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MAOHMATIKA.— Distributive and complemented hyperlattices, by
Maria Konstantinidou - Serafimidou*. *Avexovddn vm0 tob "Axadn-
uoizrot % ®idlwvog Baoikelov.

It is known that the notion of hyperlattice [3] is a generalisation
of the lattice notion in the classical theory. The difference between
hyperlattice and lattice is that in a hyperlattice the union of any two
elements is a hyperoperation.

Studying the hyperlattices an important interest is found because
many properties hold, arising from the special character of the union,
these in addition with the properties of the lattices which also hold
3], [7), [8].

In this paper we study some cathegories of hyperlattices, more
specifically the distributive and complemented hyperlatices [3], [7], [8].

1. DISTRIBUTIVE HYPERLATICES

Definition (1.1) A hyperlattice H [3] is said to be distribu-
tive when in addition satisfies also the axiom:

aA(bVve) = (aAb) V (aAc)

for every triple a,b,cEH, that is, when the operation A is distribu-
tive with respect to the hyperoperation V.

Remarks (L.1) a) It is obvious that a distributive hyperlat-
tice is a modular one.

b) Because the operation A is distributive with respect to the
hyperoperation V we have:

aV(bAc)E(aVvb) A(ave).
In fact, we have:

(avb) A(ave) = U[xAlave)]l = U[(xAa) V (xAc)]2 U[aV(xAc)],

xeayh xeavh xeavb

* MAPIAZ KQNITANTINIAOY - ZEPAGEIMIAOY, ’Emipeptotind xal GUUTANPWUATW=
réva OmepdixTuwTd.
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because a€ (a\VVb) A a and xAa runs over the set (a\Vb) A a. And since

UlaV (xAc)]=aVv[(aVvb)Ac]=aV[(aAc)V (bAc)]=

xeavh
=[aV(aAc)]V (bAc)2aV (bAC),
follows that:
aV (bAc)E(aVvb) A(aVe).

In case that H is a lattice, the distributivity of the intersection A
with respect to the union \/ is equivalent with the distributivity of the
union V with respect to the intdrseetion A that is:

aA(bVc)=(aAb)V (aAc) & aV (bAc)=(aVvb) A(aVe).

c) If a,b,c are elements of a hyperlattice H and a, b are compa-
rable, that is aJ.b we have:

I=[cA(avb)]N[cAa)V (cAb)]#a.

In fact, if a<Cb, we shall have bEaVb, and so cAbE [cA (aVDb)].
On the other hand the relation a A ¢ <bAc implies

bAc =cAb € [(cAa) V (cAb)].

Hence cAb€E[cA(avb)]N[(cAa) V (cAb)] and consequently I~ @.

We get the same result too when b<Ca.

Examples (1.1) a) Easily we can verify that the set
H= {0, 1} with the hyperoperation 0v0=0, Ov1=1v0=1, 1v1i=H
and the operation 0AO0=0A1=1A0=0, 1Al=1, is a distributive
hyperlattice.

b) Also, we can show that the set

HV={(X1, ST xn):xl,...,anH}

where H = {0, 1} is the hyperlattice of the previous example, is a distrib-
utive hyperlattice, where the union and the intersection are defined
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on it through the corresponding ones of the previous example as follows :

(s ooy ZIV (B, ...,yn)={(zl, saviy Bg) L B EOEN T
xi,yiE{O, 1}, i=1,...,n}

and (Byy onus BIAT,, o0 V) = EAY, -0 o0 X, AL

Definition (1.2) A hyperlattice is called generalised distrib-
utive if in addition satisfies the axiom
(Va)Ab = Vv (aiAb)
ieA ieA
where A is any set of indices.

In this case the distributivity is called generalised.

Remarks (1.2) a) Obviously a generalised distributive hyper-
lattice H is a distributive one.
b) For every generalised distributive hyperlattice H the following
relation is valid
(Va) A (Vv bj) c Vv (ai/\bj).
ieA jeB (i,j)eAxB

In fact, since H is generalised distributive we have

(Vai) A (_\/Bbj) =U(Va)Aw] =U[V @AW)]ESV[aiA(Vb)] =
je

ieA wevbj Wevbj ieA jeB
jeB jeB
= N/ [\/ ai/\bj)] =V (a;/\bj).
ieA jeB (i, j)eAxB

Relatively to the distributive hyperlattice we have the following
propositions :
Let H a distributive hyperlattice.

Proposition (1.1) If H possesses a zero element o, which is
scalar, then for every pair (a,b) EH XH such as aAb=o0 we have
aVb = sup(a, b).
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Proof. Indeed, for every w €aVb it follows that aAw EaA (aVb),
which because of the distributivity and the relation a/Ab = o0 becomes

aAw € (a/\a) V (aAb) = aV0 = a.

So we have aAw=a, that is a<{w. Similarly we get also wAb=b that
is b<Cw and hence it will be

aVh = @V = gve,

Consequently we have [8] aVb = sup (a, b).

Proposition (1.2) The set S of all scalar elements of H is a
sub-hyperlattice of H and also a lattice.

Proof. It is already known [3] that SVSES. On the other hand,
if a/Ab =c, we will have

eVx=(aAb)VxE(avx) A (bVx)=a;Ab; = ¢,

that is cVx = ¢;, for every x € H. Hence SASCS, thus the set S is a
sub-hyperlattice of H, and since its elements are scalar it will be a lattice.

Proposition (L.3) If a,bEH, the interval [a,b] is a sub-
hyperlattice of H if and only if avva=a.

Proof. Let avVa=a. If aCx;<<{b and a<x,<b, we have that
a< x3Ax2<b, that is x; A x; € [a,b]. On the other hand, for every
W Ex;V X,y it will be w<Cb [8] and from the relations a < x;, a<x; we
get respectively aAx;=a, a/\x,=a. Consequently (a/Ax;)V (aAxg)=a\va=a
which becomes aA(x;\/x;)=a, because H is distributive.

Thus for every w € x;Vvvxp it will be aAw=a, that is a<{w and
hence x;Vx, € [a,b]. By consequence the interval [a,b] is a sub-hyper-
lattice of H.

Conversely, if the interval [a, b] is a sub-hyperlattice of H and x;,
Xy two elements of it, we will have x;\vx,&[a,b]. Hence for every
z € X3VVXy it will be a <z, which gives

a = aA(x;Vx3) = (aAXx;) V (aAxp) = ava.
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Proposition (L.4) For every triple a,b,c € H we have
aV (bAc) & [a v (bAc)] v [(avb) Ac].
Proof. From the relations
acav(aAc) and bAceE(bAc)Vv(bAcC) we get
av(bAc)S[av @A VvIbAc)v(bAc)] = [av(bAc)v@@aAc)v(bAc),
which, because of the distributivity becomes
aVv (bAc) S [av(bAc) vi(avb)Acl.
It H is a lattice, the previous proposition corresponds to the identity
a Vv (bAc) = [a v (bAc)] v [(avb)Ac],

that is the known inequality

(avb)Ac<av(bAc).

Proposition (1.5) If a,b,c are any elements of H, then we
have the relation

(a/Ac) v (bAc) v (aAb) & (avb) A (bve) A (eva)
Proof. In fact, we shall have (1. 1b)

(avb) A (bve) Afeva) 2 [bV (anc) Afeva) = U [[bV(aAe)] Aw] =

wecva

= | [(b/\w)\/[(a/\c)/\w]] =2 U [(b/\w)\/[(a/\c)/\xz‘]] =

Wwecva wWecva

= U [(bAw)V (aAc)] = [U (bAW)] V (anc) = [bA (eva] V (aAc) =

wWecva wecva

= (bAc) V (a/Ab) V (a/\c).

In case where H is a lattice the proposition (1. 5) is valid as
identity
(aVb) A (bve) A (cVa) = (a/Ac) V (bAc) A (a/Ab)
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Proposition (1.6) If a,b,cEH, then

aAc = bAc¢

avc=b\/c}=’a=b

Proof. Since aAc=DbAc, aVc=bVe and H is distributive,
we have that

a A (ave) = aA(bve) = (aAb) V(aAc) = (aAb) V (bAc) = bA (aVc) =
= b A(bVe) = bV (bAc) = bV (aAd).

On the other hand [8], aA(aVc)= aV (aAc). Hence it will be
aV (a/Ac) = bV (aAc).

Therefore [8] a=b, since it is aAc<{a and a/c = bAc<b.
The conditions of this proposition can be considered like a simpli-
fication rule.

Remark (1.3) The conditions of the propositions (1. 4), (1.5),
(1. 6), are not sufficient for the distributivity of the hyperlattice H (3],
while in the lattices the above conditions, as it is known, are sufficient
and necessary for the distributivity.

In addition, for the distributive hyperlattice we have the following
properties.

Property (1.1) Every sub-hyperlattice of a distributive hyperlat-
tice is distributive.

Proof. The proof is obvious.

Property (1.2) The homomorph image of a distributive hyper-
lattice H is a distributive hyperlattice.

Proof. f(H), as known [3] is a hyperlattice. Obviously, because
of the distributivity of H, for any a, b, cEH we have

a/\(bVc) = (aAb) V (a/Ac).
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Therefore, the left side gives

flan(dVe)] = f[UAw)] = Uf(@aAw) = U[f@)AT(w)]=

webvce webve webye

= f(a) N1 (bVe) = f(@)A[E (D) VE(d)],
and from the right side we get
f [ (aAb) V (aAc)] = f(aAb)Vi(aAc) = [f(@a)Af(b)]V[E(a)Af(c)].
Hence f(a)A[f(b)Vi(c)] = [f(a)Af(b)]VI[i(a)Af(c)].
Property (1.3) The product H of a family of distributive hyper-
lattices { H; }iea is a distributive hyperlattice. Conversely if the product of a

family of hyperlattices {H{}ieA is distributive, then H; for all i€ A are distrib-
utive hyperlattices.

Proof. It is known [3] that H is a hyperlattice. Since H; are
distributive, we will have

aA(bVe) = aA {fwihien : webV o} = {ahea Af{wiker: wigbive) =
—{{ain wihes : webV e} ={{z}ea : @A (bive) | =
—{{2}er : € (@ADY V (aic) | .
On the other hand we have
(aAb) V (aAc) = { a; A biliea V{ai A ciliea =

= {{ ti}ieA 'HE (ai A bi) V(ai\c) },
hence

a/\(bVe) = (aAb) V (a/Ac) .

Conversely, if H is a distributive hyperlattice, for any a,b,cE€H
it is aA(bVce) = (a/Ab) V (aAc), which can be written

{ ai}iGA A {{bi}ieAv { Ci}iGA] = { ai N\ bi}iEA\/{ A\ Ci}iGA
S0, {{Wi}iGA s wicai\ (b V ci) } = {{ Zi}iEA : z;E (ai A by) V (ai A\ ¢i) }
and consequently

a;/\ (bl\/ Ci) = (ai A bl) Vv (ai A Ci) for all iEA.
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2. COMPLEMENTED AND RELATIVELY
COMPLEMENTED HYPERLATTICES

If a hyperlattice H possesses extreme elements zero o and unit
element 1, then it is obvious that for every a € H

oANa=o0, aEoVa
l1ANa=a, 1€lva

Definition (2.1) In a hyperlattice H with zero o and
unit 1, the element a’ is said to be complement of a, if both the relations
aNa’=0, 1€EaVa' are satisfied.

The elements a and a”’ called complemented (to each other).

Definition (2.2) A hyperlattice H with elements o and 1,
o being scalar, is said to be complemented, if every element a of it has at
least one complemented a’.

Example (2.1) Easily can be verified that the ordered set
which is given by the diagram

0

Fig. 1.

is a complemented hyperlattice, when the operation A is defined as
a/Ab =bAc=cAa=0 and x<y > xAy =x, and thé hyperoperation
V as follows:
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oVo=0, oVa=aVe=a, oVb=bVo=b, oVe=cVo=c,
oVli=1Vo=1, a\/az{a,l},
bVb=1{b, 1}, cVe={c,1}, aVb=bVa=aVe=cVa=bVe=
=¢cVb=aV1=1Va=bV1=1Vb=¢cV1=1Ve=1Vl =1,

Remarks (2.1) The images f(o), f(1), under an homomor-
phism of complemented hyperlattices f : H; > H,, are the extreme
elements of f(H,), zero and unit respectively, and the complement of
the element f(a) is [f (a)]'=f(a’).

Indeed, we have

f(o)=f(aNo)=1f(a)Af(0), f(a)Ef(aVo)=1f(a)VI(0) and

f(1Aa) =f()Af(a)=1(a), f(1)ef(d Va)=£(1)VI(a)

for every a&€ H. On the other hand, if a’ is the complement element
of a then it will be

f(o)=f(aNa’)=1f(@)Af(a’) and f(1)ef(aVa')=1f(a)Vi(a)

Thus we have [f(a)]'=f(a’).

b) The complement of an element is not gemerally unique, as it
can be seen in the previous example, where e. g. the element b and ¢
are complements of a, because a/Ab =0, 1 =aVb and aAc=0, 1=aVec

¢) f as~o0,1, then a//a’.

Indeed, if a’Ca, then a’Aa=a’. But since a’Aa= o, we will have
a’= 0, so a=1 and this is not true.

Let now a hyperlattice H and consider two eldments a, b € H such

that a<Cb and an element x’E [a, b], that is a<x <b.
Definition (2.3) An element x'E[a, b] is said relative com-
plement of x with respect to a and b if
xANAx'=a and bexvx’

x and x’ are called relatively complement (to each other) with respect
to a and b.

Remark (2.2) Obviously, in a complemented hyperlattice, every
complement of x is relative complement with respect to o and 1.
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Definition (2.4) A hyperlattice H is called relatively comple-
mented, if for every pair (a,b) € HXH such that a<(b, every element
x € [a,b] has at least one relative complement with respect to a and b.

For the complemented and relatively complemented hyperlattices

we have the following properties:

Property (2.1) Let H the product of a family of hyperlattices
{Hi}iGA- If for the elements az{ai}iGA, b={bi}i€A and x={xi}ieA we
have a < x < b, then the element x has a relative complement with respect to a
and b, if and only if for every i€ A the element x;€ [a;, bi] has a relatively
complement with respect to a; and b;.

Proof. In fact, if x{ is the relative complement of x; with respect
to a; and by, then according to the definition (2. 3) we shall have

XiAXi=a; and b;Ex;iVvxi

for each 1 €EA. From the above relations we take

{Xi}ieA/\{X;}iEA = {ai}ieA

and {xi}ieAV{x!};eA= {{Zi}ieAZ ZiEXi\/X;}
But since {bi}ieAE {{Zi}ieAI z,-Ex,vxé}
it will be {bi}ie,\ € {Xi}ieA\/{Xf}ieA-

Consequently we shall have
xAx'=a and bExVX'
Inversely, if x Ax'=a, then
{Xi}ieA/\{Xi}ieA = {ai}iGA = X; A X{ = a;
for every i€ A.
Also, if bex v x’, then
{bilies €{xifieaV{xitiea = {{z e e xivxi} = biexivxi

for all 1€A.
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The property (2. 1) can be described as follows:

The product of two or more complemented or relatively complemented
hyperlattices is a complemented or relatively complemented hyperlattice. Con-
versely, if the product of two or more hyperlattices is complemented or relatively
complemented hyperlattice, then every factor is a complemented or relatively

complemented hyperlattice.

Property (2.2) The homomorph image of a complemented hyper-
lattice H is a complemented hyperlattice.

Proof. If f(a), f(a’) are the images of the elements a and a’
respectively then by the remark (2.1) we have f(a)Af(a’)=1f(o) and

f(1ye f(a)Vi(a').
We examine below some special categories of complemented hyper-

lattices.

Complemented modular hyperlattices.
Let H a complemented modular hyperlattice.

Proposition (2.1) If x’ the relative complement of x with
respect to a and b then b = sup (x, x’).

Proof. Since x<b, x’b and b€ xvx’, it follows that
b = sup (x, x’) [8].

Proposition (2.2) If an element a of H, is covered by the
unit 1, that is a1, then a’ is an atom of H, that is 0o<{a’.

Proof. Since a{l, a’{1 and a//a’ [rem. 2.1c] we have aNa’{a’,
that is 0<a’ [8].

Proposition (2.8) If an element a € H covers o, that is 0<a,
then a’ is a dual atom of H, that is a’<1.

Proof. The relation o<{a implies that aa’{a and since 1€ava’
we will have [8] a’{1.

Proposition (2.4) If for the pair (a,d) EHXH we have
a<<d and d=£1, then a’'=%£ d.
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Proof. We suppose that a’<{d. Then from the relation 1€ ava’
we get deE(ava’)Ad=aV(a’Ad)=a\a’, which is not true, because
the unique upper bound of a and a’, which belongs to the union ava’ is
the element 1=4d [8]. So a’=%=d.

Proposition (2.D5) For every a,dEH with a<{d is d=sup(a,a’/Ad).
Proof. From the relation 1€a\a’ follows that

d€E(ava)ANd =av(a’Ad).

But since a<d and a’Ad<d we shall have [8] d = sup (a,a’Ad).

Proposition (2.6) If x' is the complement of an element
x E[a,b]EH, then it will exist at least one relative complement of x with
respect to a and b.

Proof. In fact, if x" is the complement of the element x then,
because of the modularity, the relation a<{x<(b implies that

aVv(x’Ab) = (avx')Ab.
By getting the right hand side of this equality it follows that
[avx) Ab]Ax = (avx’) N\ (bAx) = (avx’)Nx =ay(xAx)=avo=a

and [avx)YADblvx =[ay (x’Ab)]yvx =
= (ayx) v (x’Ab) 2 x v (x’Ab) = (xyx'}) Ab.

But the relation 1€ x \/ x” implies that
1Nb=beE(xyx’)Ab so beE[(ayx’)ADb]y x.

From all the above we have that will exist an element z € (a\/x’) A\ b
such that the relations z/\x =a and bEz\ x are satisfied. On the
other hand, since z€ (ay/x’) A b will exist an element wEa\/x’ such that
z=w/\b, that is z<b and from z/\x=a follows that a<{z and so
z € [a, b].

Consequently the element z is the relative complement of x with
respect to a and b.
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Thus we have the proposition :

Proposition (2.7) FEvery complemented modular hyperlattice is
relatively complemented.
Consequently we have the following proposition :

Proposition (2.8) The homomorph image of a complemented

modular hyperlattice is relatively complemented hyperlattice.

Complemented distributive hyperlattices.
Let H be a distributive hyperlattice.

Proposition (2.9) For every a €H its complement, if it exists,
is unique.

Proof. In fact, if a’ is a complement, of the element a, then
aN\a’=o0 and 1€aVa'. Suppose that there exists and another element a’’
sush that aNa”=o and 1Eava"”. Then the relation 1E€aVa' implies
a”"€E(aVa’)Na”=(aNa”)V(a’Na’) =0V (a’ANa”)=a’"\a”, that isa”’ =
=a’/\a”’. Similarly we will have a’=a’"’/Aa’. So a’'=a"".

Proposition (2.10) For each X € [a, b] S H the relative comple-
ment of it with respect to a and b, if it exists, is unique.

Proof. ILet x’ the relative complement of the element
X€E [a, b] S H witht respect to a and b, then xAx"=a and b&xVx’. Let
assume that there exists and anotber element x"’ sush that a<{x"<b,
xA\x""=a and bebVx". From the relation beExVx’ we have bAx"=
=x"E(xVX)Nx" =(xN\x")V (x'Ax"’)=2a V [x'\x").

Also since bexVx’" it will be
bAX'=x"E(xVx"”) A x’= (xAx') V (x”"Ax’) = a V (x’Ax").

As H is distributive and a<Cx', x’Ax”"<x’ we will have z<x’
for all z€aV (x’Ax"”) 8], (rem. 11a) and consequently x”<x’ since
x""€aV (x’"Ax’). Similarly it is proved that x’<x", thus x"= x".

Going on we consider that the hyperlattice H is complemented
and distributive.
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Proposition (2.11) If a,b€H and a’ the complement of the
element a then

aAb=o0 & b<a’

Proof. Let assume that a Ab=o0. From the relation 1E€aVva’
follows that

LAb=beE(aVva’) Vb = (aAb) V (a’Ab) = oV (a’Ab) = a’/Ab, so b<la’
Conversely, if b<{a’, that is a’Ab=b, then we have
(a’Ab)Aa=bAa = aA(a’Ab) = bAa = (aNa’)Ab=bAa =0 =
= bAa, that is aAb = o.

From the above proposition we conclude that the complement a’
of an element a in a complemented distributive hyperlattice is the
maximum element of all the elements x € H, for which the relation

aAx=o0 is valid.
Proposition (2.12) If a,bEH and a’ is the complement of
of the element a then

l1€aVb <= a' b

Proof. Indeed, if 1€avb, then 1Aa’=a’E(ayb)Na'=
= (aNa’) V (bAa’) =bAa’, that is bAa’=a’. Thus a’=b.
Conversely, if a’<{b, that is a’Ab =a’, then
1€aVa’=aV (a’Ab) E (aVa’) A(aVb) [rem. 1. 1b]
Consequently there are xEaVa' and yEaVb such that 1=xAYy,

from which we obtain X=y =1. Hence 1€aVh.

As consequence of the above proposition we have that in a comple-
mented distributive hyperlattice the complement a’ of an element a is
the minimum of all the elements x€EH, for which we have 1€aVx.

Proposition (2.13) For a,bEH we have that

ah e b’ a’
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Proof. In fact, from a<Cb, that is b€ayb, we get
bAb'E(avb)Ab'=(aAb’)v(bAD)=(aAb)vo=aAb’,

that is aAb’=o. Consequently according to the proposition [2.11] it
will be b’ <a’.
Similarly we can prove that b’<Ca' = a<bh.

Proposition (2.14) If a,bEH then
bE(aAb’)v(a’Ab) &> a =o0.
Proof. Indeed, if bE(aAb’)v(a’Ab), then bAb =
=beE [(aADb’)v(@ ' Ab)]JAb=[(aAb’)Ab]ly[(a’Ab)Abl=o0Vv(a"Ab)=

=a’Ab, that is a’€bva’, from which aAa’=o€aA(bva’)=
=(aAb)v(aAa’)=aAb that is aAb=o.

Also bE(aAb’)v(a’Ab) = bAb'=0€E[(aAb’)v(a’ADb)]AD =
=[@AB)AD] v [ AB)AD] = aAb)vo = aAl thet i ahb'=o.

Consequently we will have
(aAb)v(@aAb’)=aA (bvb’)=o.

Since 1lebyb’, it will be aAl=0, so a=o0

Conversely, if a=o0, then a’=1, and so
(aAb’)v(a’Ab)=o0V(1Ab)=b

In case of a lattice the proposition (2. 14) corresponds to the law
of Poretzky.

b=(aAb)v(a'Ab) &= a=o0

Proposition (2.15) For all a € H, the set

A={x: x<a} is a sub-hyperlattice and even more is a comple-

mented distributive hyperlattice with unit the element a.

ITAA 1981
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Proof. Obviously the element a is the maximum of the set A,
that is, its unit. If now consider x;,x;EA, we will have x;Ax,<a
that is x; A x, €A and for all wEx,Vvx, it will be [8] w < a, and conse-
quently x;Vx, & A. Hence the set A is a sub - hyperlattice of H and
so it is distributive [ pr. (1. 1)]. On the other hand, if xEA and x’ is its
complement into H, then x"Aa<Ca, and consequently x’AacA. Also
x'Ax=0=(x'Ax)Aa=(x’Aa)A x=o0and IExvx'=aE(xvx)Aa=
= (xAa)v(x’Aa) =xV(aAX’). So the element x"Aa is the complement

of x into the hypperlattice A.

Proposition (2.16) If a,bEH, the union avyb will contain
an element x such that x < a and x<b, if and only if a=D.

Proof. In fact, if a=b, then we will have [8] x<a for
every xEavb=ava.

Conversely, we suppose that there exists an element xEavb such
that x<Ca and x<Cb. Then we shall have [2.11] x Aa"=o0 and xAD’,
from which relations we have

(xAa’)v(xAb)=xA(a’"vb)=o0
Also the relation x Eayb results in
xA(@’yvb)=o0E(avb)A(@a'vb)ES(aAa’)yv(aAb)v(a " Ab)v(bADb) =
=(aAb’)v(a’Ab),
which gives on one hand
oAb’=o0€E[(aAb)v(a"Ab)]Ab'=[(aAb’) Ab]v[(a’ADb) Ab’]=
=(aAb’)vo=aAb’, that is aAb’'=o0
and on the other hand

oAa’=o0€E[(aAb)v(a’Ab)]Aa’=[(aAb)Aa’]lv[(a’Ab)Aa’] =
=ov(a"Ab)=a’Ab, that is a’Ab=o0.
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So by the proposition (2.11) we will have a<Cb and b<Ca,
that is a = b.

Remarks (2.3) a) ogava’, because if it was oEava’, then
it should be a=a’, [pr. (2. 16)] which is not true [rem. (2. 1c)].

b) The zero element will belong to unions of equal elements,
because if oEavyb then a=b [pr. (2. 16)].

Proposition (2.17) In a complemented distributive hyperlattice
for every pair (a, b) € HXH there exists the sup (a, b) and it is

sup (a, b) = (a’Ab’)".

Proof. As it is known, we have the relations a’Ab’<a’ and
a’Ab’<b" from which by the proposition (2.13) we have a<(a’Ab’)
and b <(a’Ab’). Hence the element (a’Ab’)’ is an upper bound of a
and b. If now there exists x such that a<Cx and b<(x, then we shall
have x’<(a’ and x’<b’, and then x'<a’Ab’ and finally (a’Ab’)'<x.
Thus (a’Ab’) =sup (a, b).

The next proposition gives a condition, which when is fulfilled
then sup(a,b)Eavyb.

Proposition (2.18) If a"Ab’{a’ and bEa then
(@"Ab)YE€avb.

Proof. From the relation a’Ab’{a’ follows that a<(a’Ab’),
because if there was x such that a<x < (a’Ab’)’, we would have
a’Ab’<x’<a’, which is not true. On the other hand according to the
proposition (2.17) we have b<(a’Ab’)". Consequently (a’Ab’)’Eavb [8].

Proposition (2.19) Forall a,bEH we have

(aAb)v(a"ADb) =sup(aAb’,a"Ab).
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Proof. Indeed, if wE(aAb’)yv(a”Ab) then
wAw'=o0€E[(aAb)v(a’Ab)JAw =[(aAb)Aw]v](@"Ab)A W]

Hence [pr. (2.16)] we have (aAb’)Aw’=(a’Ab)Aw’, from which we get
[@AD)AW]Aa=[a"Ab)Aw']Aa =0, namely (aAb’)Aw'=0. Thus
[pr. (2.11)] it will be aAb’Cw. Similarly, we will have a’Ab<Cw. So

SV SN = GV A — (a Ab) v (a”Ab) = sup (aAb’, 2" Ab) [8].

Proposition (2.20) For all a,bEH is

avb S [[aAb)A@ AD), (@ AbYY].

Proof. If x any element of the union avb, then from xEavb

we get
xAx’=0€(avb)Ax'=(aAx’)V(bAX).

Consequently we will have
aAx'=DbAx’
and this results in

(aAx)Ab'=x"A(aAb’)=0 and (bAx’)Aa’=x'A(a’Ab) =0,

that is aAb’<Cx and a’Ab<Cx respectively. The element x as an
upper bound of aAb’ and a’Ab will be greater or equal to

sup{(aAb’), (@’ Ab)} = [cAD’Y A (a’ AbYY.

In conclusion the elements of the union a v b belong to the interval
[[(@AD) A (a”Ab)] (a"Ab)].

Proposition (2.21) Forall a,bEH we have

sup(a,b)=[bv(aAb’)]N[aVv(a’ADb).
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Proof. Let xE[bv(aAb’)]N[av(a’Ab)], that is
xEbv(aAb’) and xEav(a’Ab).
From these last two relations we have respectively
xAbeg[bv(@aAb)Ab=bv[(aAb)Ab]=D

that is x Ab=b and xAa€lav(a’Ab)]Aa=avy|[(a’Ab)Aa)=a that is
xAa=a. Consequently it will be b<Cx and a<{x. On the other hand

xAb'Ebv(aAb)Ab'=(bAb)v[(aAb)Ab]l=o0ov(aAb’)=aAb’,
that is xAb’=aAb’, from which
(x Ab)Aa’=xA(a’Ab’)=o0.

Thus by the proposition (2.11) we shall have x< (a"Ab’)’ and since
(a’Ab’)’=sup(a,b) it will be x< sup(a,b), therefore x = sup(a,b).
From all the above we conclude that

sup (a, b) = sup(a, a’Ab) = sup (b, aA b’),

because sup(a,b)=(a’Ab’)" is an upper bound of a, a’Ab, b, aAb’ and
belongs to the union av(a’Ab), bv(aAb’) [8].

In the case of a lattice we have
av(bAa’)=bv(aAb)=avyb thatis (a’Ab’)=avb

well known as the type of de Morgan of a Boolean algebra.

Corollary (2.1) For every pair (a,b)EH H the product
(avb)A(aADb) is a set with only one element.

Proof. Indeed,

(avb)A(aAb) =
=[aA@Ab)]v[bA(aAb)y]=[aA[a’ v(b Aa)llvIbA[b v Ab)] =
=(aAa’)v(b’Aa)yv(bADb)v(a’Ab) = (b’Aa)v(a’Ab) =
=(aAb’)v(a’Ab).
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But by the proposition (2.19) we have that

(aAb’)v(a"Ab) = sup (aAb’, a"Ab),
hence (avb) A(aAb) = sup(aAb’, a’Ab).

Note. In the classical theory, a distributive complemented lattice
is called Boolean algebra and as it is known, in every such an algebra
(B, v, A) corresponds bijectively a ring (B, -+, .) called Boolean ring. As
we know, the operations of these structures are related to each other by

avb=a+b+4+ab, a+b=(aAb’)v(a’Ab) ab=aAb, forall a,beEB.

Therefore it is natural of course, and in the case of the hyper-
composed structures, to name Boolean hyperalgebra every distributive
complemented hyperlattice.

In our paper together with professor J. Mittas, titled «Introduction
a I’hyperalgébre de Boole» [7] we deal exactly with the construction of
this structure. Indeed, in this paper we prove that a hyperring (H, -+, .)
of special form, called Boolean strong hyperring [2], namely a Boolean
hyperring in which for all a, b€ H the condition

atb={weH:a'w= b'w =a’b’}

is satisfied or equivalently the condition

a+b= {WEH t sup(a,w) = sup(b, w) = sup(a,b)},
which relates the hyperopetation of the hyperring with the order rela-
tion of H, is at the same time a Boolean hyperalgebra and even more a

strong Boolean hyperalgebra, because satisfies one more axiom :
For all a,bEH we have

avb = {W EH:a'w=bw=ab}
or equivalently
ayvb = {WE H': sup (a, w) = stp (b, w) = sup(a,b)}

which relates the hyperoperation “of the hyperlattice H with the order
relation of H. We prove also in this paper that, and conversely every
strong Boolean hyperalgebra (H, v, A) is also a powerful Boolean
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hyperring (H, +, .) and the operations and hyperoperations of their
structures are related to each other as follow:

B = awk  ab=akd

We note also that these structures have o as unique scalar element.

HEPIAHNHYH

S Yewola TOV vregovvIeTin®dy doudv 1) Yedonon tdv Omepdaxtviioy Tod
Boole 6dvynoe, ¢ yvwotév, oty sloaywyn tiig loyreis vaeodAysBoag tod Boole
[2] [7] nai péow avtiig otn yevnyy dewgla tdv Umepduxtvotav [3]. *Ano ta
tehevtala adtd oty wagovoa Eoyacio moayuarsvopal Tig £idnec xatnyopleg tdV
BMUEQLOTINDY, CUUTANQOUOTOUEVOY %Al OYETIXADG CVUTANQOUATOUEVDY VagdL-
ATVOTOV.

r \ 3 \ c 8\ c ’ er 5 ~ \ \ 2 \

To dmpeptotnd veedintvotd 6ollovrar Smwg dxofde ®al Ta EmueoLoTind
dixtvwrd. .

Xoapaxtnototind Gumg 6Ty TepinTtwon TMV HreQdTVWT®OV adTdY £lvat, OTL
dev loyvel 8v yéver o’ avto 1) dmpeglotixdTnTa Tig Evdoemg (g TEOS TNV TOUM,
-~ \ k] ’ \ \ ’ ’ \ 3 ’ L4 c A ’
modyua mov toxvel yid to ouvidn Sutvwtd, xadwg éxiong Gt Golopéves mooTd-
oelg, MoV Elvar Avayxoleg xol xaveg ouvdifixeg yud TV EmpegloTixdInTa TAOV
duntvotdv, oty megintwon OV yviounv YmepdxtvwTt@y lvar Hovo Gvayraleg

Gmwg adTd TEOXURTEL A0 OYETIRO TOQAEIYUATA,

S ouvvéyeto divetar 6 Golopdg toV cupmAnodpatog Evog otolgelov ol Tod
oyeTvol cvumAnoduatds Tov Gvagogird TEOg OUo cToLYElo TOV kAl GUECWS UETA
nal xato 1e0mo avdhoyo mEodg Tovg dvricToiyovg 6otopovg Tiig xhacoixiig Yewolag
ol 6pLoUOl TV GUUTANOWUATOUEVOY %ol OYETIXDG GUMTANQOUATOUEVWY VIEQdL-

~ \ - ~ A\ ~ 1.4 ~ 3 ’ c 5 ’ A
ATVOTOV, T0 0ol xal ueketdvror dieEodivd. Melet@vrar &milomg ol axdum mio
eidingéc ratmyopleg T@V TEOMXMDV cunmAnowUATOUEVOV nal TOV EMUEQLOTIRMDV
ovumAnompatopévev vreodixtvwtdv. Td televtaia odta dmotedolv 1) yeviuy

A [ 3 ~ -~ & c -~ [ \ [ 3 \ 5 - 1 ’
uoopn tmepahyefodv toU Boole, ol 6moieg wg doueg vmegovvietineg eival Gvri-
otolyes @V AGAyefodv tod Boole tig #hacowrilc Vewolog, eldixy] poppl T@v
€ ’ b 4 € ’ 5 -~ 3 A c ’ ~
6moiwv eivar ol magamdven Gvagepdeiceg ioyuvoss UmepdhyePfosg tol Boole.
a ’ (74 \ c ’ ~ c 4 ’ \
Anodevietal 6t otig Vmepdhyefoeg toU Boole vmdoyel mdvta 10 supremum
o otouyelov (medyua mov d&v loyvel, Omwg eivar yvwotd, ¢’ fva 6molodimore

yvijolo Vrepdixtvwto [3]).
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Feving mogatnootpe G ioyvovy yid ta vwepdintvmwte TdOV MO Tdvod xotn-
yopu®v moAkég mootdoelg TV dixTvwT®DV, TEorvmTOoVY Suwg *ail moAAég véeg, mov

e

dpethovrar 010 Gt 1) Evwon o’ adta eival VmeQmEdEy.
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