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ANAKOINQZIX MH MEAOYZ

FEQMETPIA.—On a Common Factor Characteristic of Some Plane
Coordinate Systems and its Significance in the Analytical
Transformations of Equations, éy C. B. Glavas*. "Avexorvaddn vnd
100 “Axodnuainod x. ‘Iodvv. Eavddun.

Introduction - The purpose of this paper is first to investigate a com-
mon factor or characteristic underlying most of the known plane coordi-
nate systems. Second to stress the role of this factor in the transforma-
tions among coordinate systems and especially in the use of a possible new
system of coordinates for the simplification of equations of curves and for
the solution of differential equations.

The procedure in this work consists first from the examination of
the Cartesian systems and then from its generalization to other systems.
The outcome of the whole discussion leads to the last step, which is the
definition of a new possible system and the examination of its advanta-
geous use in the analytical transformations.

1. The formulae of transformation from the Cartesian rectangular
system xOy to the oblique x'Oy’ are:

(1.1) x=x'coswty ‘cos(w-} o)

y=xsino-}y’sin(o-+ )

Here o and ¢ denote the angles xOx’ and x'Oy’ respectively. If Ox'
coincides with Ox, then w=0 and the formulae 1.1. become :

(1.2) x=x"+y cosep

y=y sing

For purposes of convenience we shall call the axis Ox, which is com-
mon to all systems, «basic» axis. The oblique coordinates of any point B
(Fig.1) are the segments OA=x"and AB=y". The direction of AB is al-
ways parallel to Oy’ making with the basicaxis an angle @ equal to the an-
gle xOy’ of the two axes. For each value of @ there corresponds a definite
oblique system. It is therefore clear that an infinite number of oblique sys-
tems exist, the rectangular corresponding to ¢=90°.

* X. B. TKAABA : "Exi Tivog ®owved XapartnploTined napdyovros EmaéSuv TIVaV cusTnH&TeV
GUVTETRYMEVOV K&l Tig GNUXGixg TOL RaT& TODg &vaAvTinods NETXGXNNATIGRODS EEICNGEWV.
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The angle @ which enters in the formulae 1.2 constitutes an unde-
termined quantity. In a transformed equation from the rectangular system
to the oblique ¢ and vice versa it may be possible to determine ¢ to serve
a desirable purpose (simplification of the equation, elimination of certain
terms etc). The following examples indicate the importance of the angle
@ in various transformations.

Example 1.1: Let the general equation of the second degree be:
(1.11) Ax’+4-Bxy+Cy*+Dx~+Ey-F=0

In textbooks of Analytic Geometry the usual method for the redu-
ction of 1.11 to the standard form is the application first of a rotation of
the rectangular axes by an angle @ and second of a translation of the ori-
gin to a new point. However we may transform equation 1.11 to oblique
axes @ as follows. Applying formulae 1.2 we get:

A(x?+y"?cos’p+2x"y cosgp)+ Bx'y ‘sing-+ By ’singcosg-+
~+Cy"*sin’¢-+Dx '+ Dy’cosp-+Ey sing+F=0
And:
(1.12) Ax"*4(2Acosp-+Bsing)x'y - Acos’¢-+Bsingcosp—-+Csinp)y *+
~+Dx'+(Dcosgp—+ Esing)y '~F=0
Equating the coefficient of x'y’ to zero we find:
2A

tangp= — —E
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Eliminating ¢ between the latter equation and 1.12 we finally find:
(1.13) A(B*+4A%)x 4 A(4AC— BY)y*+ D(B*+4A*)x -+

+(DB—2AE)B*-+-4A%y '+ F(B’--4A%) =0

A translation x'=x""-t-a,y’=y b transforms finally the latter equa-
tion to the following one of the standard form :

X"y _BH4AT |, (DB—2AE)
1 1 4A° " 4AC—-PB’
B*+4A* 4AC-B?

It is clear now that the type of the curve this equation represents
depends on the signs of 4AC—B’ and of the right side K. If for example
4AC—B*=0, then 1.13 becomes:

A(BH4A")x""+D(B’+4A%)x'-+(DB — 2AE)\ B +4A%y '+
~+F(B*+4A%) =0

The translation x"=x""-}a, y'=y '-+b can eliminate the coefficient
of x”" and the constant term when the equation takes its standard form
x'=2py, if we drop the primes.

Example 1.3: The problem now is to refer the hyperbola b’x?—a’y’—
—a'b’=0 to its asymptotes as axes. From figure 2 it is clear that 2w
+@=n and ¢'=w+¢. But ¢'+w=n which gives o=n—¢". If we substi-
tute in 1.1 0@ and o for ¢’ and n— ¢ respectively we get:

x =x'cos(n— @)y cosp’ = —x"cosp’+y ' cosqp’ =(y' —x’)cosq’
y=x'sin(n— @)+ y'sing’ =x"sing’+y'sing’ =(x"+y’)sing’

Substituting these values of x,y in the equation of hyperbola we fi-
nally get:

(b*cos’e” —a’sin’e’)(x"*+y?) —2(b*cos’¢’+a’sin’p’)x’y’ —a’b’=0

Putting the coefficient of x"*+4y"? equal to zero we find tang =i£

—4AFJ =K

and the equation of the hyperbola referred to the oblique system @’ beco-
mes Xy’ =const.

. '
y ‘Lj
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Fig. 2
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Note: A special case of the oblique systems ¢ is the so called perpe-
ndicular system where the coordinates of a point B (Fig.1) are the seg-
ments BA,=y" and BC,=x", BA,, BC, being perpendicular to the oblique
axes Ox’ Oy’ respectively. It is again clear, that the coordinate segments
BA,, BC, make an angle ¢ equal to theangle x'Oy". If BA=y, BC=x, then
x =xsing, y'=ysing. Of course it is easy to express the perpendicular
coordinates in terms of the rectangular Cartesian ones. The important thing
is the fact that the angle ¢ enters again in the formulae of transformation
as an undetermined factor.

2. Now we are going to extend the previous remarks to systems in
which one of their coordinates is an angular measure. In a final analysis
the oblique systems @ may be referred to the triangle OAB (Fig.1) and the
angle @ which the side AB makes with the basic axis.

In the cathetic system the coordinates of a point Bare ¢ and OA,=g,
BA, being perpendicular to the radius vector OB (Fig.3). We observe here

that the angle ¢ =9} g, ie. the angle ¢ is a function of 4. In the polar
system under its new form' the coordinates of B are § and OA,=r(r=0B)

. . .. . u
From the isosceles triangle OA,B it is easily found that = ‘2 —}—J‘; . There-

fore @ is again a function of 9. It should be noted also that q)'—‘q)=—l2i,

Fig. 3

! C. B. GLAvVAs, <A Contribution to the Use of the Polar System», Proceedings
of the Academy of Athens, 33 (1958), p. 342—353.
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When we make the transformation from the rectangular system to
the polar or the cathetic no undetermined factor ¢ enters in the respective
analytical relations. It is expected only from the form of these relations to
obtain a desired simplification. But if the said relations contain in addition
an undetermined factor the chances for simplifications become higher. It
is not difficult to see that where ¢ is a function of @ the angle ¢ is not
found in the formulae of transformation. In the oblique systems of case 1
angle @ is constant for each system. Now it is natural to examine what
happens in the systems whose one coordinate is the angular measure ¢ if
@ remains constant.

If @isconstant the coordinates of a point B are & and OA=v (Fig 4).
BA moves always parallel to itself making with the basic axis a constant
angle . It is clear that for each point B of the plane there corresponds a
pair of numbers (y,9) The converse is also true under the same remarks
which accompany the similar case of the polar (or the cathetic) system 2

y

A2(9)
0T AG) A me)y ¥

Fig. 4

The rectangular coordinates of B are OA’'=x, A'B==y. We have
y=xtand, y=AA"tangp=(x —y)tanp. Hence xtan®=(x—y)tane from which

we get X=_y_t§n(p—'. Therefore the formulae of transformation from
tang— tant
the rectangular system to the (y,9) system are:
ytanp ytangtan®
.1 o= tang— tand = tang — tand
? 1oc. cit.

22
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These formulae may be simplified if we put tanp=t, and tand=t
Then formulae 2.1 become:
vto toyt

(2.2) X et Y T tomt

If we solve 2.2 for y,t we get:

& sl
(2.3) y=x—1" =

Instead of the system (y,0) we can use its tangential form (y,t), whe-
re t=tand. If we take on Oy axis (Fig. 4) OI=1 and drop from I a perpe-
ndicular on OB, then it is easily found that OT=tan%=t. The system (y,t)
is the tangential form of (y,9) and may be used in cases where the formu-
lae of transformation contain only the tand °.

From triangle OAB we get:

T o ¥,
sin(x—¢) ~ sin(p—19)

Or:
r Y
sing  singcos®— cosgsind
And finally:
(2.4) r= o

tocost —sind
Since r=gcosY, then the formula of transformation from the cathe-
tic to the (y,9) system becomes:

by to(1-4-t")y
(25) g " tocos*} —sindcosd to=—=1t

As in the case of the oblique systems @, formulae 2.2,2.3,2.4,2.5 con-
tain the angular undetermined quantity @ due to the fact that the systems
(v,9) correspond to p=const. Before we proceed to a further examination
of the (y,%) system we remark that the most known coordinate systems are
contained in the symbol [(OAB) (¢)], where OAB is the triangle of figure
4 and ¢ the angle of the side AB with the basic axis, which may be ex-
pressed by the general formula @=ad-b. If a=0, then we get the obli-

que systems as well as the «polar> ones (y,9). For s

2" a=0 we get the

* C. B. Gravas, «Plane Coordinate Systems in Mathematics Study». Doctoral
Dissertation, New York, Teachers College, Columbia University, 1956, p. 146—152.
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. L .
rectangular coordinates. For a=1, bz? we take the cathetic and for

1 7T . :
a~_—‘2— and b=? the polar system in common use. From all the possible
known two systems of @=ad-}b the most important from the point of
view of introducing undetermined factors in the transformations are the
corresponding to g@=-const.

It should be noted that for a=0 and b= ; we have the (x,9) sys-

tem * In figure 4, x=0A". Clearly, the formula of transformation from the
(v,9) to the (x,9) systems is the first of 2.2. This shows the close relation
which exists between the oblique systems @ and the polar systems .

3. For the examination of the meaning of the derivative Y e divi-

dt
de after differentiating formulae 2.2 and we get:
(8.1) dy
dy t(tc: t)dt—-l—toy

dx— ,  .dy
to—t)
(to—t) 3+
For a ¥y maximum or minimum of a curve we must substitute in 3.1

d d ; ;
(?—1:0. Then we take a—i— =t,=tang. But (ﬁ:tanw(Flg.f)). Comparing the
latter relations we conclude that w=¢q, which means that at a point of y
max. or min. the tangent must be parallel to the direction of Oy’ axis

which is really the case as figure 5 shows.

Rig. 5

4 Op. cit., p. 106.
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. . . . d
If we have a y max. or min. point then we substitutein 3.1 a§=0.

Hence we get:

dy
t (to—t)dt+toy=o

Solving for i :

dt
(’i'_Y_ to'Y
dt ™ t{t—to)
And:
dy  tudt
y o dt—to)
Integrating both sides we find :
t—to
y=k3

Transforming the latter equation to rectangular coordinates (formu-
lae 2.3) we finally get:
(tox — y)(y—+Cto) =0
Hence there must be either tox —y=0 or y4Cto=0. If tex —y=0,

then % =to=tanep. But %:tam‘) (Fig.4). Therefore we must have d=¢

which is impossible because ¢=>9. The other possibility is y+Cto=0 or
y = — Cto. This means that y=const., which is really the case for a y max.
or min. On the other hand from figure 6 it is easy to see that max.
y =MA = ABtan(ABM)=ABtan(x — @)= — ABtangp. But y= — Cto= — Ctane.
Comparing the two latter relations we find C=AB, i.e. the constant of in-
tegration is equal to the segment AB if the point M is a y max. or min.

A{;(

/

l;

Fig, 6
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The following examples demonstrate the value of the undetermined
factor of the (y,t) systems in various situations.
Lxample 3.1: Let be given the equation:
(3.11) y'(x+ay)—y*— 2xy+x’=0
Transforming 3.11 to the system (y,t) (formulae 2.2) we get after the
necessary manipulations :
toyt’-to(a — 1)yt* — (to— t)(2t— 1)=0
Now we put tefa—1)= ~1. Then:
toyt® —yt* —(to— t)(2t— 1) =0
And:
yEto —1t)— (to — (2t~ 1) =0

(to—t)(yt* —2t41)=0
Since t#to(8{w), equation 3.11 finally takes the much simpler form:
(3.12) vt*—=2t-+1=0
It is easier to study the properties of the curve 3.11 under the sim-
plified expression 3.12. The result is due to the choice of a (y,t) system

1
= ortan(p—l__a_

Example 3.2: Let be given the equation:
(3.21) x’—axy—y=0
Transforming as before to the (y,t) system:
toy(1 — at) — t(te— t) =0

such that te=

1
atoy(—a —t) —t{to—t)=0
For the simplification itis clear that a system (y,t) corresponding to
to=- L must be chosen. Then:
a
atoy(to—t) — t{to —t) =0
And :
(to—t)ly—t) =0
Since to#t we finally get the very simple equation :
y=t
Example 3.3: Let be given the partial differential equation :

(3.31) (pt+alpx—+qy)=1
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From formulae 2.3 we take:

(332) aY GY _Lﬂ-_—l_‘_t___tto—t _t(t—to),ﬂ_}_—_to*t
ox oy T tlox X' x yto  yte Oy X vto
And :
_%_@5 0y+az ot 0z 0z Oy | 0z ot
Tox dy ox "ot ox'VTdy —oy oy ot oy
. 0z 0z N 0y 6y ot ot
Putting By _P,(9t =(Q and substituting the values of x By O iy
from 3.2 we get:
3.33) t(t to to —t
‘ p=ptoitztly_ Figtot
Substituting p,q from 3.33 and b4 from 202 in 3.31 we finally take:
1 t—to
Py| P(1— = )+Q g (t—1)|=1

Clearly, the simplification of this partial equation requires to put

1 .
1— Ht--=0 or t,=1 Hence tanp=1 or q):%. Then the equation becomes:

(3.34) PO(t—1)'=1
Here the dependent variable is absent and there is a quasi separa-

tion of variables®. Therefore we may put Q(t— 1)’=a,%—=a, or Qz_(lft)’
=L~ But we have:
a

dz= dy+ *dt

Or:
dz=Pdy-+Qdt

1
Substituting in the latter equation P and Q f0r~—— and respe-

(t -1y
ctively we take:

1 a
dz= - dy- (tjl‘),dt

This total differential is evidently exact. Integrating we get:

(3.35) ¥y a_
Z= - —t-1+b

* A. CouEen, An Elementary Treatise on Differential Equations, Boston, D.C.
Heath and Co., c1933, p. 270-71.
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If we want to return to the variables x,y we substitute in 3.35 the
equals of y and t from 2.3. where te=1. Then we get:
(3.36) alx—y)z—b)=(x—y)ta’x

These examples demonstrate the suitability for transformations of
the oblique systems ¢ and the other systems ¢ which may be named «pa-
rapolar systems». Of course further research 1is necessary to reveal some
more characteristics of all these systems which may be called parametric.
The important thing in such transformations is that the simplified relation
may be considered under the new system. There is not merely a change
of variables since the latter refer to a definite coordinate system. For
example equation 3.35 is referred to the system (y,t;z) and its investiga-
tion may be more desirable through this system than through the rectan-
gular (x,y,z).

NMEPIAHWYIZE

Ei¢ &va mhayoydviov cbomnpa Kapreoiavav ocuvtetaypévoy x'O¢’ 6 &Ewv
0y oxnpariler yoviay @ peta wob &ovog Oy’ 'Eav 6 &fwv Oy  eupnimey ué
zov dova Oy 7ob dpdoywviov ouotiuatos xOP, TéTE %otk Tobg peTROYNUATIOLODE
&x 7ot ouothuatos xOP elg 10 'Oy xal dvriotpdpwe elobpyetar g dmpoosdidpr-
oTog wapdywy B &v Aye yovia o. ‘Eedoov elg Exdotny TNy Tod @ dvrioTouysl &v
cbotnpe x'0Y’, elg Thv mpaypaTixdrnTa optleTar dmepln  TOOTWY CUGTYRETWY,
&V émolwy 70 dpPoydviov yOU slvan pepd mwspinTwoig (p=290°).

Elg vhv avaxofvwoty tabtny evdlevar xatx mpditov 6 pdlog Tal mapdyovrag
@ XAT& TOUG UETAOYNUATIGHOVS TEY TAxYOYwYiny cusTNUATwWY %ol did ouyxexpipué-
YV TopadstypdTwy  dekviETon B JuvaTéTrg dmwhousTslcews 2EICMoELY RAPTUAGY,
Bus Tag dmotag dxohovdobvron cuvidug elg xelpeva Tig *AvohuTindis Newpetpolog EAhan
pédodor ‘Ev ouveyeta émexteiveron # Epeuva alty ele ouotipata Tév omolwy # wix
cuvteTaypévny evar 9 wohixh yovix ¥, Awmotottar, 61t 6 Kapresiavov dooy  xad
T& &AM cuoThkaTa dveyovtar elg &v Baocixdv Tpiywvov OAB, Tob dmofou § wAeupk
AB oynpatile pé tov &Eova OA(HOy) yoviay ¢. "Av % yovix ¢ elar ouvdpryoig
g mohudig yoviag & (mohudy, xadetindv obornua), Téte Bbv elobpystar 6 mapdywy
o elg ToUg TOMOUE RETXOYNLATIOLOU &TWO TGY CUBTNLETWY TOOTwWY elg FAho xal dvTi-
aTpbpuc.

Eav % yovie ¢ elvor oradepd xal aveEdprnrog Tiig ¥, dptletar pix olroyévsix
cuoTpaTWY, T& 6mote ExAidnoay «mapamodixd». ‘Omwg xod slg T& mwAxyoydvia
GueThpate, oUtw xal elg Ta mapamolixk of TémoL peTacyNUATICROD TEPEXOLY TOV
ampoadibpioTov mapdyovta @ Tdv custypdtwy Tobtwy dEetdlovtar Sidkpopx yxpx-
XTNPIOTIXG %ol StwtumwobvTon of Timor peTaoynpaTiopod el A cuvothpata. ‘H
&Elx T6Y Tapamodin®y TOOTWY CUCTNRATWY QalveTal 8% TEY OYXETKGY TXPAIELYPd-
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Twy, 6mov ik xatahdilou mwpaadropiopod Tig ywvixg @ dmTuyydveTar 6 pETacyM-
patiopds TdY Iidopdvev oxfozwv ele Kapreoiavie ouvteraypévag elg xatd moAd
awhoustépag  mwopamohxd. Metakd TdY  mapadetypdtov  TodTwy mepthopPd-
veTor %) ik TG ¢ v pedodov Emidluocig Sxpopixiic Eiodosmg pE  pepndg TapX-
Y@youg.

“Ofev Jux Tiig dvarowdoewg Tabtng yivetar mpdTov dvaywyh Tdv whéov Yvw-
oty EmadwY GUGTNUETOY cUYTETAYUEVWY Elc TOV AdTOV XXPXATYOIGTIROY TTAPXYOY-
T @, elg dxpdpoug Tids Tol Omolou dvTicToysl Exactov cloTnume. 'Amd T &md-
Jewg TAMY UETAOYNUATIOUGY peT dmpoodioplaTou Taxpdyovtog dewvieTon ) cmoudutd-
NG THY SUSTYUATLY TV  avTioToryodvtwy sle otadepov @. Télog Bix yeviredoswg
70D whayoywviov cuoTARATOS @ ETITUYXAVETAL 6 GPIOOE TAV TXEXTOMXGY GUGTY-
ity @, TdY omofwy Emompaiverar | &Efx xkaTk TOVE AVXAUTIROVG KLETAGYNUXTL-
cpoVg dElowosmy.
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‘0 "Axadnpainds x. Todvv. Zavddune davarxolvoos v dvotéow pelémmy
dta v ndrodi.

Eis vy nagodoay dvaxolvwow ¢ ». X. I'nhafds dEerdler modrov tov oblov
w0y 6molov dadpauariler 1 yovia @ tédv a&dvwr sic &v mlayoydyioy ctotqua cvy-
rerayuédvov xard rovs dapdgovs upetacynpuatiopods xoi dswevier ™y dvvarbigra
anlovoreboews T@y yonoywomoovuérwy ovrjdwc oxéoewy el Td ®hacoixd cvyyedu-
uara vijs "Avalvuxiic I'ewuerolas. “Ev ovveyelq dnextsiver vy dosvvay tadmy eic
ovotjuara t@v Snolwy 7 ula cvvretayuévn gvar mokixy yawvia. Eis vy meolniwow
ravtyy  damorodrar, dt 1éoor 10 Kagreoiavor olotpua ¢ xal to dAla towaita
arvdyoviae sis & Baoixoy tplywvor, 100 Smolov 4 uia mlevod oynuariler uE Tov
dfova t@v tevunuébvawy yoviay . Amodesevieron 04, St 1 yovia ofity @ d&v Vmer-
aépyeron &ls Tods Tmovs peraoynuanionod And TV cvernudrwy tovtwy els dlla,
Sray aviry elvar ovvdotnois tijs molixijs ywriag.

Téhos dmoderyierar, 61, Sray 19 yovia @ evar oradega xal dvekdotyros tijs

molixijs ywvias, dvvdueda va Sglowuey oixoyéveiay ovornudrwy, 1a Snoia 6 ovy-
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yoapevs xalel magamohixd, &ic 1@ 6moia of TVmor peraoynuaTouod meQLExovy TOV
3 2 ’ € \ > \ /. ’ € 3 ’ ~
ampoodidpietoy magdyovia @ ¢ xal els 1a Thayoydria overjuara. H afla tdv
ragarolixdy todrwy ovornudrwy palvetar & 1@y magaudeudvwy nagadeyudrwy,
[3 \ ’ ~ o~ 7 [ z 3

Smov dia xaralliiov mooadwgiopod i ywvias @ Emrvyydverar 6 ueracynuati-

\ ~ r 3 ’ 3 \ ’ 3 Al \ &

ouos 1oy didouéramy oyéoewy eic Kapreowavas ovyrerayuévas els xara molv dmlov-

otéoas magamolinas cvvretaypévog.



