R)

This formula gives the unintegrated form of the first main theorem of or-

der p of the pseudomeromorphic curve f: R —=> Py. In (16) np (R, X;) indi-

cates the number of times A; (z) meets the linear space Py,

The integrated first main theorem will be derived assuming that the
Riemann surface R is obtained from a compact one R, by deleting a fini-
te number of points which will be called points at infinity [3]. We isolate
the points at infinity by disjoint e-neighbourhoods; let Ce be ths boundary
of such a a neighbourhood and R. the complement of the union of the
g-neihhbourhoods of all points at infinity. The unintegrated form of the

first main theorem appled on R, becomes:

(1) m(RaXo) = Z gy [ a5 (@0 tog 5% = & Vo(Rd

where C.’'s are taken positively oriented and the summation is taken over
all Ce’s. If in (17) we put e= :— , then divide both members by p and final-
ly integrate with respect to p we obtain

(18) Np(p, Xol) i My (P)=Tp (P)

e P, W2 1 [PV (R,) de  is the order function in the
b LA . PR e Ahlfors-Shimizu definition.
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o : 1y de
Ny (o Xet) =y (Rp, Xot) &
Po
and

r @
(19) Mylp)=—3 oo /p [/C A A7 A" oy l<>ix;'<0/!] &

After some standard computations and application of lemma 1 we get:

2n
% (31 n xr . 2 log . 1Bp@-t(w)|
/CPA" @'-d") log | g g = — 0 & \ £ KAp o w), Xo)]
Finally, dividing by p and integrating with respect to p we obtain:

e “2r .
0 [ L[ 0 1% e A s

o P o
where the integral of the second member is taken for |wl=p around a
point at infinity and Ko is the value of the same integral for wl = po.
Taking now summation of (20) over all points at infinity (19) becomes

A
Me (p) = z f £ I« fl\p ?Z;.Z)Xlo ) dev‘lw|=p— 5

1Ap ()]

From Schwartz inequality we have log | Ap (@), Xo S| 250

So, (18) becomes
1 o ‘ P (7”

(21) Nplp; Xot)—Tplp)+ gn/; log ¢ Ap(2), Xoy] 40 ?I = _Constantéo
This formula expresses the integrated form of the first main theorem.
Sometimes the first main theoreme is useful in the following weaker form
(22) N (p, Xo') £ T (o) + Constant
A first consequence of (21) is that the measure of all Ax-p1 non inter-
sected by the p-associated curve of the pseudomeromorphic curve (f,R) is
of measure zero. This is obtained by integrating (21) over the volume ele-
ment dG (N, N p-1) restricted to those Ax-p-1 for which np (p, Xo*)=0. This
result takes a much stronger form in the Ahlfors defect relations (1],
which, as we shall show in a future note, hold for the pseudomeromorphic
curves as well.

The Second Main Theorem - The mapping Ap: R = G (N, p) maps the
invariant Hermitian metric of G (N, p) to an Hermitian metric in R with
certain singularities. The second main theorem expresses a relation bet-



SYNEAPIA THS 24 MA'TOY 1962 189

ween the Buler characteristic of G and the curvature of this induced me-

tric. The metric (6) of G (N, p) is mapped by Aj to the differential form

p— (Ap—1, Ap—1) (Ap+1, Api1) 3
(I) Ap dSp = (Ap Ap>2 o d(p(z)d(p(z)

where, as everywhere in this paper, ¢(z) is a quasiconformal homeomor-
phism defining locally a uniformization parameter w of the mapping
(w=e (z)). The singularities of (1) appear at the zeroes of

|Ap—1| |Ap4a|
< Bo= """ jap

If, at some point, the zeroes of Ap—il, [Apl, [Apy1 are of order dp—1, dp, dp+1,
respectively, the point is singular if my=d,—1—2dp-+dy4+1)0. Such a point
will be called p stationary point of stationary index myp. Assuming that no
stationary point lies on the boundary C of R, we isolate the stationary
points by disjoint e-neighbourhoods and let Re the complement in R of
the union of these neighbourhoods. Clearly, (1) defines a positive definite
Hermitian metric in Re. The connection form of this metric [3] is

(3) @u=—idy + (d'- d") log hy

0 - 0 —
where d’loghp= —log,hp de(z), A" log hp= —lihl’ de (2)
ow ow

Applying Gauss-Bonnet formulla on (1) and taking limits as ¢ —> 0 we

obtain

() —znzi[X(R)——k]—l—f(p,,—i-Zlim (puzlim/ .,
¢ e—>»o, ) Ce e~>»o0. /) Re

where k is the number of singular points, £ is taken over all singular
points and &,,=dg,;=—2d’d” log hr.
Considering the local expression (3) of ¢,, and applying lemma 1 we

find lim fc; Q1= — 20l (mp+1). We also have
g—>0

/[ (I)u_Zi[// A;ilgp-l—z‘/‘/ A; Qp"l"// A;+1 Qp+1 ]::

=2i [Vp——l (Rz)—z Vp (R e) + Vp-)—l (R a)]
Since for £ - 0 we have R.— R, formula (4) is finally written
1 1
(5) —XR)+ 5+ fcfpu = [Ve-1(R) =2 V3 (R) + Vpta (R)] + wop
where wp = 2m,, = being considered over all singular points. Formula (5)
gives the unintegrated form of the second main theorem. The integrated

form of the second main theorem is derived from the unintegrated ome, by
applying the same method as in the first main theorem. That is, we res-
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trict ourselves to a Riemann surface R obtained from a compact one R,
by deleting a finite number of points at infinity. So, the notation being as
in the case of the first main theorem, formula (5) is written for Re..

© -XR)-,- z/ca(p,, =L [V (R) -2 Vp (R + Vi (Ro)] + .

: 1 o 7 .
If in (6) we put p=, divide by p and then integrate over p, we obtain

21 p

() —X(®Rolog ! ~ 55 Z[ [[ o] ¥ =Tosle)=2Tule)+
po Cp i
+ Tt o)+ [ o (o) &

0 s
From the local form of ¢;; =1d6 — ip R log hpd® we obtain:

B dp . P .
QP | — =2m log — —1 log hp
f [fc;» “] P Po

po cp
If finally we notice that R, is obtained from R, by deleting r small discs,
we have X(Rp) = X(R,) — r. So (7) becomes

(8) —X(Ry) log;p; + 2 Sp (P) = Tp—1 (P) — 2T (P) + Tp+1 (P) + W, (P)

1 © d
where Sy (p) = o f log hpd6, Wy (p) = f wop (p) Tp
co

po
and the summation is taken over all points at infinity. Formula (8) gives
the integrated form of the second main theorem.
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*

‘0O x. Kovor. II. Harxoiodvvov dvaxowdv miv davotéow pehémy eine ta
£Efic.

*0 % Nuwdlaos Ierpidne onovdace ta madnuarxa eis w0 INavemorjuoy
*A9yrdv wava ta Ey 1948 - 1953. Ty modyy deyasiar tov magovolacey @ @ot-
e il dlyefoixod Dewprjuaros tov deurvijorov Iavayudrov Zeofod. *Amopoini-
oag ud v Badudy dowra dnod o Iavemoriuor > Adpvdy, &vyey dmorpoplas tov
“I8pbuaroc Koatxdy dmorgopidy dia vo Havermotijuoy tod Zixdyov, s 16 émoiov
dpolinoey éni mevraetiav, magaxolovhjcas ta puadjuora dwampendy xadnynrddy s
oi A. Albert, S..S. Chern, S. Maclane, M. Stone. Thy &ni didaxvogia diaroifrjy
tov &enbmoey 6 x. Ierpidns Hmo vy Emomreiav vov Kadnynrov S. S. Chern, évoc
1@y peyalvtépwy yewuerodv tijc Enoyils uas. ‘H dwarofn atmm elvou idiaréows
GEi6loyos nai dmotedel mowrdTumoy ovufolny els 1a dboxola Féuara énl v émi-
pave®y tod Riemann.

‘0 %. Ieroidns eivou 7i0n Assistant Professor vot Ilolvreyvelov tot [llinors.

Thy magovcay éoyaciav tov, Ty Smoiay Eyw Y TRy va dvaxowdow &is
iy > Axadnuiav, magovoidlw pé idiutéoay yapdyv, diéte 6 x. Ilerpidns Owerélscey

xai ayamnros padnris wov.

Elvac yvworn 1 Evvowa thic ovuudepov dmexovicews ywoiov tod uiyadiviod
dumédov OXVW (x + vw=2Z) o wob muyadod Emnédov ouv(u ~+ 1iv=w).
Eitndlws drodevevietar Su pla dralvuxs ovvdemows w=/,(z) doiler tromxde uiay

L] ~
abppog@oy Gxewxdviow. Kal avuotpdpwms dp’ Soov évyooduey s ovuudopovs amet-
’ Y > ’ e e ~ E ’ 3 ’, 3 \ v e ’
xovioews, tac anemovioss, ai 6molar givar 3yt uévoy isoydvior alia xal Suoidorgo-

e 3 ’ T e 7 . N 1 ’ ] \ ~

o, ai amewxovices atrar 6piloviar dmd dvalvuxds ovvagujoes. “Enl 1@y nagarn-

ofocwy adtdy omnlduevos Goyinde 6 Riemann xal dv ovveysiq mleds Oome-
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ady Egsvynrdy Ednuodoynoay Y cyewuetony> Yewoiay @y cvvagricewy uids
wyadizils perafintijs. Eic mhy avdnwwé&w tije dewolac tavmne ovvéfaler odowwdds
xai 6 asiuvnoroc Kwvoraviivos Kagadeodweij. Eic 1d xlacowxd atra Huara Hoi-
otaviar eioét onuaruxa dhvra mgoflijuara. Tovro Suws &y Humddice Ty dnuovo-
yiay edovtéowy Dewoidv dmooxomovad®dy eic iy yevixsvow tijc dwvolac tijs ovuude-
@ov dmexovicews, Tijc Avalvuxiic dmexovicews, tijs ueooudepov dnexovicewe, Tijc
alyefoinijs dneoviosws xtd. Tag Epyaciag éni tév xarevdivoswry adr@v dvvdusda
va xarardEmpey eic Sbo xammyopias, fror: lov. eic dnelvac, ai Smoiar Evemvedodn-
oav xvpiws dmd ™y xhacoxny padnuatvay avdlvew: els v xarnyoplay aduiy
arijrovy xai ai doyasion Tob dsyijorov Leweylov Peuotdvdov, xal 20v. eic 1d¢ dpo-
yaaias, ai émoiar, év ovvdvasu® &viote xai ud 1ac nmpdrag, tomoderobvtan sic Ta
alaiow 1@y leyouévawy vewtéowy wadnuoaridy.

Eic tac televraias dvijxer xai 1j magodoa deyacia 1od x. Nixohdov ITerpidy,
&ls my dmolay dmrvyydverar xara yoviudratoy 1ebémov 1) otvdeois Cninudroy Tic
xhaoowiie arvalvosws ué (nujuaza vewtégwy uadnuanixdy. Eic vy Zoyacior ad-
v dmexveiveraw 1 Bwvowa tijs Quasiconformal dmewovicews els Wy meglntwow
wevdoavalvuxdy dmexovicewy wds dmpaveios R t10b Riemann évros wds uvyo-
duerje dvalvnixije molhanddtnros My pyaduiis daardoews N )1, ‘O véoc Spiouds
tijsc Quasiconformal anexovicsws, tov omoiov 8ider & x. Isteidns ap’ évos utv
nagauéver avalloiwros els tods diapdpovs ueraoynuatiopovs, 4’ ftégov ¢ moo-
péoetar dia vy yevirevow yrwor@v Evvoidy tijc dewoiac v Avalvuxdy cvvapo-

Tjoewy.

MAOHMATIKA.—Une méthode nouvelle pour la majoration et pour
la minoration des valeurs absolues des zéros des polynémes;
extension au cas des zéros des Series de Taylor, par Jeanne
Ferentinou - Nicolacopoulou®. ’Avexowwdn vmo 1ol  Axodnuairod
%x. Kovor. Iaraiodvvov.

1. INTRODUCTION
Soit

a,z"+a;z2"'4+ . . . +a, (1)

ol a,# 0, un polyndéme a coefficients dans le corps complexe C. D’aprés un

* [QANNAZ ®EPENTINQY - NIKOAAKONOYAOY, Néa néBoSog Sik TV &vebpeoiv &vaTépav Ral Ra-
TOTEPWV PRAYHATOV TOV &TOAVTOV TINGVY TV PItdV TV oAvavipav. 'Enéntacig eig TV nepintaciv

Thv Gepdv 7od Taylor.



