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MAOHMATIKA - Remarks on Heegaard splittings and the Poincaré
conjecture, by George M. Rassias*. "Averowddn dnd tod Axady-

uairod x. ®. Baocihelov.

1. One of the most important unsolved problems in Geometry -
Topology is the classification problem for closed manifolds of any dimen-
sion. This asks to list all the topologically distinct kinds of closed
n-dimensional manifolds for each integer n. If n = 1,2 the problem has
been solved by Riemann, but remains unsolved for higher dimensions
(only partial results are known). In 1928, A. A. Markov proved that it is
impossible to find a computable algorithm for distinguishing n-dimen-
sional manifolds, n>4. Poincaré made the following conjecture known
as Poincaré conjecture (i. e., that every closed simply-connected 3-dimen-
sional manifold is diffeomorphic to the 3-dimensional sphere) which
remains unsolved since the early days of 1900. Poincaré conjecture is
the most important, interesting and difficult unsolved problem in diffe-
rential topology. In spite of the enormous efforts by many outstanding
mathematicians since the time of Poincaré, this conjecture remains
unconquered. Until the Poincaré conjecture is settled, we cannot expect
a solution to the classification problem for closed 3-dimensional mani-
folds. Surprisingly, the higher dimensional analog of the Poincaré con-
jecture was answered affirmatively by S. Smale [7, 8] and independently
by J. Stallings [11], in 1960.

2. A closed, orientable 3-dimensional manifold M is the union of
two handlebodies H, H’ of the same genus p(>0) with their boundaries
identified by a homeomorphism, i.e., M=HuUH’, H~H'= dH — 0H’,
where HAH’ is a closed, orientable 2-dimensional manifold of genus p.

Thus, Poincaré conjecture is true, if and only if, given two hand-
lebodies of the same genus p (>0) and identifying their boundaries
through a homeomorphism such that the resulting 3-dimensional manifold
is simply-connected, then it is homeomorphic to S® for each positive
integer p.

By M. Dehn [2], we know that the above statement is true if pre=ile
Thus, the first main problem is to examine what is the case if p=2.
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Let M = H,wvH,, HynHy = 0H, = 0Hy be a Heegaard splitting
of genus 2, of M. Then, the homeomorphisms h of dH, modulo isotopies,
are in a 1-—1 correspondence with the automorphisms { of x; (0Hy)
modulo inner automorphisms. Each such homeomorphism h results to a
3-dimensional manifold My (after identifying 0H, and 0Hy by h). Denote
by N the Hy~Hy'= dH, = 0H,.

By Van Kampen’s theorem we can find m; (My) i.e., the funda-
mental group of My for each h.

By Papakyriakopoulos [4], we consider a class of homeomorphisms
h of N, which result to 3-dimensional manifolds My, such that ;(My) = 0.

The next problem is to check whether these My, are actually homeo-

morphic to S®.

Definition. Let M= Hy,vH,, HynHy= 0H,=0Hy,"= N, be
a Heegaard splitting of genus 2.

A homeomorphism h:N— N is said to be a Papakyriakopoulos homeo-
morphism if and only if, A;=~0 in H, imply that h(A;))=~0 in Hy, i=1,2,
where A;, B; is a fundamental system of loops based at O (the base point
for m(N)). See, Papakyriakopoulos [3, 4].

Let ¢ :m (N, 0) > n;(N, 0) be the automorphism induced by h,
where

2
JTI(N, ())Z(alyblaa2y b2v H[ai) bl] :1)
i=1

and [a;, bj] is the commutator of a;, b;, i.e., [a;, b)] = a;bja; 'bi '. Note,
that a;, bi, (i = 1,2) are the elements of m;(N,0) corresponding to A;, Bi,
(i=1,2) respectively. Let A =(a;, a;y> be the normal closure of a;, a,
i.e., the smallest normal subgroup of x;(N, 0) containing aj, as. We
have a diagram of fundamental groups, where the homomorphisms
i1, iz are induced from the inclusions. Then, x;(M) is isomorphic to
the quotient of m (N) by (ker i;)- (ker i;) because i;, i, are surjective
homomorphisms By Papakyriakopoulos [3, 4] we have that

m (M, 0) = =, (N, 0)/<A, y(A)
where

<A, (A ==<a;, 8¢, V(a1), ¥ (ag)

the normal closure of a;, a, y(a;), ¥ (ay). Then, M is simply-connected,
if and only if,
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(N, 0) = <a;, ag, P(ay), W(az))>, where € Aut (ﬂl(Na0)>
induced by h:N —> N homomorphism.
Now, by Birman [1], the manifold My = Hy U H," is homeomorphic
h
to S® if and only if, [y]E AB, where

[W] € H(N) = Aut (m; (N)) /Inn (m; (N))

the homeotopy group of N, and

A :{[W]EH(N)3(<31,az))‘PC_:<a1,32>}
B = {[v] € H(N): (b1, b>) ¥ & by, bs)}
AB = {[y] - [Wy] :[w]EA and [y]EB}

Thus, in order that the following is true, namely, every closed simply-
connected 3-dimensional manifold M obtained as a Heegaard splitting of
genus 2, M= H,vH,, HynHy=0H;=0Hy,=N, by identifying the
boundaries of the handlebodies H,, Hy by a Papakyriakopoulos homo-
morphism, is homeomorphic to S* (3-dimensional sphere) it is sufficient

that the set
W = {[v] € H(N): 1 (N) = (ay, ag, Wlar), v(an)> where ¥ € Aut(m (N))}

is a subset of AB. Let Sp(4, 7) denote the group of 4X4 symplectic

matrices with integer entries: matrices of the form
<Y1 Yz)
V3 Ya
where y, 1=1,2,3,4 are 2X2 matrices such that

PV = Ve¥ts ViV, = iVg, Fi¥s = Yi¥.o | Ye¥er Yaliv
Wi, — Yyl s Rp— Vayp =

where by y' we mean the transpose of y.
Generally, there exists a homomorphism from H(N) onto Sp (4,%)

defined as follows: Suppose

2 ) )
¥ (ai) = Fi(ay, ag, by, bs) = I ar v*- by v+ mod [y (N), 73 (N)]

A=1

£ i9 T
Y (b)) = Gi(ay, @, by, bp) = II ay it by #+h 2+ mod [my (N), 73 (N)]

A=1
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where 1 is a representative of an element [¢]EH(N), i=1,2. Then,
the homomorphism o: H(N)—> Sp (4, Z) is defined by ([¥]) 6 = (Yumn)
which is the matrix having as its entries the exponents of ax, by
appearing in the above equalities.

Consider an automorphism 1 of my(N) such that [y]€ W and let
it be defined by

YP(ay) = 317“1" 32}'12/‘ bl";' bz’";’y VY(ag) = a1\';1‘ 32“':‘,' b1vl3/' bzvz‘l
w(bl) — almlll' azmél' bj_m:;" b2m;l, w(bg) = alkl' ' agké" blk;- bgk:.
The image of [y] by o, is the symplectic matrix
—<Al// )\2//> <}\3H )\4//)"
Vl// v2/I v3// v4/l P P
o ([v)) = - (> 5.
(mll' mzl!) <m3/) m4’l) Pa P4
lle kl” kzu k3// k4” |

Now, suppose o ([y]) can be written as

= (5 - () ()
P, P, M, M,/ \0 N,
In order that vy € Aut (m (N)), it has to be true that
[, v b)) = 1.
Also, since the first homology group of HzL‘:')Hg' is trivial, if and

only if, the matrix P; has determinant —+ 1, it must be true that
det (P;) = det(M; N;) = 41 so that the fundamental group of HyU Hy’ is

. . w
trlvlal. Thus, det (Ml) = }\1V2—‘ }\2\’1 = i 1, det (Nl) == All\’g’_ }\2,\/1’: $ 1.
If the previous conditions are satisfied then we construct automorphisms
Y1, ¥g of m;(N) such that [y,]€ A, [y,] €B, and

o(wl]):(ﬁ: M(:) and o([wn:(g“ E)

Namely,
{wl (al) = alkl' 32)'2: Wy (b]) — alml. azmg blm% b2m4}
and

Yy (ag) = a,"! a,"?, W1 (bg) = 31k1. 321:2_ bxks- bzk4
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g : ‘ oy :
Va(as) = a1 ap" b by, p(by) = by™ b;‘“}
Pa(ag) = ay'! azvé. blvé- bzvi; Yo (bg) = blké- bzk;

This can be done since the homomorphism ¢ is surjective. Note, that
{‘Pi(aﬂ, Y, (ag), W,;(by), '\Pi(bg)}, should still generate m; (N) and

§=E

[, (a;), W;(b;)] =1

i}

in order that [y] € Aut(n;(N)). Thus, in such a case, 1pEAut(rc;/(N))
where [Y]EW, can be written as a composition of automorphisms
VY1, Y2 € Aut (7 (N))  where [W]EA and [y, EB. Thus, HyUH, is
homeomorphic to S %

Examples. Let Mi=H, U Hy’ de a Heegaard splitting of genus 2,
Wi

where 1, € Aut (7 (N)), N =HynHy'=0H,=0H;" and i=1,2,3,4,5.
Define
{11’1 a;) = a;by, Yi(as) = agby, Yi(by) = by, Yi(by) =
2(1) = a;bi ', Wplag) = agby', We(by) = by, a(bs) =
) = as, Ps(bs) = bya;, Ws(by) = bya,
. Wgl(ag) =2z, Wa(by) =byar’, u(bs) =b
=a;by, Ws(ag) = agbs, Ws(b) =ar', s(be)

I

ag_l}

n1(N) = (ay, @, by, ba; a;-by-a;'-bi'-a,-bg-a; - by = 1)

Then, the Poincaré conjecture is true for M;, i=1,2,3,4,5.

Remark. The automorphisms y;, 2 € Aut (7, (N)) are inverse
of each other. Similarly s, y, € Aut(x;(N)) are inverse of each other.
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‘H nagoioa doyasia dvagéoetat el Golouévag magatnefoels, Mg xal oup-
neodopata, £l Tig meoipriuov eixactag tod Poincaré xatd v 6molav «xdie
ovumayfs, todidotatog morhamhdrng, dvev ouvdoov xal dmhds ovvagg, elva
GUOLOUOQ@LAT] TTEOG TNV TOLOLAOTUTOV GATOUY».

Al Bpaouolouevar dia Ty doyasiav adriy uédodou elvar dhyeBouradl.
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