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ABSTRACT

Previously introduced yield criteria taking into consideration the influence of
internal dilation of the materials during yielding were based on a conventional assump-
tion of the influence of the hydrostatic component of stresses on the yielding process
and therefore they were fitted to the actual macroscopic behaviour of the materials.
They were proved experimentally to predict the overall plastic behaviour of a great
number of substances. In this paper a yield criterion was tested which was based on
the theory of void growth and coalescence in the vicinity of internal discontinuities of
the material during yielding and fracture. The inverse dependence of yielding on the
hydrostatic tension is incorporated, whose increase creates a rapid decrease of fracture
ductility.

INTRODUCTION

The various yield criteria introduced in mechanics of isotropic and
elastic-plastic materials should depend on the magnitudes of the three
principal applied stresses and not on their directions. Therefore, any yield
criterion should have the form [1] :

f(117 I27 Ia) =0 (1)
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where I, I, and 1, are the first three invariants of the stress tensor o;; de-
fined by

I;=(6;+ 0p+ 63), Ia=—(6,62+ 6203+ 0306;) and I3=o0,6;05 (2)

Furthermore, yield criteria should satisfy the obligation to be expres-
sed by functions, f, which must be symmetric in the three principal stresses.

The first and simplified forms of the yield criteria assumed the
approximation that yielding is unaffected by the first stress invariant I,
for cases of hydrostatic tensions or compressions either applied alone, or
superimposed on some state of combined stress.

Then, the ideal plastic body was assumed to yield under the influence
of only the deviatoric stress tensor expressed by :

8ij = Gij — O'Sij (3)

where 6 =0; /3, 8; the Kronecker delta, and the indices i, j running
between 1,2 and 3.
According to this assumption the yield criteria are reduced to the
form :
f(Jg, J3) =0 (4)
where
1

= ‘é—Sij si; and Jg= §—Sij Sjk Ski (5)

A further restriction, which is only valid for ideally plastic bodies,
has been introduced, according to which the magnitude of the yield stress
is the same in simple tension and compression. This assumption is never
met, except perhaps only for ideal single crystals. All polyerystalline mate-
rials present some small or large difference in yielding under simple tension
and compression.

Furthermore, since reversal of one stress influences the sign of J,
reversing also it, fact which violates the symmetry obligation of the yield
criterion, it follows that f(J,, J3) =0 should be an even function of J;.

Finaly, because of the assumptions of isotropy and non-existence
of the Bauschinger effect, an interchange in the order of succession of the
principal stresses and their opposite values must not influence the yield
locus. Therefore, the shape of the yield locus may be fully defined by one
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of its twelve 30-degree segments limited by a simple axial load and a pure
shear loading.

Leaving aside Tresca’s and Coulomb’s yield criteria, which are depend-
ing either on the maximum shear stress or on a combination of the maxi-
mum shear stress and the hydrostatic stress, we are concentrating to yield
criteria based on energy assumptions. Among them and the most ancient
is the so-called Huber - Mises - Hencky criterion [2].

According to this criterion yielding occurs when the second stress
invariant J, attains a eritical value equal to this energy in simple tension
(6p). Hencky [3] was the first who interpreted this criterion that it corre-
sponds to the fact that yielding begins when the recoverable elastic distor-
tional energy reaches a critical value equal to the same quantity in simple
tension or in pure shear. Then, in this criterion the J;-invariant is not
involved and, furthermore, it is assumed that hydrostatic tension or
pressure does not cause any yielding of the material. This may be
approximately true for isotropic metallic specimens when yielding of the
overall metallic body is anticipated.

A simpler than Mises’s criterion is Tresca’s criterion [4], according to
which yielding occurs when the maximum shear stress in the body reaches
a certain value, that is the respective maximum shear stress in simple
tension. Although this ecriterion is basically not well founded, since it con-
siders only shear stresses and not energies for yielding, where all stresses
acting on the body participate for yielding, it is frequently used because
of its simpicity.

However, for soils and other materials, where the hydrostatic component
of stresses interferes in yielding and fracture and where yielding in simple
tension is much different to yielding in simple compression, an improve-
ment of the Tresca criterion is the criterion introduced by Coulomb [5] and
Mohr [6].

According to this criterion elastic strains are neglected and plastic
strain-increment is assumed depending only on the applied stress. The con-
dition that there is no strain in the z-direction (along the thickness of plane-
strain cases) implies a functional dependence of the c,-stress on the princi-
pal stresses o; and o, along the planes of flow. If the reversal of the stres-
ses assumes a reversal of strain increments then the o,-stress is equal to
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(61+ 62)/2 and may be, therefore, eliminated from the yield criterion so that

the yielding function is reduced to

f(P~ 7max) =0 (6)
where

1 1
p = — 7 (0'1 + 02) and Tmax — -i— (62 - Gl) (7)

that is p is the mean compressive stress taking the place of hydrostatic
pressure and Tu.. 18 the maximum shear stress. Then the yield criterion
may be represented by a locus referred to coordinate-axes 1/2 (c;+ op) and
1/2 (65— 6,). This yield locus is closed on the tension side, if it is assumed
that a pure hydrostatic tension may alone produce yielding. Then, Tresca’s
yield condition, where 7.« =1k, where k is the maximum shear stress in
yielding in a state of pure shear, may be assumed as a special case of Mohr’s
yield condition for the case when f is independent of p and the Mohr enve-
lope degenerates into a pair of parallel lines to the normal-stress o-axis.

Coulomb - Mohr’s criterion is not the only criterion depending on the
hydrostatic component of stresses. In this paper such criteria will be
established and discussed and important results were derived concerning
the behaviour in yielding and fracture for real materials.

THE GENERATION OF EMPIRICAL YIELD CRITERIA
DEPENDING ON DILATION

It was as early as 1904 that Huber has introduced his yield or brittle
fracture criterion, where he distinguished two cases depending on whether
the hydrostatic component of stress applied to the specimen was tensile
or compressive. For compression he introduced a criterion based on the
distortional component of the elastic energy, whereas for tension the cri-
terion depended on the total elastic energy [7].

Afterwards, von Mises [8] and independently Schleicher [9] have intro-
duced the notion of the equivalent critical yielding stress, instead of that
of simple shear k, of an arbitrary function of the hydrostatic component
of stresses. The criterion was convenient for materials whose yielding de-
pended on hydrostatic tension or compression and therefore they presented
different critical values for yielding under the different modes of loading.
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This criterion was a general one, incorporating all previous criteria taking
into account the influence of hydrostatic component of stress.

Although from the early tests for the determination of the mechani-
cal properties of the materials it has been realized that very seldom the yield
stress in simple tension coincided with the same quantity in simple com-
pression, it was assumed at least for the ductile metals, where this difference
was not so important, to exist a complete symmetry for the yield locus
in the tension and compression spaces. Thus, Tresca’s and Mises’ yield con-
ditions were accepted as describing universally the plastic behaviour of
ductile substances.

On the contrary, in brittle materials, where the ratio of the yield
stress in simple compression o, was always much different to the yield
stress in simple tension o, it was accepted from the early beginnings that
a Mohr - Coulomb type of yield locus was describing appropriately the plas-
tic behaviour of these substances. Although the Mohr - Coulomb, or inter-
nal friction, criterion fitted satisfactorily the results for non-metallic, stony,
earthy or concrete specimens, this acceptable coincidence between theory
and experiments may be due to the large scattering of results with tests
of such materials.

However, tests with brittle metallic materials, such as cast iron, bronze,
ete. have also shown a strong dependence of yielding on the strength-dif-
ferential effect of the materials, expressed by the ratio R = 6,c/60r. Experi-
ments with gray cast-iron thin-walled tubes executed by Coffin [10], pre-
senting a strength differential effect R = 3.0 (6o = 100 x 103 psi, 6ot = 33 X
% 103 psi), and Grassi and Cornet [11] (with 6 =28.5x 103 psi and 6, =
= 96.0 x 103 psi) obeyed satisfactorily a hydrostatic-stress depending Mises
criterion. According to this conception the strength-differential effect arises
in initially isotropic materials as a result of the dependence of the yield
criterion on the first stress invariant J,. In this case, there exists also a pre-
dictable change of volume. Fig. 1 presents the yield loci of these materials
normalized to the yield stress o, in simple tension. It is clear from this figure
that all experimental results fit excellently the stress-differential modified
yield criterion (SDM-criterion). Although there are not sufficient data in
the compression-compression quadrant, it is clear that the material follows
such a form of criteria. If one considers further all discarding of results,
which were assumed as non compatible with existing theories in the time
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of execution of the experiments, one may assumes that the results given
could not be avoided.

Furthermore, the reliable early experiments by Taylor and Quinney [12]
indicate also clearly that, while aluminium and copper with R = 1.0 obey
excellently the Mises yield criterion, mild-steel specimens deviate consider-
ably all the experimental points, lying outside the Mises yield locus. It
can be readily proven that these values obey a hydrostatic-stress depending
Mises criterion with R = 1.3. Fig. 2 presents the results of Taylor and Quin-
ney, as well as those of Lode [13] for various types of steels and copper,
which again show an excellent agreement with the strength-differential
modified criterion valid for R = 1.3.

Yield criteria based on the hydrostatic-stress modified Mises criterion
were extended during the last twenty years to predict the yielding behav-
iour of high-polymers. This empirical ecriterion complements the typical
Mises criterion by a term which depends on the hydrostatic component of
stress and it is proportional to the difference of yield stresses in uniaxial
compression and tension, so that if these two quantities are equal, the modi-
fied criterion reduces to the typical Mises eriterion. This criterion is expres-
sed by :

(61— 62)* + (65— 63)* + (63— 61)* + 6 (Goc — Got) P = 200t Goc (8)
where p denotes the hydrostatic component of stresses given by :

p=o0i/3 (1=1,2,3) (9)

This type of criterion in its three-dimensional form was suggested by
Schleicher [9] and elaborated by Stassi d’Alia [14] and Tschoegl [15]. Rag-
hava, Caddell and Yeh [46] have applied it to the yield behaviour of some
polymers and compared it with other forms of thé same idea. Theocaris [17]
has discussed its application and Gdoutos [18] used it for studying the ini-
tiation of plastic zones at the tips of cracks in infinite isotropic and elastic-
plastic plates, whereas Theocaris et al. [19] used it just to show the influence
of mechanical properties of a bi-material plate when a crack existing in the
one phase approaches the interface.

The form of this criterion complies with the limiting cases of loading,
that is when 6o = a4, it reduces to the classical Mises yield condition, which
is independent of the influence of the hydrostatic stress. Moreover, for very
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Fig. 2. The experimental results of Taylor and Quinney and Lode for the yield
loci of various kinds of steels and coppers and their coincidence with the
stress-differential modified yield criterion with R —1.3.
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brittle materials for which 6,.> 6o, so that it may be assumed that
Goc/ 0ot tends to infinity, the yields locus degenerates to a form which
is very similar to the Mohr - Coulomb criterion in its general form.

However, there is no explanation why the influence of the hydro-
static component of stress is linear, with a linearity factor depending on the
difference (oo — 6ot) of the yield stresses in simple compression and tension.
Moreover, there is no explanation why the square of the yield stress oo
in simple tension, existing in the right-hand side of the Mises criterion, should
be replaced by the geometric mean value of the two yield stresses 6, and o, .

Experimental evidence with metallic specimens, however, indicated
that, whereas Tresca’s yield condition is in general non-compatible with
reality, Mises’ yield condition constitutes a lower bound for the yield loci
corresponding to R = 1.0. As soon as there is a slight difference between
yield stresses in simple tension and compression the yield loci lie always on
the one side of the Mises yield locus and they recede from it, as R is increas-
ing. The figure 4 in the book of Hill [1] gives the yield loci for copper,
aluminium and mild steel specimens, based on the experiments of Taylor
and Quinney. This figure also shows implicitly, but clearly, the influence
of R, which for mild steel is of the order of R = 1.3.

The Schleicher - Stassi criterion expressed by relation (8), which for
plane stress conditions becomes :

(qf+ 6y — 61 6g) + 3 (6oc — Got) P = Goe Got (10)

consists of three terms, from which the first expresses the distortional com-
ponent of energy and corresponding to the classical Mises yield condition,
the second term expresses an elastic energy depending on hydrostatic stress
p and the difference in yield stresses for compression and tension, whereas
the right-hand side term is the geometric mean of these two yield stresses.

Addition of the three terms in Eq. (10) is legitimate, since these terms
express energy quantities. They tend to a limit when o6, =6, reducing to
the classical Mises yield condition for ductile materials. Moreover for 6,.2> 6o,
so that it may be assumed that 6. /6, =0, Eq. (10) yields a limiting ellipse,
which is equal in size with the Mises ellipse with o6, =0, and it passes
through the origin of coordinates in a (6;/6oc , 62/60c)-diagram and the points
(—1, 0) and (0, —1). All other ellipses referred to the same yield stress in
simple compression o,. are smaller in size than these two limit curves and
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they pass all of them through the points (—1, 0) and (0, —1). Fig. 3 indi-
cates the family of SDM yield-loci referred to the same yield stress in simple
compression. [t is obvious from this figure that the ellipses for R = 1.0 and
R = o are equal.

ﬁ 0, 10y,

04/,

10
42 .7 -10

6.0
L 10.0
20.0

R=zoo

Fig. 3. The family of the stress-differential modified yield criteria with R varying
between unity and infinity for the same yield-stress in uniaxial compression.

Fig. 4 presents a similar family of yield loci for the same yield stress
in simple tension. Although both families are ellipses, the sizes and forms
of these curves are much different in either family.

Although the Schleicher - Stassi criterion is a satisfactory general
criterion, valid for the wholc range and diversity of materials, since it con-
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forms, in a convincing way, with existing experimental evidence with ductile
and brittle materials, it remains an empirical one, because it cannot explain
the reasons of choosing either the difference of yield stresses in compression
and tension or their geometric mean to encounter for the influence of the
hydrostatic stress in yielding and to define the equivalent stress of yielding
in uniaxial mode of loading.

Another empirical eriterion was introduced by Nadai[20], Sternstein
and Ongchin [21] and Bauwens [22].

As it is indicated by relation (8) the yield condition may be expres-
sed as a function of the three stress invariants. For materials presenting a
substantial strength-differential effect the yield condition F(Iy, I,, I3) may
be expressed according to Spitzig and Richmond [23] by a linear relationship:

F =) ™ eyt 30HJ, 9" = ¢ (11

where a is the so-called mean-stress coefficient, b is a skewness coefficient
and ¢ expresses the basic strength of the material.

It is generally accepted that the odd dependence of any yield crite-
rion on the J;-stress invariant is insignificant and therefore may be
neglected. Then the criterion (11) is reduced to :

(337 + al, = ¢ (12)

which, for constant values of the coefficients a and ¢, coincides with the
Drucker - Prager criterion [24] for soils.

The coefficients a and ¢ have been calculated by a regression linear
analysis for various kinds of steels and polymers by Richmond and
Spitzig [25]. These values (contained in table I of ref. [26]) indicate that
the observed values for the coefficient b for steels and polymers is insigni-
ficant. Only for polycarbonate this coefficient takes some values of the
order of 5 percent.

The expression (12) for this criterion is similar to the criterion pro-
posed by Nadai[19], Bauwens [20], and Sternstein and Ongchin [21], which
i1s of the form :

T+ Ap =G (13)
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where 7, is the octahedral shear stress, which is directly related to the second
stress invariant J, and p is the mean normal stress and A and C real con-
stants, the one of them (constant C) must have the dimensions of stress.

As it is pointed out by Raghava et al. [16], Eq. (13) is another expres-
sion of the Mises yield criterion modified by the influence of the hydrosta-
tic component of stresses. However, this criterion is not equivalent with
the criterion of Eq. (8).

Indeed, this criterion considers an algebraic addition of stresses, which
are not collinear. The octahedral shear stress 7, lies always on the devi-
atoric plane, whereas the hydrostatic component is always normal to this

plane. Therefore any algebraic addition of these stresses is meaningless

The constants A and C were given by Raghava et al.[16] as:

__ 19 _Goc — Oot ) o QVF):G?,C
‘x i V2 —GO_L+ Got dnd C 2 3 (Goc"JF Got)

(14)

Comparing relations (14) with Raghava’s equation (8) it can be
readily shown that the constants A and C, from which the first expresses
the strength differential effect and the second is some characteristic value
for yielding of the material combining its behaviour in simple tension and
compression, are identical with the relations :

OGoc — Oot 3 Oot Ooc

A= C= 2 (15)

Goc "+' Oot L Got + Goc

and therefore Eq. (13) is identical with Raghava’s relation (5) which for

plane-stress conditions is expressed as follows :

Goc — Dot
Goc + Got

20’01 Goc

2 2 s
(61+ 02— 0y00) ~ + ———G . 7]
oc o

(614 62) = (16)

It is worthwhile indicating that relation (16) may be written as follows :

___(Cm + Cot) (Jo)l/2 + (Coe— Cot) J1 = 2¢ot Coc (17)

V2 ’

In this form Eq. (17) expresses the equivalence of energy components and
therefore constitutes legitimate the addition of the terms of this equation.
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However, the first and second terms of the left-hand side of this equation
represents energies, which depend on the distortional and the dilatational
components of energy respectively, but they are not strictly these energies,
as they should be.

In order to show the weakness of this criterion we have plotted in
Fig. 5 the yield loci derived from both criteria and for identical values of
the strength-difference coefficient R =, /oot . It can be readily seen from
the corresponding loci that, whereas for values of R close to unity there
is a small difference between the loci derived from both criteria, for larger
values of R(R>1.1) the differences increase and they become significant,
so that, for brittle materials with R = 3.0, the ellipses of the Nadai - Bau-
wens - Sternstein criterion degenerate into a parabola passing through the
points (1, 0), (0, 1), and (0, —3), (—3,0). For R>3.0 these curves become
hyperbolas.

However, comparing the yield loci resulting from the two models and
the experimental data available for various materials, it may be concluded
that whereas the Schleicher - Stassi ecriterion corroborates with experience,
the Nadai - Bauwens - Sternstein criterion deviates significantly, especially
in the eritical compression-compression quadrant.

Fig. 6 shows the yield locus for a series of polymers plotted in the
(61, op)-plane and taken from ref.[17]. The strength-difference effect for
these materials found to be R = 1.3 approximately. In the same figure the
DSM-yield ecriterion was plotted for R = 1.3 and represented by the con-
tinuous ellipse. It is clear from this figure that again the DSM-criterion
corroborates with all experimental results.

On the other hand, experiments executed by Spitzig et al. [26] on various
types of steels, presenting ratios .. /oo = 1.055, gave values for the con-
stants A and C as follows : A = 0.026 and 0.028, whereas C = 1,480 and
1,066 MPa. From the respective values of o, and o, these quantities are
1,470 MPa and 1,070 MPa respectively. Therefore, the theory by Spitzig
et al. and the Nadai - Sternstein and Bauwens criterion yield approximately
identical results. However, these results, with ratios 6,./c, of the order
of R=1.1 correspond to yielding loci which differ only slightly between
theories and therefore they are not decisive for the selection of the correct
criteria (see Fig. b).
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A 0, lUOf

01/0gy

Fig. 5. The families of yield loci for two kinds of stress-differential modified criteria for
constant yield stress in simple tension and R varying between R=1.3 and R=3.0.
Full lines correspond to the SDM-criterion based on the addition of energy components
(Schleicher - Stassi criterion), whereas dotted lines correspond to the SDM-criterion based
on the addition of components of stresses (Nadai- Bauwens - Sternstein criterion).
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Fig. 6. The yield locus from a series of experiments for various polymers plotted
in the (oy, op)-plane and the corresponding SDM-locus for R —1.3.
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CRITERIA DEPENDING ON PRESSURE AND DILATANCY BASED
ON THEORY OF VOID FORMATION

It has been lately shown that the influence of the hydrostatic compo-
nent of stresses on yielding is directly related to the mechanism of local
void nucleation and growth, or the inverse, at regions of high stress-concen-
tration of structures. This void nucleation and development is followed by
a bulk dilatancy, or in materials containing initially voids due to their
structure, void closure is followed by volume contraction. Both procedures
have as a result to change drastically the yield behaviour of the material.

Many models have been recently introduced, which are based on the
development of voids and their influence on the yield criterion of the mate-
rials. The Me Clintock model [27] for ductile fracture assumes that a mecha-
nism of localization of deformation, which starts from some discontinuity
of the substance (macrovoid, grain boundary, crack) is developed along
and within a narrow shear band, due to the progressive softening of the
material during loading along a zone ahead of the discontinuity, because
of the progressive softening of the material by an increasing porosity. Then,
the material along this zone is damaged to such an extent that voids begin
to appear with increasing load. Further loading induces the formation of
a population of voids usually in an enclave, which ultimately coalesces with
its neighbour zones and produces a propagation of the discontinuity.

This process is preceded by an incubation period for cavity nuclea-
tion, which is always short, followed by a rapid development and spread-
ing out of the void zone. Thus, while the short period of incubation of voids
is a transitional one and it does not influence directly the mode of plastic
spreading, the period of cavity nucleation is very important for the sub-
sequent development of regional yielding.

On the other hand, the thickness variation is another important factor
because the hydrostatic tension o../3, and especially the intermediate prin-
cipal stress, influences the fracture strain. McClintock [27] has shown that
the three principal stresses should be tensile for void growth. Therefore,
if both transverse stresses, or only one of them is positive, this fact crea-
tes a big difference with the role of the intermediate principal stress, which
is more important for plane-stress conditions.

ITAA 1983
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Experimental evidence with scanning electron microscopy yielded
ample proof of the validity of the principle of the influence of void-nuclea-
tion and coalescence to the mode of yielding of all materials independently
of their brittleness or ductility. Fig.7 presents some convincing experi-
mental evidence for the initiation and development of voids around a crack
in Polycarbonate tensile specimens.

Assuming that, for a void-containing material, failure happens at
some critical void-volume, f., the constitutive relations according to the
model developed by Gurson [28] make use of an approximate yield condi-
tion of the form @ (o5, 6, f) =0, where o;; is the average macroscopic Cau-
chy stress-tensor, o, is the equivalent tensile flow stress, representing the
actual macroscopic stress-state in the matrix material, and f is the current
void volume-fraction.

For some loading level, when some cavities have already nucleated,
they elongate for continuing loading along the major tensile axis, so that
neighbouring voids coalesce when their length is of the order of magni-
tude of their spacing[29]. Then, local failure occurs by the development
of slip planes between major voids, creating necking at the ligaments. It
has estimated by Brown and Embury [29] that critical values of the void-
volume fraction may vary between f=0.05 and 0.20, with a probable value
of £ =.0:45.

As soon as necking is established between ligaments the straining
of the specimen is no more uniform and the stress-carrying capacity of
its cross-section decreases rapidly, so that the average macroscopic stres-
ses 6;; decay considerably. In order to take into account this decay, the
void volume fraction notion is introduced in the model, so that this volume
reduction takes care of the local decay of the macroscopic stresses.

Gurson [28] gave an approximate yield condition, which is based on
an upper-bound rigid-plastic solution for spherically symmetric deforma-
tions, applied around a spherical inclusion. This condition is expressed by :

9 o

oo + 2q1 foo, cos h " 3
m

]_ (4 + g R)oly =0 (18)

. . . . . s 4
where . is the macroscopic effective Mises stress given by Oe = =5 8ijSij -

While Gurson assumed values for the constants q,(i=1, 2, 3) given
by q,=qy=q3=1, it was found by Tvergaard [30] that a better fitting
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(a) 9=90° (b) v =45°

(c) 9=30° (d) 9=15°

Fig. 7. A series of scanning electron micrographs showing the plastic zones developed

around the crack-tips in polycarbonate plates containing oblique cracks with angles

B=190° 45° 30° and 15°. The development of voids in these plastic zones is obvious
in some of these figures.
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of results, which takes care of the influence of neighbouring voids to the
central pair of voids considered, for periodically arranged cylindrical voids
in a matrix, with the results corresponding to a continuum model without
any voids, is ascertained, if these constants take the values :

q=15, ¢q,=10 and q,=q =225 (19)

The Gurson - Me Clintock yield condition (18) reduces to the classical
Mises yield surface, if the relative volume fraction { is taken equal to zero
(f=0) and then it corresponds to the special case of isotropic hardening.

For a rate-dependent type of Mises criterion (and for any other iso-
tropic type of criterion) a simple power law for the rate hardening may
be assumed, which is expressed by :

- 1/m
=2 | (20)
g (&m)

where & and &5, are the equivalent flow stress of the matrix and the equi-
valent plastic strain-rate, that is the plastic part of the total equivalent
strain-rate of the matrix, m is the strain-rate sensitivity of the material
and a is the relerence plastic equivalent strain-rate. Moreover, the
function g (gh) represents the equivalent tensile flow stress of the matrix
material, derived from an ordinary tensile test at s, —a. For a power
hardening material the function g (g},) is given by :

=P 1/N =
=P L - [ g(em) ] — g(];p) (21)

where o, and ¢, are the true stress and strain at yielding in uniaxial tension,
conducted at the reference plastic equivalent strain-rate, and N is the harden-
ing exponent of the material.

Introducing the values g, given by relations (19) and denoting f, the
ultimate void-volume fraction for which 6. = 6,, =0 we obtain :

fo= = 067 (22)

For this value of f,, which corresponds to a limiting step of deformation
of the body, where no more macroscopic loading can be carried out by it,
the value of f, =0.67 is quite high although it is below unity.
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While an estimation of this quantity may be derived from close-packed
arrays of spherical or eylindrical voids in a body, where this volume frac-
tion is a limit for initiation of yielding, the value of f may be estimated
experimentally from the overall strength differential effect for each mate-
rial studied.

Thus, for polycarbonate specimens containing edge cracks and from
the respective scanning electron micrographs in z-modulation arrangement
we could have an overall view of the plastic zone developed around the
discontinuity, which for our case was the tip of an edge-crack.

Fig. 8 shows a series of micrographs in the scanning electron micro-
scope showing the nucleation and evolution of voids created around the tip
of the crack with loading, inside the plastic zone. It is clear from these
micrographs that in the beginning of the process, during the period of void
nucleation and development, the number of voids and their size and
intensity are limited.

For a critical value of external loading there is a rapid evolution of
the process, which is associated with initial yield. After this critical value,
the evolution of size and number of voids increases asymptotically with
a minimum increase of the external loading.

We are now interested for the initial appearance of yielding, which
corresponds to the threshold of initiation of instability of void-development.
Therefore, in our case, 6, in relation (18) should be taken equal to the yield
stress o, in simple tension of the material. In order to evaluate the varia-
tion of the void-fraction, f, a series of tests with edge-cracked plates under
conditions of plane-stress were executed. Care was taken to define the angle
of obliqueness of the edge-crack, so that the stress-field in front of the crack
tip corresponded to typical stress distributions yielding variable values
for the individual principal stresses, as well as for their sum. For each prin-
cipal stress distribution in front of the cracks, the limiting values for the
void nucleation at the initiation of yielding were determined by counting
the number and size of voids developed during each loading step.

By counting at these limiting values of loads the number and volume
of voids we could calculate through a simple model of a cluster of cylin-
drical voids along the thickness of the specimen, the values of the con-
stant f for different polar angles 0, corresponding to different values of
the sum of principal stresses. These values of { for different points of
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(b)  x200 (c)  x200

Fig. 8. A series of micrographs in the scanning electron microscope showing the
nucleation and evolution of voids in the plastic zone around the erack tip for
increasing loading of the plate.
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0'2/0'0%

R=2.00

a,/0,

®
f=9(I)

Fig. 9. The variation of the void-volume fraction for initial yielding, f, around a crack-
tip, versus the polar-angle 0 in the (o, o,)-plane, for parametric values of stress-differen-
tial parameter R between R =1.10 and R = 2.00.
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-
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0 /0'01. A

-13(/0f10 51/0'01.

-13

10

(b)

o Carburized steel
o Mild steel
o Copper

Fig. 10. (a) The initial yield locus as derived by the Gurson - McClintock type of
yielding for R=1.30 and (b) The respective locus from the experimental evidence.
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the initial yield locus and different values of R between 1.10 and 2.00 were
plotted in Fig. 9. When these values were introduced into Eq. (18) for R = 1.3
gave a yield locus, which was plotted in Fig. 10. In the same figure
the yield locus for the strength-differential modified ecriterion for R = 1.30
was plotted (Fig. 10b). Both curves are highly coincident. By taking into
consideration that vast experimental evidence for yield loci with different
materials, shown in Figs. 1,2 and 6, indicated a good coincidence of the
experiments with this criterion, it is reasonable to accept that the void-
nucleation criterion is also wvalid and explains satisfactorily the real
behaviour of the materials.

Finally, since the strength-differential modified criterion is a simple
one, represented by a family of ellipses for values of R varying between
R =1.0 to R = o0, it is reasonable to accept that this type of criterion
constitutes a universal criterion valid, for every material from the brittlest
to the most ductile one.
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