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MAOHMATIKA.— Plateau’s problem and its importance to physics,
by T hemistocles M. Rassias*. *Avexowvodn tmo tod “Axadnuairod

%x. ®{Awvog Baotkelov.

1. Since its formulation by Plateau in the 19th century, little has
been known about the number of simply connected minimal surfaces
spanning a simple closed curve I' in R3. One of the most natural
questions to ask is whether the solutions to the Plateau problem are
unique. In general they are not, R. Courent [1], T'. Rassias [8]. It was
generally conjectured that when the Jordan curve is extremal i.e. it
lies, on the boundary of its convex hull, then the Douglass solution to
the Plateau problem is embedded. The first progress in this direction
was made after the discovery of the following very interesting theorems
due to T. Rado and J. C. C. Nitsche.

Theorem (T. Rado) 1. 4 Jordan curve I' whose orthogonal projec-
tion on some plane is a simply covered convex curve bounds a unique area

minimizing surface.

Theorem (J. C. C. Nitsche) 2. An analytic simple closed curve T’
with total curvature of T' less than 4w bounds a unique minimal surface which

is free of branch points.

New proofs of the above two theorems have been given in the spirit
of the Morse - Palais - Smale theory [6], [8], [10], on Hilbert manifolds.

2. Consider the space of parametrizations :
P = {y:8'—>R® where ye¢ C*?, S' is the circle RI*'z
and a is a fixed positive number such that 0< a <-‘.12_}’
endowed with the C? norm, i.e., for ye P:
Iyl = max {livlie, Ve 17N}

Then the following theorem is true:

* @EMISTOKAH M. PAZIIA, To mpdéBAnua tob Plateau xoal # onuacla tou eig
v Puoixhyv.
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Theorem 3. Almost every ye P bounds a unique area minimizing

surface.

Following techniques from Morse theory one can also prove the

following theorems:

Theorem 4. A smooth Jordan curve T' of total curvature at most

6 bounds only a finite number of minimal surfaces of the type of the disk.

Theorem 5. Let T' be an arbitrary smooth simple closed curve
lying in the smooth boundary of a uniformly convex subset of R3. Then T°
bounds a smoothly embedded minimal disk of least area among all embedded

disks having T' as boundary.

Theorem 6. In Euclidean space of three dimansions, let Ty, 'y,
be any two Jordan curves not intersecting one another. If the minimal surfaces
M, and M, determined by I'y and T', taken separately have in common a point
Q that is regular for both of them, then there exists a doubly-connected mini-
mal surface M bounding by 'y, T';.

Remark. Theorem 6 solves Plateau’s problem for two contours
in 'R8.

3. Research Problems. a. Does there exist a complete, closed
nonorientable minimal surface in R®? If we assume the surfaces to be
embedded then of cource such surfaces do not exist because by the
Alexander Duality Theorem ; A closed codimension one submanifold of R"
disconnects R" into two pieces and so a non-orientable manifold M"™' of
dimension n—1 never embeds as a closed submanifold of R". T'hus a negative
answer to the above problem exists if we assume the complete non-
orientable surfaces to be embedded. The question thus remains open for
immersed surfaces in R® 'This will answer problem number 45 posed by
J. C. C. Nitsche [5, p. 260).

b. Let M be a complete C*- Riemannian manifold modelled on a
separable Hilbert space H. Give necessary and sufficient conditions on
M so that any two points P, Qe M can be joined by a geodesic segment
whose length is equal to the Riemannian distance between P and Q.
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4, Minimal Surfaces in Physics. It has been proved
that in Riemannian manifolds minimal surfaces and their generalizations
to higher dimensions have been of use in Physics and other technolo-
gical sciences. The analogous surfaces in spacetimes in particular mani-
folds with Lorentz metric, are maximal surfaces. Maximal surfaces have
been very essential for questions concerning the understanding of the
n-body problem in a gravitational field as well as of the bynamics of
the gravitational field. It is not difficult to prove that there are closed
spacetimes without any maximal surfaces.

Maximal surfaces in closed spacetimes like the Friedman models
(see for example C. W. Misner, K. Thorne and J. A. Wheeler [3] occur
rarely, unless the universe is static. In fact we can say that the space-
time either represents an ever expanding universe without any maximal
spacelike surface, as for example the «open»y Friedman models or the
spacetime possesses exactly one maximal surface as it happens in the

«closed» Friedman models.

In another paper an explanation of the importance of Global
Variational Theory and in particular minimal surface theory for the
study of some current research problems of Theoretical Physics will
be given.

BRI AVH WL =

To meéfAnua to¥ Plateau xai 1 omovdaidtng tov eig v Puowv siyev
amacyohliosr @olouévovg TV draonuotéowv Modnuatik@v 2osvvnt@v Ghov tob
’ S \ ~ S ~ -~ 3~ L & c \ ~ S5
%®0opov Gmo tiig Emoyiic tov 180v ai®vog. Idiaitéomwg 6 mEoodioponog Tol GEL-
Yot tdv Ehaylotwv Emipaveidy, al 6molal godoovron Gmod piav dedouévny xau-
mohny (3 ovotmua xaundhiov) tob Jordan elg tov ydoov tol EdxAeidov mapé-

e 3 \ \ ’ ’ e \ \ ~ ’
uevev €va dhvtov xal mohv dvoxohov medfAnua. “O cvyyoapevg St tijg magov-
ong foyactag tov dvevoioxelr uédodov facilouévny eig v 'ewuetolav tdOv dmel-
godrastdrwv mohkamhoritov timov Hilbert (i) Banach) dud tov xadogiopov tod
- ’ S ~ S 7 2 ~ 3 ’ /’ ’ 3 £ \
Cnrovpévoy Gowdpot Ehayiotwv émgavei@v. ‘H mogela oxépeds tov Emdver xal
10 meéBAnua tob Plateau S dvo xaumidec tob Jordan (Yedomua 6) elg tov
y®oov tob Edxheldov xal ovvendyer ta Yeworjuata tdv T. Rado xai J. Nitsche,

A ~ Fd /’ ~ /’ ~ c c ~ ’
meol Tijg povadixétnrog Adoewg tod meofAfnatog tol Plateau, @g dmAd mool-

ouata. ‘H nagolica goyacio tedeidver ue v Exgeacty oyéoews tob moofAnquarog
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10V Plateau, eic 1o Madnuatind, ué 1o medéfinua tdv peylotowv Emipavel®v €ig
A ; . - Qi R — . B
v Oswonunny Puony, medyno 10 6molov dmotehel Eva TtV mAfov Evdiage-

povrwy Egevvnrndv depdtov tig Puoiniic.
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