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ABSTRACT :

The spectrally decomposed compliance (S), stiffness (C) and failure (H) tensors for
transversely isotropic materials, as they are the fiber reinforced composites, and their respective
eigenvalues define in a simple and efficient manner the respective elastic eigenstates of loading
of the anisotropic materials [1]. It has been shown [2] that the necessary parameters for an
invariant description of the elastic behaviour of the transversely isotropic materials are the four
eigenvalues of the compliance or stiffness tensor (from which the two firsts are double)
complemented by the eigenangle w, a dimensionless parameter derived from this spectral
decomposition. However, thermodynamic restrictions are imposed on the variational bounds of
this parameter. It is the purpose of this paper to study the influence of the imposed restrictions
along the spectrum of variation of the eigenangle o, on the type and properties of the
corresponding elastic bodies and describe the limits imposed by the respective values of w on
the properiies of the anisotropic materials. It is further shown that this single parameter is
sufficient to characterize qualitatively both the elastic properties and the respective toughness of

the transversely isotropic bodies.

1. INTRODUCTION

Decompositions of the fourth-rank tensor representing either stiffness, or compliance,
or failure, have been extensively used recently to describe efficiently either the underlying
geometry symmetry in crystals, or the mechanical properties of anisotropic materials, be-
cause the structures of fourth-order tensor reflect this symmetry and, thus, they can reduce
the number of independent components describing this symmetry.
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Walpole [3] has presented for the first time a reduction of the algebra of the fourth-
rank tensors to irreducible subalgebras, which were simpler than the initial one and,
therefore, they facilitated operations between these tensors. In this general form of
decomposition Walpole included also the spectral decomposition of the fourth-rank tensor
and applied these decompositions to define the properties of various crystalline systems.
Later-on Rychlewski [4], [5] has shown the possibility to decompose the elastic stiffness
and compliance fourth-rank tensors by using the spectral decomposition. The advantage
of this decomposition is that the elementary idempotent tensors, to which the fourth-rank
tensor is decomposed, present the interesting property to define energy orthogonal stress
states, that is states where the stress idempotent tensors are mutually orthogonal and at
the same time collinear with their respective strain tensors and therefore they correspond
to energy orthogonal stress states [6]. Since the failure tensor is the limiting case for the
respective o, -tensors, which are eigenstates of the compliance tensor S, this tensor also
possesses the same remarkable property. On the contrary, the decompositions used by
Walpole in his crystallographic applications [1] do not belong to spectral decompositions
exceept for the trivial cases of the isotropic fourth-rank tensor and the tensor corresponding
to the cubic system.

While Rychlewski has proved the possibility of a spectral decomposition of the
fourth-rank symmetric tensor and has shown that this decomposition is the simplest and
the one defining the compliance, C, the stiffness S and the failure H of orthotropic
materials, he did not proceed to establish the characteristic eigenvalues of this spectral
decomposition. It was Theocaris [7], [8] and Theocaris and Philippides [1], [2] who
succeeded to decompose spectrally the compliance, or stiffness tensors for a transversely
isotropic material and to evaluate their characteristic values, which defined the respective
energy-orthogonal stress-states. Furthermore, bounds of the admissible values for the
clastic constants and especially for Poisson’s ratios are given, obeying restrictions of
thermodynamics.

In this paper, bounds based on thermodynamic principles and the positiviness
conditions for the clastic properties, which are previously established [1], [2], were
studied all over the spectrum of variation of the basic parameter of the eigenangle w,
which alone characterizes qualitatively both the elastic properties and the toughness of

the transversely isotropic materials.
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2. THE SPECTRAL DECOMPOSITION OF THE FOURTH-RANK TENSOR
BESCRIBING THE TRANSVERSELY ISOTROPIC BODY.

Consider the Cartesian coordinate system, which the stress -and strain- tensor
components are referred to, being oriented along the principal material directions, with
3-axis being the axis of infinite symmetry of the material, which is normal to the
isotropic (transverse) plane. Using engineering constants with subscript (T) to denote
elastic properties on the isotropic plane, and subscript (L) the corresponding ones on the
normal, (longitudinal) plane, components of the stiffness C -or compliance S- tensor,
associated with the adopted Cartesian system are given in ref. [2]. The eigenvalues of the

associated square matrix of the rank six to tensor S are expressed by [2]:

(T+v.)
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with the two first eigenvalues A and Xy beig of multiplicity two. Furthermore, along the
isotropic plane (T) it is valid that:
E
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Cr = 2o &)
The minimum polynomial of tensor S is a quartic and has as roots the eigenvalues
M, Ag, A3, and A4. The associated form idempotent tensors E, (m=1+4) of the spectral

decomposition of S are given by:

E +E,+E;+E, =1 3)

with I the spherical unit tensor.

Furthermore, the eigenangle w, defined in [2], is experessed by:
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If the stress states o, constitute the eigenstates of tensor S, they satisfy the

relationship:
¢ .=E ‘o (%)

with the index m varying between 1 and 4, where & is the contracted stress tensor.

Relations (5) imply, through a series of calculations, that:

o, =[% (0,-0), - %(0]-02), 0, 0,0, olzr (6.1)
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Relations (6) imply that the stress eigenstates corresponding to spectral
decomposition of the compliance tensor S for the transversely isotropic materials brake
down the stress tensor o into four elements. The states 6 and oy are shears, simple
together with pure, and pure shear respectively, which they are independent of the
eigenangle w. The a3 -state represents an equilateral stress state in the isotropic plane
together with a superposed tension along the infinite symmetry axis (o3) of the material,
whereas the g4 — state replaces the uniaxial tension by uniaxial compression along the
symmetry axis a3. To these four stress—tensors @y to g4 are associated the four respective
strain tensors €, €9, €3 and &4, from which the two first strain tensors correspond to a pure
distortion of the solid without any volume change.

From relation (4) it can be deduced that the angle « takes values in the interval (0°,
180°), whereas for the isotropic solid it was shown that w equals 125.26°. As it can be seen
by this relation, there are two possible values of angle w corresponding to the isotropic
medium, that is ©»=35.26" and 125.26°. The former value of & corresponds to a negative
value of Poisson’s ratio, v, whereas the latter to a positive one. Although a negative value for
v is thermodynamically admissible, only special types of composites are possessing such a
negative value [9]. For these materials the zone of variation of the eigenangle « lies beyond
the interval of variation included between w=90" and w=180°. It is anticipated that these
materials with negative Poisson’s ratio v; lie inside the interval w=0° and &>=90°.
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3. CLASSIFICATION OF VARIETIES OF TRANSVERSELY ISOTROPIC
MATERIALS

The failure theory introduced during recent years and based on failure tensor
polynomials was mainly developed for establishing failure conditions for compression
strong (C-strong) materials and composites, as they are all compacted and thick-packed
materials of condensed matter, which naturally present a high resistance in compression.
However, it was shown that the same theory is equally valid for tension strong (T-strong)
materials [10].

Similar materials presenting this phenomenon of being tension strong in failure are
detected up to now, besides the foamy materials and ceramics of high porosity, various
types of paper sheets, as well as the oriented polypropylene, and materials which present
again a high porosity in their structure. For these materials, however, the critical

condition defining the type of the anisotropic material, which is expresed by [11]:
trh<0 (7

yields always negative values, whereas for the C-strong materials this quantity should
be always positive. In this relation the 2nd rank tensor h is the strength differential

effect (SDE) tensor h, intervening into the failure tensor polynomial expressed by [11]:

fe)=6.H.0+h.c-1=0 (8)

where the normal components of the failure tensor H and the (SDE)-tensor h are given by:
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whereas for shear components are given by:
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The distance y, between the s;"mmetry axis of the (EPFS) surface, representing

the failure criterion (8), and the hydrostatic axis is given by relation [11]:

. B0 1)

0 9 H,
and takes always negative values for T-strong materials. The negative value for y
indicates again that the symmetry axis of the (EPFS) is beneath the hydrostatic axis
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relatively to the positive a3 -direction and this is another indication that the material
behaves like a T-strong material.

Most of the orthotropic materials are C-strong materials since they are capable to
sustain large compressive stresses without failure. However, there is a restricted category
of materials which behave like T-strong ones. In these substances the solid material is
distributed in little columns or beams forming the cell edges in cellular open-cell foam-like
solids, where clusters of microvoids intervene between molecules or crystals, thus creating
structures which may be either isotropic or more frequently orthotropic. Most polymers
can be readily foamed and techniques exist for doing the same thing with ceramics and
glasses even with metals in modern technologies.

Foam-like substances permit the simultaneous optimization of stiffness, strength and
lightness of a structure. The mechanical properties of foamed materials reflect to some
extent the mode of distribution of the solid material, which depends on the relative density
of the solid phase constituting the foam-like material. Thus, for high void fractions of the
total volume structures, a lower than linear decrease in flow strength with a decrease of
density was exhibited, indicating that bending stresses within the foam structure are
progressively a less important feature of the collapse load. Then the structure behaves like
a T-strong material presenting a higher strength in the tension-tension-tension octant of
the principal stress space until a collapse by internal buckling of the structure takes place.

Thus, for example, oriented polypropylene has a geometric conformation of the
individual polymer molecules in the unit cell of a polymer crystallite depending strongly on
the repulsion of the methyl groups in the planar zig zag conformation. The molecules
assume positions at 120 degrees out of the plane of the chain and are therefore forming
helical conformations within the unit-cell of their crystallites. Therefore low-density
oriented polypropylene influenced by the spring-like cells presents a T-strong behavior
[12]. Similarly, paper sheets consist of networks of fibers placed at different random
arrangements. The properties of the individual fibers and the nature and frequency of
bonds between them influence the properties of the paper sheet. Moreover, fibers are
actually filament wound composite systems, whose cell walls are composed of a number of
different layers, the fibrils, which are aggregates of cellulose molecules with cellobiose as
the basic repeating unit, arranged either in a orderly, or in a random fashion. The fibrils
themselves are arranged in a regular fashion differing within the various layers of the cell-
wall and they are held together by the hemicellulose and lignin matrix material. Such
conglomerates contain a great number of microvoid clusters distributed randomly inside
the structure and this reduces considerably the specific density of the material. The bonded
fibers act like springs largely interconnected. It was found that low density paper sheets
behave like T-strong anisotropic materials, as it is clearly indicated in [13].
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Then, for classical fiber reinforced materials, whose o3-axis of symmetry is the strong
axis, as well as for all compacted and close-packed C-strong materials, it has been
established [2] that their corresponding eigenangle « varies at the interval w=135° and
w=180°"with the more anisotropic materials lying closer the neighbourhood of w=180°.
As the anisotropy of the composites or any C-strong material is reduced, tending to
become an isotropic material, the value of the respective eigenangle diminishes from
»=180" tending to values approaching «;=125.26" for the isotropic materials. Indeed, it
has been established that all strong-matrix materials, like those with the metallic or
pyrolytic graphite matrices, lie at the transition zone of angle , where their w-angles are
much smaller than those of the composites, whose angles w lie close to w=180°[2].

Furthermore, a special category of transversely isotropic materials exists, whose
mechanical properties are conveniently selected, so that two last eigenstate components of
the S-tensor, given by relations (1.4) and (1.3) may identified to contribute, the first, a
dilatational type of strain energy, whereas the second, creating a pure distortional one. In
this way the four eigenstates (1) are clearly separated into two distinct groups, creating
either distortional, or dilatational types of strain energy. It was shown that this family of
materials behave like the isotropic body, in spite of their differences in the elastic constants
along their principal axes of anisotropy [14].

Since with all fiber-composites it is possible to arrange their mechanical properties by
selecting the appropriate ratios between matrix and inclusions, according to their
properties, this possibility of selecting in advance the properties of the composite is
feasible. Taking into consideration that quasi-isotropic materials develop the smallest
stress concentrations in the structures, the development and selection of such composites
with quasi-elastic properties becomes very important [15]. Indeed relation (4), expressing
the tangent of the double of the eigenangle w, suggests a particular relationship between
Ep, Er and v, vy in order to yield an angle «; approaching the value «;=125.26°. This

relationship is expressed by:
(v (1-vp)

E B (12)

18

Introducing this relation into Eq. (4) we obtain:
tan2 = -2V2 (13)
and therefore, angle w takes either of the following values:
= w; =125.26°, 35.26° (14)

These are the only values for angle w, which yield quasi-isotropic materials with

positive or negative values for Poisson’s ratios.
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Introducing relation (12) into the eigenvalues given by relations (1) we have:

i S
M =26, N =3g
15
Ay = 5 & A, =) -
3‘2—GL -

These relations indicate that only the first eigenvalue A; depends on the transverse

shear modulus, whereas the next two eigenvalues depend exclusively on the longitudinal
shear modulus G, and the fourth A4-eigenvalue depends only on the longitudinal bulk

modulus.

Moreover, the eigentensors o, of the symmetric stress tensor ¢ are given by:

T
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T
o, =000 0y 0 0] (16.2)
1 T
0, = + 40,20 [, 1, -2, 0, 0, 0] (163)
: .
0, =3 @910 [1, 1, 1,0, 0, 0] (16.4)

Relations (15) and (16) indicate that the characteristic states of stress corresponding
to the spectral decomposition of the compliance tensor S for the transversely isotropic
material satisfying also the relationship (12) decompose the generic stress tensor ¢ into
four distinct states, from which the three first are shears, whereas the fourth state (s4) is a

hydrostatic stress producing a dilatational strain energy, whereas the strain energies of all
the other three components are distortional. Thus, this class of transversely isotropic
materials maintains the property of isotropic substances to yield the possibility under a
certain orientation of loading to admit a clear separation of the total strain energy into two
distinct components a distortional and a dilatational one. Then, all the advantages already
mentioned [15], valid for the isotropic materials, are extended to this class of transversely
isotropic substances in addition to the particular properties deriving from their anisotropy.
From the above concise description of the mechanical properties of this category of
quasi-isotropic fiber-reinforced composite it derives the conclusion that this type of
materials present values of their eigenangle « lying in the vicinity of the characteristic
eigenangle «;=125.26° for the isotropic material and these values are spread in both sides

of this angle ;.
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Finally, it remains one last category of composite materials to be examined and this
is the group of weak-axis woven fabric composites. These relatively newly introduced
woven fabric composites have shown that they provide more balanced properties on the
weave plane than unidirectional fiber composites and therefore they have already gained
an increasing importance in technological applications. This was due to the fact that the
two-directional reinforcement inside the lamina behaves like a quasi-isotropic substance
and resists better in any biaxial loading and especially in impact [16]. All woven
composites are considered as laminated bodies, each layer of which is a woven fabric
formed by interlacing two sets of threads, the warp and the fill or weft. Warp and weft may
be either identical or different threads and the various types of weaves can be identified by
the patterns of repeats in the warp and weft directions denoted by the weave parameter n,
meaning the number of threads in the pattern which is equal for warp and weft for non-
hybrid fabrics. For equally spaced warps and wefts the fabric is termed as plain weave and
constitutes the simplest and more homogeneous fabric [17].

The failure behavior of woven fabric composites in the form of plain weave fiber
unidirectional laminae obeys the same laws as the strong-axis fiber reinforced composites.
However, since the transverse weave plane is the strog and isotropic plane of the
composite, while the normal to it direction is the weak one, the material is approximated
as a weak-axis transversely isotropic composite. Then, the elliptic paraboloid failure
surface (EPFS) criterion, continues to describe satisfactorily this type of materials. It was
shown [18] that such weak-axis transversely isotropic composites correspond to tension
strong composites and their failure surfaces consist of a single-sheet convex surface open
to the tension-tension-tension octant of the principal stress space. The main characteristic
of such surfaces is that they are oblate along the normal direction to the isotropic plane, in
contrast to the typical (EPFS)-criterion for fiber composites, which are prolate along the
same direction. While the intersection of this (EPFS)-criterion by the (o, o3)-principal
stress plane (o3 is the weak axis) resembles closely the respective intersection for the
unidirectional fiber composites, the (s, o,)-isotropic plane intersection, which coincides
with the weaving strong plane, approaches very closely a circle, thus indicating that along
this isotropic plane the failure stress is hydrostatic and independent of its orientation inside
this plane. This property constitutes a significant and promising property, which makes this
type of woven composites very attractive in applications.

Indeed, it has been shown [18] that the ellipticity, A, of the paraboloid representing

the failure surface for woven fabric weak-axis composites is given by:

H:n
b ={ (4Hl 1'H33) } a7
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Then, for values Hy3=2H,; the factor A,, tends to unity. For the composite studied

in ref. [18], which is a T-300 carbon-epoxy woven fabric composite, this value was found to
be A,=0.97. For several other similar materials the same approximate equality is valid.

Then, the intersection of the (EPFS) for such materials by the (5;, o,)-plane tends to

become a circle. The critical relationship for such a property to be valid is the relationship:
(Hy3-H,-Hpp) = 0 (18)

From the existing experimental evidence with different woven fabric composites it
can be derived that this ratio A, remains always close to unity, then it may be concluded

the extremely interesting property for this type of materials, that along their weave plane,
which is their srong plane, failure is invariant and the stresses at failure, at any
combination of the | -and oy- principal stresses, is an invariant characteristic of the

material. This is a unique property very advantageous, exclusive for this type of woven-
fabric composites, which makes these materials very attractive in applications.

Furthermore, the invariance of the failure strength in the strong weave plane creates a
further advantage in the use of these materials as laminates, since it justifies and facilitates
the application of a simple lamination theory for the creation of multiple-ply laminates,
where the contribution of each lamina may be accepted as being invariant of its orientation
of the fibers with respect to its neighbors. If one adds to these incontestable advantages of
this type of materials the fact, which was derived from this application of the (EPFS)-failure
theory, that the woven-fabric composites reinforce the laminates toward the tension-tension
quadrant of their failure locus, while they do not create abrupt and high differences in
failure limits along the different stress-directions, one may anticipate that these materials
should find an exclusive and broad use in crucial modern technological applications.

This last property indicates that the respective values for the eigenangle & of these
composites lies always in the interval around the critical angle w;=125.26°.

4. THE EVALUATION OF THE LONGITUDINAL G; -SHEAR MODULUS

The spectral decomposition of the elastic stiffness or compliance tensors in
elementary fourth-rank tensors serves as a means for the energy orthogonal decompo-
sition of the energy function. The advantage of this decomposition is that the elementary
idempotent tensors, to which the fourth-rank tensors are decomposed, have the interesting
property of defining energy orthogonal stress states. That is, the stress-idempotent tensors
are mutually orthogonal and at the same time collinear with their respective strain tensors,
and therefore they correspond to energy-orthogonal stress states, which consequently are
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independent to each other. Since the failure tensor is the limiting case for the respective
elastic tensors, which are eigenstates of the compliance tensor S, this tensor also possesses
the same remarkable property. Moreover, it was conclusively proved that the four eigen-
values of the compliance, or stiffness, or failure tensors for a transversely isotropic body,
together with the value of the eigenangle , constitute the five necessary and most simple
parameters, which invariantly describe either the elastic, or the failure behavior of the
body. The expressions for the stress-vector thus established represent an ellipsoid centered
at the origin of the Cartesian frame, whose principal axes are the directions of the idempo-
tent strain vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for the
isotropic materials, introduced in ref. [19].

Furthermore, in combination with extensive experimental evidence, this theory
indicates that the eigenangle « alone characterizes monoparametrically the degree of
anisotropy for cach transversely isotropic material. Thus, while the angle w for isotropic
materials is always equal to w;-125.26°, or 35.26°, the angle || increases progressively in
both sides within the interval 0°-180°, as the anisotropy of the material is increased. Then,
the possibilities of modern technology to create new composite materials by acting upon the
selection of the particular elastic moduli of the reinforcements and the matrix and choosing
the appropriate density of inclusions, allowed to form a series of new composites with
selected mechanical and other physical properties convenient for special uses in industry.

For this procedure the definition of a particular eigenangle w of the composite plays an
important role, since it constitutes the criterion for the proper selection of the composite. It
has been shown that composites with eigenangles lying at the vicinity of the critical value for
the eigenangle, w;, for the isotropic materials [9] behave like quasi-isotropic materials with
equilibrated properties along the principal axes of anisotropy, fact which has a direct influence
on an increase of the adhesion between phases and therefore an increase of their toughness.

Furthermore, it has been proved in a recent study [18] that the possibility of
disposing orthotropic plates with particular properties interconnecting their mechanical
properties improves considerably their mechanical behavior, by reducing drastically the
stress concentration factors in discontinuities (holes of cracks) eventually existing in the
structures. These stress-concentration factors are reduced considerably, when the compo-
site has properties approaching the respective values for isotropic materials [15]. Then, it is
worthwhile to seek convenient types of composites, which not only are highly reinforced
by their anisotropy, but also they are favorably designed to develop the lowest possible
stress concentration factors at eventual discontinuities of structures made of these ma-
terials. It was further indicated that the optimum of such concentration factors can be

achieved by the respective isotropic material.
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Since for fiber-reinforced composites a vast possibility exists to arrange conveniently
the selection of the quantities and the properties of the constituent phases, it becomes
feasible to produce convenient composites approaching this simple condition (12). Then,
for quasi-isotropic composites it is possible to split the total elastic strain energy into a
distortional and a dilatational component, a property which has beneficial repercussions in
designing optimal structures. Indeed, it has been shown previously [15] that such materials,
whose properties approach those of an isotropic material, present very reduced stress-
conééntration and stress-intensity factors. Thus, a structure made of such materials
presents a superiority over a similar one made by a strong anisotropic composite, since for
the same mode and intensity of loading the first type of structure can hold much larger
loadings. This phenomenon has been already detected intuitively by the designers of
advanced research centers based on their long experience in practical applications. Thus,
they have established a long practice and by trial and error procedures, that it is advanta-
geous to introduce in structures strong-matrix composites of woven-fabric composites,
whose elastic constants approach better relation (12).

It is worthwhile remarking that the expressions for eigenstates X;, A3 and A4 given by

relations (1.1), (1.3) and (1.4), as well as the expression for the eigenangle «w by relation
(4) do not depend on the value of the longitudinal shear modulus Gy. Only the A,-
eigenstate depends exclusively on the Gy -value. It is well known that the evaluation of the
longitudinal shear modulus Gy, derived by measuring the shears between the a3-axis and
the isotropic (0s;a,)-plane, is a difficult and error-affected experimental procedure. The
values for this elastic constant for anisotropic materials present always a large scattering
and a high degree of uncertainty. The evaluation of the eigenangle «w of each material,
which does not necessitate the knowledge of this elastic constant, as it can be readily
checked by relation (4), yields a means for evaluating accurately this constant from the
remaining elastic constants of the anisotropic material, provided that some relationship
can be established between the angle & and the shear modulus Gy .

Moreover, it can be readily proved by means of the classical anisotropic elasticity
theory [20] that the stress concentration factor, K-, in the presence of a elliptic crack in a
transversely isotropic plate, loaded in tension along the strongest material direction, is

given by:

" (g .
| 2|z | & (19)
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where b/a denotes the ratio of the elliptic crack semi-axes. This relationship indicates that
the value of the shear modulus, Gy, is also contributing to the characterization of the frac-
ture toughness of the material and an eventual phenomenological correlation of it with the
value of eigenangle, w, would extend its usefulness as a simple parameter characterizing
both elasticity and toughness of the transversely isotropic medium.

In order to investigate a possible monoparametric correlation between the value of
the angle w and that of Gy, and since there does not exist an exact and simple expression
for G in terms of the other elastic properties, we should make recourse to experimental
evidence. Thus, by plotting the values of the ratio E; /2G;_for all known transversely isotro-
pic materials, fiber composites and inorganic crystals of the hexagonal lattice arrangement, -
which are strongly orthotropic, versus their respective eigenangles , a universal curve of
dependence of the E; /2G -ratio versus angle w can be derived, which constitutes a sure
and accurate relationship between all elastic constants of orthotropic materials. These
experimental points were already plotted in refs [2], [14] and [22] with coordinates the
values @ and E; /2G; . Most materials represented by these experimental points were also
conveniently tabulated (Table 1 of refs [2] and [14]). The continuous curve plotted passing
through these points represents the mean characteristic behaviour of all these experimental
points, which are ordered in a very prescribed manner. It is evident that the value of the
ratio E; /2G; diminishes as the angle & approaches the value of 125.26°, whereas in the
broad vicinity of this value, the ratio E; /2G| changes mildly, thus retaining values near
those of isotropic materials.

The plotting of this figure is repeated here in Fig. 1, where, besides the points
corresponding to different materials as they have derived from experience, the curve
| cot2e | =f(w) was also plotted. It can be immediately derived that all values
E; /2G| =f(w) lie on this curve with some scatter, due to inherent experimental error in
measuring all these elastic constants, that is E;, Er, vr. Then, it is legal to accept that the
variation of the E; /2G;_ -ratio with angle w follows a curve defined by:

E

l‘ -—

'Z—q = a[1+cot2wl] (20)
Introducing the value for cot2w from Eq.(4) we have:

1 1-vp
E 2E, ~ 2E
L I in ;
o=+ | ——— (21)
2G, v,
) g

where the a-factor is evaluated from Fig.3 to be a =V2.
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Fig. 1. The universal curve of variation of the E; /2G; -ratio versus the eingenangle e, expressed by the

relationE; /2G; =[1+/cot2w/]and the comparison with the values derived from experimental

results for a series of materials used in applications.

Then, relation (21), when solved for Gy, yields:

G

i

- 14242 v,

E

bt 4
ET

(22)

Relation (22) yields the value of the longitudinal shear modulus G; of the composite
in terms of the elastic moduli E; and Er and the respective Poisson ratios v; and vr. Since
both Gy, and v elastic constants are difficult to be measured and they demand sofisticated

loading devices and measuring systems, the importance of relation (22), which intercon-
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nects both these quantities in terms of Et and vy, which can be easily and accurately be
evaluated, constitutes an important means to check the value of the one quantity from the

other and detect any obvious discrepancy in its measurement.

5. THE DEPENDENCE OF ANISOTROPY ON THE VALUE OF THE w-
EIGENANGLE

The eigenangle w, defined by relation (4), also gives the following basic relations:

/v,
sin2w =- T
E 2 @8.15
L ﬁ' 42w
E
l _L
—2—|: (I-v.r) E’r -1 }
Cos2w = )

2
| fenB]ng] b=
2 t T ET J 4 2'VL

This angle w is intimately connected, through the eigenvalues of the tensor S of
compliance, with the principal directions of the orthotropic material. It can be readily
derived that the orientations 6f the principal strain directions depend exclusively on angle
w. This is valid for every transversely isotropic material, as well as for the isotropic body. It
can be readily shown that for the isotropic body, the vector e4 has the positive direction of
the hydrostatic axis, whereas the es-vector lies on the deviatoric plane. Both of these
vectors remain always on the principal diagonal plane (339;,) for the transversely isotropic
bodies. From relations (4) and (7) it can be readily shown that thermodynamically
accepted values for the eigenangle w lie in-between 0° and 180°, whereas for the isotropic
body «;=125.26" or 35.26°.

For the typical fiber-reinforced composite materials, whose axis of symmetry of the
parallel fibers constitutes the strong axis of the material, angle « takes values lying inside
the interval between 125.26° and 180°. Furthermore, it should be mentioned that relation
(4), or relations (7), yield two values for the isotropic material w=125.26° and w=35.26".
While the first value corresponds to a positive Poisson’s ratio vy , the second value refers to
a negative Poisson’s ratio v . However, it has been established that the limits of variation

of the isotropic Poisson’s ratio v; are defined by the inequalities:
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-1.0<v, <050
(24)
whereas for the transversely isotropic material it is valid that the longitudinal, v, and the

transverse, v, Poisson’s ratios must satisfy the rﬁiations [2]:

E
hl<| (vp)s==| and vl<1
o . " (25)
Then, it is of interest to study the influence of the value of the eigenangle « on the
type of anisotropy holding in the material. This study will be limited to only the transverse-
ly isotropic materials which are of great interest in the constructions.
The general representation of relations (4) and (23) in thf:l /tzrigonometric circle of radius:

2
E
rt=|:"1—[ (= T)E_;'l} +2Vi:|

yields Fig. 2, where, for the angle AOC=2w, the argument 0B=cos2 and the argument
BC=sin2w.
D (20=90°)

@

1L 20w=250.52°
E /\< A >
T O 20=360°

A2y,

v

C (111) av)

o
1/2
E 2
‘ %_ [(I-VT)E—;' -1 } + 2vf:| I F (20=270°)

Fig. 2. The trigonometric circle with radius r={1/4 [1-vp)E; /E, -1]+2v; *}"* with the four different

regions of variation of eigenangle .
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(i) Then, when angle 2 lies in the first quadrant AOD in Fig. 4 it is valid that cos2c,
sin20=0. Furthermore, since from relations (4) and (23) tan2w should be positive it may
be derived that it is valid that:

(I-VT)
v, <0 and E, E -11]20 (26)
Relations (26) yield the following conditions valid for the first quadrant (I):
v <0
oo 1 e
T E

Introducing these conditions into the expressions for the limits of Poisson’s ratios
for the anisotropic materials, expressed by relations (25), we find for the limiting value
of vp={1-(E/E,)} and for 2w=m/2, that v < IN2.

Then, for the limits of this first quadrant we have:

1”
2
1-v.)E (I-v.)E
(i) For 20=0 : cos2w=1, then v;=0 and | 1 (—ii-l 4032 =2l|: £ =-1((28.1)
sin2w=0 4 E; L f
(ii) For 2w=m/2 : cos2w=0, then vp.= {1 - (E/E)} (28.2)
sin2w=1

It may then be concluded that for the interval we [0, 7t/2] relations (27) are thermo-
dynamically valid with the equality signs valid at the limits of the interval. Obviously, in
this first quadrant the eigenangle w varies between we [0, /4].

(ii) For the second quadrant DOE of Fig. 2 it is valid that: cos2w<0, sin2w=0. Then
it may be derived from relations (4) and (23) that v <0 and vy> (1-E/Ey ) and, therefore,

for the second quadrant the following conditions hold:

v <0
&3
Vp > -EL

The limits for Poisson’s ratios as given by relations (25) yield for the limits of the
second quadrant that:
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(a) For 2w=m/2, cos2w =0, sin2w =1 as previously, and
(b) for 2w=m,  cos2w =-1, sin2w =0 and therefore v, =0.

Therefore, for a thermodynamically acceptable case in the interval 2we [n/2, =)
relations (29) hold with the sign of equality for the limits as indicated. Obviously, angle «
runs in-between 7/4 and /2 (we [r/4, 70/2)).

(iii) For the third quadrant (EOF), where 2we [x, 3n/2], we have sin2w<0 and

cos2w =0, which, because of relations (23), yield:

% 30
sl Tkt (30)
v >0 and vT_[ E,
Therefore, for the third quadrant the following relations are valid:
(| &
e 3 31
%20, szll E, (31)

For these limits Poissson’s ratios check well, yielding: [vy| <1 and [v [ =142,
At the limits of this interval we have:

(a) for 2w=r, Ccos2w = -1, sin2w = 0,
and (b) for 20=31/2, cos2w =0, sin2w = -1, Whichyield:

L

Therefore, for a thermodynamically acceptable case in the interval 2we [r, 3n/2]

relations (30) are valid with the signs of equality holding at the limits of the interval.
Obviously, the eigenangle ¢ varies in this interval we [n/2, 3rt/4].

(iv) For the fourth quadrant (FOA), where 2we [3w/2, 2x], it is valid that sin2w=<0
and cos2e>0 which yield:

e
VLZO and Vo < EL

Therefore, for this interval we have the validity of relations:

Er
Y20 . W< I'ET (33)
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Relations (33) hold for the quadrant IV and they give termodynamically acceptable
values for Poisson’s ratios in this interval 2we [37/2, 2rt] and therefore for we [3w/4, 7.

(v) Finally, we examime the situation around the characteristic value w; for the

isotropic materials (w;=125.26"). For this angle cos2w;=-1/3, then from relation (23.2) we

E E 1
;—[(1- T)i-l }>-%—[%[(1-\ar)ﬁ- 1t +2v2L]

which, for we [125.26°, 135°], yields:

have:
12

[ ] [ ]

v > 1- (1 T)% y V2 I-EE (34)
L | L b1

Similarly, for we [90°, 125.26°], we find that:
= 2 - — E.l_ =
L
v <| 1-(1-v,) = s | Nl —— (35)
L T » E

S E‘r J i L -

From the above-developed thorough study of the termodynamically admissible
limits of variation of the two components of Poisson’s ratios the following results may

be derived:

(I) The interval I of variation of the eigenangle w°, w°e [0°, 90°], contains all
transversely isotropic materials which have negative longitudinal Poisson’s ratios v . Such

materials are all the so-called auxetic materials [22] with very interesting properties
described recently in several papers, referred to in [9]. These materials presumably should
have a high porosity and correspond to a great number of open-cell foamy materials, based
on polymers or metals, with re-entrant cell structures, as well as various types of papers,
ultra high molecular weight oriented polypropelyne and polyethylene, as well microporous
oriented polytetra- fluoroethylene. In the same category also belong several types of
honeycombs, as well as rank-2 composites, which are composite mixtures of two materials
of whom the one is a rank-1 composite, consisting of alternating layers of the stiffer and
the more flexible phases, then the rank-2 composite is constructed of alternating layers of
the stiff material and the rank-1 composite in layers of different orientations. Depending
on the average densities of the two phases, the stiff phase and the rank-1 composite and
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their relative orientation, it is possible to obtain composites with negative Poisson’s ratios
approaching the negative unit [23].

However, these newly developed types of materials, very useful in special
applications, are as yet not thoroughly studied and their mechanical properties, as well as
their failure modes are as yet not well known, in order to allow a definite classification of
these materials. Therefore, the domain of variation of the eigenangle w between 0° and
90° is not clearly defined, the only definite result being that for the characteristic value of

, ©;=35.26° in the interval € [0°, 90°], where the material becomes again an isotropic

one.

II) It remains to classify systematically the extent of anisotropy of the materials in
the range of the w-eigenangle: w°e [90°, 180°]. According to the previous analysis, as well
as from the experience gathered in examining different types of composites presenting
different values for their respective w-eigenangle, there are three distinct sub-domains
where the properties of the materials present different anisotropic behaviour. These
domains are defined as follows. The first domain extents in the interval we [90°, 125°],
the second one in the interval we [125°, 135°] and the third and last one inside the range

we [135°,180°).

(a) In the interval we [90°, 125°] are included most of the weak-axis of symmetry
composites with the compression annealed pyrolytic graphite-graphite fiber composites
presenting a value of its eigenangle w°=90° [2], [14]. Indeed, all woven-fabric composites
disposing their o3-axis of symmetry with the lowest strength, in comparison with their
transverse isotropic plane (a1, 65) which is reinforced with fibers in a woven fabric
arrangement, resemble very much the quasi-isotropic materials and they all lie inside this
interval [18], [22]. In the same interval lie also all open-cell foamy materials [12], [24]. All
these composites present the property to be tension-strong materials and they obey the
condition trh<0. Finally, in the same interval lie the majority of inorganic crystals with the
property that one of the values of their Poisson’s ratios is always negative.

Since the negativeness of Poisson’s ratio is an indication of increased porosity of the
materials, it seems that there is an interdependence between the property of the materials
to be T-strong materials with the property to eventually present negative or very low one of
their Poisson’s ratios and in this case the longitudinal one, v;. This argument is further
supported by the fact that oriented polypropylene, as well as oriented polytetrafluoroethy-
lene, are both T-strong materials [25], and they present a texture of their macromolecules
resembling the texture of open-cell foams. Similar phenomena and failure behaviour appear
with various types of papers, which again are sheets formed from randomly arranged arrays
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of cellulosic fibers presenting some kind of parallel ordering, bound together by lignin, a
polymeric substance, thus presenting an important amount of porosity [13].

(b) For the second interval of the w-eigenangle, where w°e [125.26°, 135°] we
proceed to a straightforward transform to the two last eigenvalues A; and A4 of relations
(1) and we derive that: '

(I'VT) l I 1
)‘3=(A+B)=_2ET [ 520 ]*E[ I cos2o }

' 1 e 1 1- V __1._
A= (A4B)= 2E ) ZET Cos2w
where A, B, A’, B” are functions of the moduli and Poisson’s ratios.
Relations (36) may replace the expressions fot the two last eigenvalues A3 and A4 given
by Egs. (1). These relations, expressed in terms of tangent of the eigenangle w, take the form:
1-v.

e | e e
37 (tan’w) | Er Ep

1-v,
1 1 )
A= —- tan“w

4 (1-tan’w) |E T }

tan (Y]

(37

Figure 3 presents the variation of tan’w="f(w) and (1-tan’w)’'=f(w) for w’e [90°,
180°]. It is clear from this plotting that both eigenvalues A; and A4 become indeterminate
for »°=135°. Then, relation (4), expressing the tangent of the 2w-angle becomes negative
infinite for w=135° suggesting that, for this value of the eigenangle, the denominator of

relation (4) becomes equal to zero. Then, it is valid that:

(1-v. )E—L 1
T ET“ =10 (38)

and therefore relations (37) for this angle become:

1
A=M, = E; 39)
Then, in the interval of variation of the w-eigenangle, w°e [125.26°, 135°], the com-
pliance, stiffness and failure tensors degenarate to simple quasi-isotropic forms, varying
between the bounds:

TEUNE g Wiy N e Uy e S
for 0=125.26°: % = 36 M= 3G M 2G’)‘4 3 it
and " X . { , : ] ;
orw=135° : A= A== A== A==
2GT 26, SE VYR, (41)
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Fig. 3. The variation of the quantities tan’ew and (1-tan’w)" versus the eigenangle for the interval
we[90°, 180°].

In-between this interval of w (w e[125.26°, 135°]), as well as outside this interval and
in the zones of variation of the w-eigenangle, where relation (12) for the quasi-isotropic

materials is valid, these bounds become:

(42)

In a previous publication of the author [19] the Beltrami-Haigh ellipsoid of stresses
and deformations for the isotropic materials [26], [27], valid only for isotropic materials,
was extended to cover the whole range of transversely isotropic composites and other
substances. It was shown that for the isotropic case the Beltrami ellipsoid is an ellipsoid of
revolution, whose principal semi-axes have the lengths:
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- k=—L— and m=—-1—- (43)

where K and G are the bulk modulus and the shear modulus of the isotropic material.
Thus, this ellipsoid i an ellipsoid of revolution, whose long axis is coinciding with /, lies on
the hydrostatic axis of the material and the transverse principal plane (k, m) coincides with
the deviatoric -plane. Since k=m, this intersection is a circle.

It was shown in [19] that for the general transversely isotropic material the ellipsoid
of revolution for the isotropic materials becomes the Beltrami-Theocaris generalized

ellipsoid, whose principal axes have the lengths:

L I e S
‘/)‘_4 k‘/T‘ an m‘/_)\_3 (44)

Thus, for the quasi-isotropic materials the lengths of the principal axes of the

respective ellipsoids take the forms:

E
e | o = B
= L k=26, , m=[2G, 45)

It is also shown that the ellipsoids for transversely isotropic materials cease to be
ellipsoids of revolution and they present a slenderness, expressed by [19]:

by
ik (46)

w

The slenderness, s, for the transversely isotropic materials having an w-angle lying in
the interval w €[90°, 125.26°], is horizontal, that is these ellipsoids seem to be compressed
along the vertical o3-principal stress axis. Beyond this zone and inside the interval e
€[125.26°, 180°] the slenderness of the ellipsoids is increased, as the w-eigenangle tends to
its extreme limits, either w=90" or &=180°. It is of interest to remark that, for the particu-
lar value of w=135°, the ellipsoid of principal stresses or strains becomes again an el-
lipsoid of revolution, but with its longitudinal axis of symmetry along the o;-principal
direction, normal to the principal diagonal 538;,-plane. This is because for this particular
value of the w-angle it is valid that A;=X\, (see relation (41)).

Furthermore, while the Beltrami ellipsoid for the isotropic materials has as principal
axes, the hydrostatic axis coinciding with 6,-principal direction and the deviatoric plane for

the (a1, 03)-plane, all the other ellipsoids for the transversely isotropic materials have their
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principal axes rotating about the origin with the o,-principal direction subtending an angle
(e-/2) with the (o4, o,) transverse isotropic plane, the o;-direction always normal to the
principal diagonal plane (o3, 8,,) and the o3-principal direction subtending again an angle
(-7/2) with the o3-principal stress direction.

Thus, for the strong fiber-axis composites the Beltrami-Theocaris ellipsoids become
almost vertical, since for these materials, angle & tends to 180°. As the composites dispose
stronger matrices and therefore the angle «w diminishes, the B-T ellipsoid rotates about the
o1-principal axis tending to the angle w=35.26° for the isotropic materials and the
respective ellipsoids tend to become ellipsoids of revolution, approaching the isotropic
Beltrami ellipsoid.

For the interval of w €[90°, 125.26°] the Beltrami-Theocaris ellipsoids for the
transversely isotropic materials start to become horizontally flattened and their longitudinal
a,-axis rotates about the ay-principal direction, subtending an angle varying in the interval
[35.26°, 0°] as the angle w tends to w—90°. As an example, Fig. 4 presents a series of
typical Beltrami-Theocaris ellipsoids (a) for a Thornel 75S graphite epoxy composite, for
which w=178.57" [2], (b) for a Borsic 1100/Aluminum composite with w=134.92°, (c) for
an isotropic material ice-I at -16°C, (d) for a glass-epoxy woven fabric composite with
w=114.96° and finally (e) for a compression annealed pyrolite graphite material with
®=90.84°. It is of interest to remark the relative positions of these ellipsoids, as well as their
principal dimensions [14].

§=1768
&= 205

8o

(Thornel 75S
Gr/Epaxy Compasilel

©°=178,57°

(glass epoxy q
woven fabric 1 L :1‘2:7
composite) =
tv, =050) 8,608
Sy A%
[
q =560 (Compression
&, =472 annealed
(3 4 =245 pyrolylic grophitel
©°=125.27° ©°=90.84"

() ©°=125.26° () (e)

Fig. 4. The normalized to total strain energy 2T, B-T strain-energy ellipsoids for five different transver-
sely isotropic materials with respective eigenangles «w® varying between w=90° and «w=180°.
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7. CONCLUSIONS

The spectral decomposition of the fourth-rank tensors of elastic stiffness, compliance
and failure of transversely isotropic materials gave the possibility of decomposing in an
energy orthogonal mode the stress and the strain tensors in this important category of
materials, encompassing almost the totality of engineering materials of the praxis. Then,
the spectral decomposition of these tensors allowed the extension of the advantageous
properties of linearity and coincidence of the components of principal stresses and strains
at a privileged Cartesian frame, beyond their purely elastic domain, to a broader area of
the transversely isotropic materials.

This spectral decomposition of the abovementioned tensors gave six eigenvalues A;
(i=1+4), with the two first double, which allowed the splitting of the strain energy into four
components, the two firsts of which representing a distortional type of elastic strain energy,
whereas the two last eigenvalues gave stress —and strain— states consisting of a su-
perposition of a equilateral stress or strain in the transverse isotropic plane, superimposed
with either a tensile, or a compressive stress along the strong axis of symmetry of the
material. In this way the strain-energy function may be splitted into four components in the
general transversely isotropic or orthotropic material, none of which is expressing exclusi-
vely a dilatational type of strain energy. This decomposition of the strain energy presented
in detail in previous papers [19], [1].

Of interest here was the study of the influence of the fifth characteristic quantity,
describing these tensors, that is the eigenangle , which is a dimensionless quantity which
characterizes monoparametrically the degree of anisotropy of the orthotropic materials.
An extensive study of the variation of this parameter was undertaken in this paper, in
order to establish the type and extent of anisotropy in the different engineering materials,
relatively to the position of their w-eigenangle along the interval € w [0°, 180°].

It was shown that, depending on the values of this angle, the bounds of both
Poisson’s ratios, the longitudinal, v; , and the transverse, v, were established and the
variation of the properties of the transversely isotropic materials was derived. Thus, four
distinct intervals in the zone of variation of the tan2«w were distinguished. The first interval
for w € [0°, 90°] should contain all composites and anisotropic materials, which manifest
a negative longitudinal Poisson’s ratio. These materials belong to a great part to foamy
materials and especially those with open-cell structures, which present a high porosity.

The second interval is delineated by the zone w € [90°, 125.26°], where all the weak
axis of symmetry composites, like the woven-fabric composites, are contained. In the same
zone foamy materials with closed-cell structures are included, as well as a great number of

inorganic crystals and different types of papers.
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For the limiting values of angle w equal to w=125.26°, as well as «w=35.26" (for the
first interval), the materials become isotropic. It was also shown that as the angle
changed from 90° to 125.26°, the anisotropy of the materials was reduced and in both
sides of the neighbourhood of the isotropic angle «;=125.26° the anisotropic materials
tend to a quasi-isotropy presenting the remarkable fact to acquire the property, valid only
for the isotropic substances, to split their strain energy into dilatational and distortional
components, like the isotropic ones.

The third interval is in the zone w € [125.26°, 135°], which is characterized by
almost complete isotropy. Finally, in the fourth interval of w € [135°, 180°] lie all strong-
axis composites and fiber reinforced materials, with those of a strong matrix concentrating
closer to the w;-angle. As the anisotropy of the material increased the angle e, is receding,
approaching the limiting value of w=180°, where all the weak-matrix, strong-fiber
composites are placed.

As a further confirmation of the variation of the anisotropy of the materials with the
change of angle w, the modified Beltrami-Theocaris ellipsoids of elastic strains or stresses
were plotted for five different characteristic materials along the intervals studied and the
form and orientation of these ellipsoids were established [19].

ACKNOWLEDGMENTS

The research programme presented in this paper was supported by the National
Academy of Athens Fund under the code No. 200/294. The author acknowledges this
generous support. He is also indebted to his secretary Mrs. Anna Zografaki for helping
him in typing the manuscript and plotting the figures of the paper.



280 TIPAKTIKA THE AKAAHMIAY AGHNQN

REFERENCES

1 Theocaris, P. S. and Philippides, T. P., “Spectral Decomposition of compliance and
stiffness fourth-rank Tensors suitable for orthotropic materials”, Zeitsch. angew.
Math. & Mech., 71(3), 161-171 (1991).

2. Theocaris, P. S. and Philippides, T. P., “Variational bounds on the eigenvalue w of
tranversely isotropic materials”, Acta Mechanica, 85(1), 13-26, (1990).

3. Walpole, L. J., “Fourth-rank tensors of the thirty-two crystal classes: Multiplication
tables”, Proced. Roy. Soc. London, A391, 149-179 (1984).

4. Rychlewski, J., “On the Hooke’s law”, Prikl. Matem. i Mekh., 48(3), 303-314 (1984).

5. Rychlewski, J., “Elastic Energy decompositions and limit criteria”, Advances in
Mechanics (Uspechi Mekhanikii), 10(3), 83-102 (1987).

6. Thomson, W., “Elements of a mathematical theory of elasticity”, Phil. Trans. Royal
Soc., A155, 481-498 (1856).

7. Theocaris, P. S., “The Compliance fourth-rank tensor for the transtropic material and
its spectral decomposition”, Proc. National Academy of Athens, 64(1), 80-100 (1989).

8. Theocaris, P. S., “The decomposition of the strain-energy density of a single-ply lamina-
te to orthonormal components”, Jnl. Reinf. Plast. and Comp., 8(6), 565-583 (1989).

9. Theocaris, P. S., Stavroulakis, G. E., and Panagiotopoulos P. D., “Negative Poisson’s
Ratios in Composites with Star-shaped inclusions: A Numerical Homogenization

Approach”, Archive Applied Mechanics, in print (1997).

10. Theocaris, P. S., “The Elliptic Paraboloid Failure Surface for 2D-Transtropic Plates
(Fiber Laminates), Engng. Fracture Mech., 33(3), 185-203 (1989).

11. Theocaris, P. S., “Failure Criteria for Anisotropic Bodies” Handbook of Fatigue Crack
Propagation in Metallic Structures, A. Carpinteri Editor, Elsevier, Amsterdam, Publ., 1,
3-45 (1994).

12. Theocaris, P. S., “Failure Modes of Closed Cell Polyurethane Foams”, Intern. Jnl. of
Fracture, 56(4), 353-375 (1992).

13. Theocaris, P. S., “Failure Behaviour of Paper Sheets”, Jnl. of Reinforced Plastics and
Composites, 8(6), 601-626 (1989).




ZYNEAPIA THE 7 NOEMBPIOY 1996 281

14. Theocaris, P. S. “On a Family of Quasi-Isotropic Fiber-Reinforced Composites”,
Acta Mechanica, 96(2), 163-180, (1993).

15. Theocaris, P. S. and Philippides T. P., “Stress Distribution in Orthotropic Plates with
Coupled Elastic Properties”, Acta Mechanica,. 80(2), 95-111 (1989).

16. Zweben, C. & Norman, J. C., “Kevlar 49/Thormed 300 Hybrid Fabric Composites for
Aerospace Applications, Soc. Amer. Plast. Engs., Quarterly No 2, 1-8, (1976).

17. Ishikawa, T. & Chou, T. W., “Non-Linear Behaviour of Woven Fabric Composites”,
Jnl. Composite Materials, 18, 399-413 (1983).

18. Theocaris P. S., “Failure Criteria for Weak-Axis Quasi-Isotropic Woven-Fabric
Composites”, Acta Mechanica, 95(1), 69-86 (1992).

19. Theocaris P. S., “The Extension of Beltrami’s Ellipsoid to Anisotropic Materials”
*  Archive of Applied Mechanics, 65(2), 86-98 (1995).

20. Lekhnitskii S. G., “Anisotropic Plates”, Gordon & Breach, (1968).

21. Evans K. E., Nkansah M. A. Hutchinson 1. J. & Rogers S. G. “Molecular Network
Design”, Nature, 353, 124, (1991).

22. Theocaris P. S., “Failure Modes of Woven Fabric Composites Loaded in the
Transverse Isotropic Plane”, Acta Mechanica, 103(1-4), 157-175 (1994).

23. Milton G. W., “On Characterizing the Set of possible Effective Tensors of composites:
The Variational Method and the Translation Method”, Comm. Pure and Appl. Math.,
43, 63-125, (1990).

24. Theocaris P. S., “The Elliptic Paraboloid Failure Criterion for Cellular Solids and
Brittle Foams”, Acta Mechanica, 89(2), 93-121, (1991).

25. Theocaris P. S., “Failure Criteria for TranstropicPressure Dependent Materials:
The Fiber Composites”, Rheologica Acta, 27(5), 451-465 (1988).

26. Beltrami E., “Sulle Conditioni di resistenza dei corpi elastici. Opere Matematiche IV
(1920) (see also Rendiconti del R. Institutto Lombardo di Scienze Lettere e Arti, 18,
704-714 (1885).

27. Haigh R. P., “The Strain Energy Function and the Elastic Limit”, Engeneering CX,
158-160 (1920).



282 ITPAKTIKA THE AKAAHMIAYX AOGHNQN

Al idrotTeg Tijg idLoywviag o Tod TavvoTod dotoyiog Tijg
AVIG0TEOTOV VANS X0l 1] GVOTHHATIXY) ®aTdTaEls TG

Ot tovuotal évddeews (S), duoxaudiag (C) xod &otoxiog (H) tdv éyxapsing
lootpémev HAxdv, dmosuvtiBépevol paouatixdg, didouv EE Blotudg 7 idotavuotés,
€€ Qv Bbo elvan dimhol, weyéln t& bmota émitpémovy tov xafoptopdv tév ElaoTixdv
Broxatactdoewy poptisews TéV dvisotpdmwy HAx®Y xal xatd cuvémetav Ttov xabopt-
opdv @V Bacxédv xal aTouyewwddv dpwv dlaxwpiopod Tig EAaotixiig évepyelag Tob
xaromovoupévoy owdpartog [1]. "Exer dmodeiydi 8 ol dvoryxoton mapdpetpot i v
&vaddolwTov TEPLYPUPNY THG ENaoTIXTIC SLUTEPLPOPES TRV Eyxapaiwg isoTpémwy
OAixév Exppdlovtat S T&V Teaodpwy TudY THY {dlotavuetdv elg Tobg bmoloug dva-
AMeton 6 Exdatote Tavuotiig dotoylag @V UAx@Y, dedopévov dtt al dbo mpdTon idrott-
pat to0 tovuotod elvar Sumhal [2]. Al téooapeg adtal Tipal t@v idlotavusTddv
supmAnpolvTaL Ud T (dtoywving w, 1) omolx dmotelel &didotatov TapdeTPOV TIRO-
xUmTovoay &mo TV paspatixiy drosbvleaty Tob TavuoTod.

"Ev tobrolg, meploptapol elg tv mapapetpixiy Exppasty tob peyébous tig dloye-
viog, émBadldpevor éx Beppoduvauixdv cuvbnxdv, xabopilovy t& dpta uetafoltic tig
Broywviog w. Txomde 100 dpbpov tobtov elvon 7 Eétacig g Emdpdoewg T@dY EmBal-
Aopéveov mepropoudy é@’ GAoxAripov t00 pdopatog petaorfig Tiig Wdoywviog w, éml
T00 Timov, T MopeTig xal T&V BoTTwy TAV dvtioTolywy dvicotpdnwy cwpdtwy Xl
6 xaBoptopde xal N mepypapn T@V Oplwv, éx tév EmBallopévev el g TYXS THG
Broywviog w, Ent tév Blotrtwy 1év dvicotpdmwy DA,

"Anodewxvieton mepontépw elg o HpBpov adtd Gt dpxel 7 povadixny adth mopde-
Tpog THg IBtoywving vi yapaxtnplon moloTixdg, téoov T EhaaTixdg idénTag, xabiog
gniong xal wv dvBextixétnta &V Eyxapaiwg lootpdmwy HAX@Y.

Aedopévou 8t 1 pacpatixy dmostvlesic Tob TavuaTol dmotekel Thy dmAousTtépay
moppiy &vakboews ToD cupUeTpXOD TovwoeTob Tetdptng TéEewg, 7 6molx dmiTuyydvel
va &varhdn Tobg Tovuotdg TEV ThoEWY Xod THV TUPUUOPPWTEWY ElG GUYYPUUMXY &vl-
opata, dvd %0 x&feta &n’ dAMAAwv, 7 &vddvolg adth Tapéxer Taxd xal SpaoTixov
wéaov Optopol @Y Bpwv dvakboews g eldixdic évepyelog mapapoppdsewy. Totouto-
TpoTOG, T& Xwerlbpueva wépn T Evepyelog adtiic ddvavtan v xabopisouv Tode dpouc
dvakboews g vepyeiag xod vix bploouwy EmaxpiBie Thy woppiy T@v Témwv dotoylog

@V dvicotpdmwy HAxEV.



