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oYsIKH.— The focusing error in the X-Ray Johann Spectrometer,
by C. N. Koumelis and C. J. Sparks, Jr.*, Sue 7ol ’Axadnuaixod x.
Kaioagog > Alekomodov.

ABSTRACT

The focusing error in the Johann X-ray spectrometer is calculated step by step
for an ideal crystal completely opaque to the radiation. Parameters are given which per-
mit choices to be made between source size and energy resolution.

INTRODUCTION

The achievement of an intense a monochromatic X-ray beam as pos-
sible has been of interest since the earliest days of the X-ray spectroscopy®.
The simplest method of selecting a wavelenght is to use a flat single crystal
as a monochromator. With flat crystals an incident but divergent X-ray
beam remains divergent after diffraction so that the radiation diverging
from a point source is dispersed in space, and the energy must be selected
by fine slits reducing the intensity collected by a counter. In spite of this
great disadvantage, flat crystal monochromators are still used in various
spectrometers2. Many devices have been proposed to maximize the intensi-
ty in a diffracted beam. The most common are those using a bent single
crystal in both the transmission® and reflection* geometry. In the reflection
geometry of a Johann spectrometer, the focusing properties of a cylindri-
cally curved crystal are not perfect. A bent crystal spectrometer which gi-

* X, N. KOYMEAH KAI c. J. SPARKS Jr, TO o@dApa éotidoews el T acparo-
oxémiov Johann éxrtivwy Roentgen.
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ves perfect focusing for the case of strictly monochromatic radiation from
a point source is the so-called Johhanson spectrometer®™®: A single crystal
bent to a radius 2-R and then its face ground to a radius R. In both Johann
and Johhanson spectrometer, the reflecting crystal planes may or may not
be parallel to the crystal face. Other types, are described for a perfect fo-
cusing™®. Because of the great difficulty in bending and grinding a crystal,
the singly bent crystal spectrometer (Johann) is still widely used for its si-
mplicity. The main reason of the focusing error (broadening of the lines) in
a spectrometer are generally the following:

1.-The natural width of the X-ray line.

2.-The X-ray source dimensions

3.-The mosaic spread of the crystal

4.-The depth of the penetrating radiation

Ignoring the two last cases, we will calculate step by step the focusing
error in the Johann X-ray spectrometer for an ideal crystal completely o-
paque to the radiation.

I. POINT SOURCE - STRICTLY MONOCHROMATIC RADIATION

In all the following cases, we accept that the reflecting crystal
planes intercept the entire X-ray beam and are parallel to the crystal face.
When a crystal is bent to a radius 2-R to form a cylindrical surface, the cry-
stal planes are also bent to the same radius 2:R (Fig. 1). If the crystal is
completely opaque to radiation, its surface is shown by a thin circular line
in coincidence with the reflecting plane (hkl). We will analyze only the er-
rors in the equator rays as they are the ones of interest. For a wavelenght
A of a strictly monochromatic radiation, the proper angle 6 for reflection from
the crystal is defined by Bragg’s law:

2-d-sinf=2x (1)
where d is the spacing of the crystal planes (hkl).

For a given source-crystal distance SC, a circle (focusing circle)
passing through the points S and C is completely defined, or for a given ra-



SYNEAPIA THS 13 NOEMBPIOY 1986 317

“Left, ray Central ra
4 Y i

: &
4

“Rull;t.. ray

-

Fig. 1. The geometry for a divergent X-ray beam incident
on a cylindrically bent crystal.

dius R of the focusing circle, the distance (SC) is completely defined by the
relation

(SC)=2-R-sin6 (2)

A point source S of divergent radiation exists on the focusing circle
in a position for Bragg reflection of the ray SC (central ray). We exa-



318 IMPAKTIKA THX AKAAHMIAY A@HNQN

mine the behavior for the «Lefty and «Right» rays on the crystal. Figure 1
shows that «Left» and «Right» rays which form angles « and B, respectively,
with the central ray SC intersect the crystal surface with angles 6 +o—cw
and 0—B4¢, respectively.

Comparison of the angles 0 +-a—w and 0—f +¢ with the Bragg angle 0

The angles w and o are defined as:

2N 2N 25N
__arcCM - 1 arcCM+ arc C,M,

IR 5 IR (3)

The relation (HJ)<<(HS) implies that:

(MM,)>(CC,) , are M/C:M1>arc (,‘.,I\TC1 , are 6:M1 > arcCM
And from Eq. (3):

~ o~
" _1~ ) arcCM + arcCM -
>3 2R

and consequently 6+4o—w>0. If the radiation is strictly monochromatic,
this condition imples that «Lefty rays are not reflected by the crystal. The
angles ¢ and B are defined as:

_are CN _ 1 are CN + arc é?‘ll
*=3r P2 T 3R %)

The relation (HW)<(HS) implies that:
(NN)>(CC,)  areNCN,> arcCN,C, arc CN>arcCN,

And from Eq. (4):

~ —~
1 _are CN + arc CN
2 2:R

B< or B<e

and consequently 6—B- ¢>0. That means, «Right» rays are not reflected
from the crystal. Therefore, in the ideal case of strictly monochromatic ra-
diation from a point source, no broadening occurs.
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II. POINT SOURCE - LINE HAVING A NATURAL FWHM 2-AErwuxm

Only a divergent beam exists. A «Left» ray reflects from the crystal
at the wavelength 2, difined by the equation:

2:d-8in(0 4+ a—w) =12,

In as much as 0+ x—w>0, then A\, >A, where A is the wavelength corres-
ponding to the angle 6 (Fig. 1). We can write:

2:d-sin’ (0 4 o—w)=A4-Ar_ (Ax, >0) ()

Similarly, a «Right» ray reflects from the crystal at wavelenght Ar defined
by the equation:

2-d-sin(6—B + @)=Ar
In as much as 6—B+4 ¢>0, then Ar>A, so we write:

2-d-sin(6—B + ¢)=A-+ AAr (AAR>0) 6)

Therefore, only the right half of the curve of Fig. 2 permits reflections
both for «Lefty and «Right» rays. For a line having a given full width at half
maximum (FWHM), the angles «, B, o, and ¢ have values limited by this
width, thus the divergent beam accepted by the crystal has one limit for the
«Leftr and one limit for the «Right» ray. The positions of these limit rays
are dependent on the A, .. and Arg ... For most characteristic lineg

(Fig. 2):

Aleax = AlRmax:’ 3'A7\FWHM=A7\max

We put for convenience Afpax=A0, Alpax=AA, AEpx=AE*

A\ AE
*It can be shown that T <
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Intensity

Fig. 2. X-ray line having a natural FWHM of 2 AEFwHM.

Equations (1), (5), and (6) give for the limit «Left» and «Right» rays:

sin(0 + a—o) = (1 + é}\—;\) - sinf (7)

and sin (0 — B+ ¢)=(1+AT*) ey 8)

From Fig. 1 we have:

T

(HJ)=(HS)-cose, (HS)=(0C).sin [ 5

——6]=2-R-cosﬂ
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(HJ)=2R-cosd-cose, (HJ) = (HM)- sm[ — (f+a—o )]:2.R.cos (6+-a—a)

2
¢08(04-o0—w) =cosb-cosa 9)
Equations (7) and (9) imply:
cOS® —Vi —_— Al] - tan20 (10)

Similarly, from Fig. 1:

(HW)=(HS)-cosp=2-R-cosb-cosp

(HW) = (HN): sin [ 5~ —(6—B-+¢) | = 2 R-cos(0—g-+7)
cos (0—B-+¢) = cosd-cosp (11)

Equations (8) and (11) imply:

cosp= ]/1_~ : 2+—A)\—7—‘]-tan20 (12)

For the same é}\l Egs. (7), (8), (10), and (12) give:

«=p (Rays symmetrical to the central ray) and o +¢=2« (13)

For 6 very large, it is possible that:
1~— [2+ ] . tan0< 0

In this case, the AX is smaller than 3-AApwaw, i.e., a small part of the right
half of the curve of Fig. 2 permits reflections. In as much as the ratio Ax/x
for characteristic X — rays remains between 0.00037 and 0.0016°, the last

condition is valid for 6>86.8°
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322
Path of the «Leftr and «Righty Rays after Reflection

We examine the intersection of the «Lefty and «Right» rays with the

focusing circle (Fig. 3). It is easy to show that:
(14)

~ ~~ 2 —~
arcBD < arcDE arcZG < arcGlI.

From Fig. 3 we have:
ré

f+a

Fig. 3. Intersections of the incided beam rays with the focusing circle
after reflection on the crystal.

_ﬁ__*_ (_g__.e)_!_y_ or that p‘=2-m-——-oc and

T— (04 o —2w)= 9
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___2_(0__u=2_arc(’JB o qrcail o acm-@ — arc@
g 2:-R 2R 2R

~

V== 7 i
__arcCB -+ are(BD — DE)
il ) 2R -

And according to the first of Eq. (14):

arc CB
2-R

This relation implies that the intersection of the rays CI' and MM, do not
lie on the focusing circle, i.e., the intersection M, of the ray CM, with the
focusing circle lies «under» the point F, so that the ray SM causes after re-

flection the broadening arcl\EF, focusing error. Also, we have from Fig. 4:
0—B4+2¢=0-+v or v=2¢— And:

— 9. —9 .arc@ arca i acm-éa———arc,é\Z
V=B gl S Sl R

arcéz + acmEr -+ arci-é
o 2R

And according to the second relationship of Eq. (14):

arc CI
2'R

The last equation implies that the intersection of the rays CF and NN, lies

off the focusing circle so that the ray SN after reflection causes the broade-
22N

ning denoted by arcN,F.

v

Calculation of the Broadening from a «Left» Ray

To calculate the angle 3, we use the relationships from Fig. 4:

(HL) = (HM) - sin [% — 0+ « ~—m)] — 2Recos(0 + « — @)

= 2°R-cosb - cosa
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\ |“
\\:—; ~(0-5+ 20} |
2RY, 75
\

Fig. 4. Path of the rays of a divergent beam before and
after reflection on the crystal.

(HL) 2R cosh - cosa

(HQ) = cos(0+a—2'w)  cos(d+ a—2'w)

(KQ) = (HQ) — (HK) = | c(j('e“jfea' e 1R

(KP) = (KQ)*cos(0 + & — 2 ) =[2" cos0 " cosa — cos(0 + « —2'w)]'R

(KP) = R-cos§ and cos8 = 2" cos0°cosax — cos(6 + o — 2" ) (15)

Equations (9) and (15) define the angle & for given angles 6 and «.

From Fig. 4 we conclude that:

arcl\i:C-J;- arcCB = 2-R ; arcﬁ:C —arcCB = 2:(0 +a—2'0)R
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SN
and arcM\C=(04+a+38—2w) R
£ .
The broadening arcM,F is:
~ —~ ~
arcM,F = arcM,C —arcFC= (0+a+8—2-w)*R—2-6-R

.
arcM,F

Angular broadening from (16)

=at+d—0—2'® the «Left» ray SM

And finally
where «, , and § are defined by Eqgs. (9), (10), and (15) respectively.

Calculation of the Broadening from a «Righty Ray

To calculate the angle €, we derive from Fig. 4 that:

(HT) = (HN) ‘sin |5~ —(0— B +¢)] = 2" R cos(6—3 + )
=2 R cosb - cosp

(HU) = (HK) * sin [%—(9—ﬁ+2‘(9)}= R cos(0—B+2-9)

(KV) = (UT) =[2 * cosb * cosp — cos(0 — B+ 2.¢)]* R, (KV) = R " cose
cose = 2 * cos0 * cosf —cos(0 — B+ 2" ¢) 17)

For e=0 (NN, tangent to the focusing circle), Eq. (17) gives:
2 cosh - cosp—cos (0—B+2"¢)=1

: : 2 y Geom
This equation defines the geometrical g~ If B>B -,

the reflected ray NN, does not touch the focusing circle.
The broadening arcff‘ll is:
Py o N
arcFN, = arcFN,C — areN\C=2-0 ' R— (0 —B+2-¢+¢) R

A .
arcFIN,; Angular broadening from (18)

And =04+p—2 ¢o—c¢ the «Right» ray SN

where @, ¢, and ¢ are defined by Eqs. (12). (11), and (17) respectively.
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Total Broadening from «Lefty and «Right» Rays

The total broadening is (Fig. 4):
7~ ~ -
arcM;N; = arcM,F -+ arcFN,

arcMAN Total angular broadening from
S "R“—l L= a4 BA3—2—2"(w-9) «Left» and «Right» rays

For a=f when o+ ¢=2a:

arcM:l-\I\1 Total angular broadening from «Left»

= i =0—ec—2"'« and «Right» rays when a«=@ (19)

Perceptive Broadening

The counter of the spectrometer is rotated about an axis perpendicular
to the equator at point C on the focusing circle; therefore, it is very use-
ful to know the angle n (Fig. 4) which defines the perceptive total
broadening:

—~ ~ —~ ~ ~ ~
__arcBCI —arcN;M;  arcBCM, — arcIN, — arcN;M, — arcN,M,
- 2'R ey 2°R

Or n=2"(o+¢)— («tB)

For a=B when w+4+¢=2'a wehave =9n=2-«

ITIl. SOURCE HAVING A GIVEN LENGTH ALONG THE FOCUSING
CIRCLE - STRICTLY MONOCHROMATIC RADIATION

From such a source, divergent, convergent, and parallel beams exist.
Only divergent beam rays have the possibility of making the proper Bragg
angle 6 with the crystal.

If the source S with a length of acm.S,\S1 along the focusing circle is
in a reflection position for the ray SC [wavelenght A, Fig. (5)], then:

(HS) = (HF) = (HC) * sin [%-e]: 2 R - cosd
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Caustic circle for
the energy E

Fig. 5. Broadening from «Left» and «Right» rays from an extended source.

The points S and F lay on a circle having center H and radius (HS) which
defines the caustic circle* Every other ray S,W tangent to the cau-
stic circle intersects the crystal surface with the angle 6 as is evident from
Fig. 5. The supplement of this angle is = /2—0, and this is possible only for

*If the crystal planes are not parallel to the crytal face, there are two different
caustic circles, one for the incident and one for the differacted ray: Both have their cen-
ters at H.
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divergent beam rays starting from the arc§§1 of the source, i.e., the arcS’\S2
does not take place in the reflection. The angular length of this effe ctive
part of the source is defined as:

arc §-S\1 (20)
2

AN . "
where arcSS, is given.

Broedening from a «Lefty Ray

The max broadening is caused by the ray S,M starting from the end S,
of the source (Fig. 5). We have:

areSH — arcAF = 2- [% - e]- R=(r—2'0)" R
areS,SH—arcDB=2- (5 —6) R=(n—26) R

so that arcDE = arcS’,‘S\1
7~ —~ ~ ~
Also arcHFM, —arcBD=(r—20) R  so that arcFM,=arcBD

U

and (HJ) = (HS,) " cos(wt+y)=2"R - sin[ 4

041 ] *cos (o+y)

(HJ)=(HS,) - cos(w+y)=2"R*cos (6—r) " cos(w -+ 7y)

(HJ)=(HM) - sin [-"- P e] =2-R " cosh
2
os0
cos(ety)=—rom ) (21)
which defines the angle .
Also (HQ) . (HL) - 2R " cosb

“cos(0—w)  cos(6—w

2+ cosb .
cos(6—w)

(KQ) =(HQ) — (HK) = [
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(KP)=(KQ)cos(0—w) = [2" cos0 —cos(0—w)]*R,  (KP)=R"cosd

c088=2"cos0 (0—w) (22)

which defines the angle .
. 7~ 7~ -~
For the broadening of arcFM, we have that  areM,C 4 arcCB=2'3'R

arcl\E:C — arcCB=2" (0—w) R and archl\C= (64+8—w) 'R

Also au-cF"-lt’I1 = arcf‘\C]—— arcl\7I:C=2'6'R—_(6+8-—m)'R
i Angular b f
: ) arciM, ngular broadening from
And finally: - 0+w—> the «Lefts ray S,M (23)

where » and 3 are defined by Egs. (21) and (22).

Broadening from a «Righty Ray

We examine generally the broadening arcﬁVl caused by a «Right»
ray starting from a point S, of the source (Fig. 5).

~~ ~ p— ~

It is easy to show that  arcSS,=arcZG , arcFN, = arcGIl
For the case shown in Fig. 5 the broadening arcF’:N1 of the «Right»
ray S;N includes the broadening arcﬁ’[l from the limit «Lefty ray S,C.

Thus the broadening arcf‘.ﬁl isalso the total broadening. In every
case both broadenings from «Left» and «Right» rays are «above» the point F.

arc §S,
= 2R

From Fig. b we have that
(HW) = (HN) - sin[—’;—_e ] =2'R-cosh ,  (HW)=(HS,)" cos(p—y,)
* (HS,) = (HC) * sin [—; —047, |= 2" R cos(6—,)

s0
(HW)=2" R cos(6—y,) * cos(¢—y,) , cosw_maﬁ_ﬁ; (24)

*In Fig. 5 the line CS; is not plotted.
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which defines the angle ¢. Also:

(HT) = (HN) - sin [%_e] =2'R-cosh , (HU)=(HK)" cos(6+o)

= R-cos (0+9)

(KV)=(UT)=(HT)—(HU)=[2" cosO—cos(0+¢)]" R
(KV)=(KN,) - cose=R" cose
cose=2" cosf—cos (0+9) (25)

which defines the angle . For the broadening arcl’ﬁ\l1 we have that:

arclﬁ\l1 |- arcﬁ:I +are fé —I—arcéa=2 0-R

or arcFN, +2-¢' R +arcFN,+2-9-R=20R
Al gl arc@l - Angular broadening from the
el 4 R~ V2%  (Right ray S,;N (Total) (26)

Mazimum Total Broadening

The broadening becomes a maximum when the ray NN, is tangent to
the focusing circle; then =0, and Eq. (25) gives for the angle o:

2 cosf—cos (0-+o =1 (27)
max

Maximum total (28)

arc FN,
so that [—Rﬁ] == e—?max angular broadening

From Egs. (27) and (28) it is evident that for Case III, the maximum to-
tal angular broadening in a Johann spectrometer depends only on the Bragg
angle 0%*.

*The Pmax corresponding to the maximum permissible broadening does not mean

that it is maximum itself.
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Adequate Lenght of the Source for Maximum Broadening

We calculate the angle ¢ using the geometry shown in Fig. 6.

'
A\

:

--__CD-____
JES

~
~

.
Fig. 6. Geometry for the calculation of the angular acceptance Phopan = alz‘?ls;{ss

of the source for maximum broadening.

- (HW) _ 2'Recosb
cos(0—e ) cos(0 -—qamax)

(HA)

2:cosh

(KA) = (HA) — (HK) = [y
max

_1]-3
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(KY)=(KA) - cos(ﬁ——cpmax)=[2'coseh—cose *cpmax) ‘R, (KY)=(KS;)-cos{
cos{=2-cosb—cos(0—gp ) (29)
which defines the angle { when e=0.
£ P ey £
Also arcS;C+ arc CZ = 2-¢'R, or arcCZ+—arcSS; = 2:({—0).R

And arcﬁ 1+ arcl\I’l\G—f—arc(/‘:Z—}-arcia=2'6' R

AN o= 7
Or 2-arcFN,;+arcSS;+arcCZ=20'R
and arcﬁl+arc§§3=(2'6~—t)'f{
= Adequate angular lenght of
Finally vy, = areS;S B 0—% + @max the source for maximum total ~ (30)

2R T 2 broadening

The maximum-maximum of the total broadening can be calculated
by rewriting Eq. (28) using Eq. (27):

220\
[E;j%] max= 20 — arccos[2:cos0 —1]
d archl-\I\1 . i =
and a0 ['ﬁ‘] max @ [2:6—arccos(2.cos0—1)]
‘N 2+sinf
d [ arcFN =2 =
W[ 2R " ]max V 1—[2-cosf—1]2 8
e - P —é— 6 — 705200 — 1-2310rad,

q:max=38.942°=0.6797rad ,  £=100.672°=1.7574rad

The corresponding values of the maximum-maximum angular broadening,
angular lenght of the crystal, and angular lenght of the source are:

[arc’l?Nl] =05513rad , o =06797 rad v, =0.078 rad*,

R -max-max.

*The vy corresponds to the maximum-maximum broadening but this does
Imax-max

not mean that it is maximum itself.
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The above very large values are not practical. Generaly, in Case III we
need to first calculate from Eq. (30) the angle Yimax for the given 6 and com-
pare it with the given v of the source. If y)y, . * Eq. (28) gives the totai

broadening. If y(y, , Eq. (26) gives the total broadening by substituting

max

y for y,.

Perceptive Total Angular Broadening

The perceptive total angular broadening is (see Fig. 5):

arca — arcﬁ:F . arcéa + arcf‘z\l——arcN’TF - arcéa_
2R - 2R — 2R ¢

where ¢ is defined by Eq. (24).

Matching the Broadening from the «Right» Ray to that of the «Left» Ray

For a given angular lenght of the source, it is possible to have the con-
tribution to the total broadening arcF’ﬁ1 the same for both «Left» and «Rig-
ht» rays.

The matching of the broadening contribution from the «Lefty and «Ri-
ght» rays takes place when the «Right» ray NN, passes from the point M,
(Fig. 5). Then if the lenght of the right part of the crystal is reduced to the

arcCN, the condition for minimization is fulfilled. Further reduction in the
right part of the crystal «helow» arcCN does not reduce the broadening arcF’l(/I:
but results in a loss of intensity.

From Fig. 5 when NN, passes through the point M; (e=q_, )**,itis
concluded that:

*For 5°( 0( 80°, it is concluded that 2°102 rad ( ¥ { 77402 rad. For
Imax

this reason, the case +v;>>v;,,y is rather improbable

**@ .in Mmeans that it corresponds to the crystal lenght giving the minimum broadening
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B p— (31)

(pmin

The quantities § and  are independent of ¢ . but eis not:
cose =2.c080 —cos(0+e¢_, ) (32)

Equations (31) and (32) give:

0+w—3 cos0
“"3[' 2 +‘Pmm] = ros 0 —0
2

where § and  are defined by Eqs. (21) and (22).

IV. SOURCE HAVING A GIVEN LENGTH ALONG
THE FOCUSING CIRCLE - RADIATION HAVING A FWHM
2+ AErway (GENERAL CASE)

Parallel, covergent, and divergent beams exist. Each ray has an energy
spectrum for which the crystal will make the proper Bragg angle for a part
of the spectrum.

We suppose that the central ray SC (for which the Bragg angle is 0)

starts from point S of the source arcé?Sz, which is extended along the fo-
cusing circle. The angles y; and vy, (given) are defined by:

2 ~
areS;S arcSS,
1 = 73R and Ye= 2R

Parallel Beam

From the infinite systems of parallel beams we examine those beams
parallel to the central ray SC (Fig. 7). The ray S,C starting from the left
end S, of the source impacts rhe crystal under the angle 6 —o, so that the
left half of the cuvre of Fig. 2 permits reflections from «Left» rays parallel to
the central ray SC. The «Right» ray S,N parallel to the central ray SC impacts
the crystal under the angle 0 +¢, so that the righthalf of the curve of Fig.
2 permits reflections for «Right» rays.
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Broadening from a «Leftr Ray

For the broadening archl\E1 we have from Fig. 7 that:

Focusing
Circle

Caustic Circle corresponding
to the Bragg angle ¢

Fig. 7. Broadening from a beam parallel to the central ray SC.
(HL)=(HM)-sin [_;— —(6—a) ] =2R-cos (06— w)

(HL) 2:R:cos (6 —w)

BO=—a—a cos (9 —2'w)
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(KQ=(HQ—~HK)— [ 2250 0L 4] .5

(KP)=(KQ) cos(0—2'w)=[2'cos(0 —w) —cos(6 —2'w)]'R

(KP)=(KM,)-cos3=R-cosy,  cosd=2cos(d —w)—cos(0—2'w) (33)

Also arcHM, —arcBD = 2- [—’;—~ (6—0) | R=[r—2(6—a)I R
Or arcHF -4 arch\.’I; —arcBD= [r—2 (0 —w)].R
Or 2- [—;‘——e] ‘R4 arcFM,— areBD =[r—2-(0—a)]'R
So arcBD = arcFﬁ1~2-w'R, also achF/:K/I1 + arcM’:C =20'R
Or arcfi/[l +arcM:(-]\B—— areCB=20'R
Or arc F’ﬁl +arcM:aB — (arc(’]?) —arcBD )=20'R
Or aLr'cFi/I\1 +2:3R -2 R+ arch'I\\/I1 —2'0'R=26'R
N
arcFM, =042 D Angular broadening from (34)

And finally

R the «Left» ray S;M

But the angle  is defined twice: geometrically and from the A\ spread of
the X- ray beam. From Fig. 7 we have that:
7

(HS,) = (HC)'sin [T — 04y, ] =2'R-cos(0—y,)

(HJ)=(HS,).cosy,=2-R-cos(6—y,) cosy,
(HJ)=(HM)'sin [%~ (6 —) ]=2'R'cos(6—-m)

¢08(0—w)=cos(0—y,) cosy; (35)
which defines the angle w from the dimension vy, of the source. Also the Bragg
equation gives:

sin(0—ey, J=(1 — S‘%)-sme (36)

which gives another value wy, for the angle w,so that we have to first compare
the two values o and «;,. If w(wr, Eq. 34) gives the broadening where the
o and & are defined by Eqs. (35) and (33) respectively. If ) g, the «» and
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3 are defined by Egs. (36) and (33) respectively. In this case (w) ), equa-
tions (35) and (36) give that:

2
cos(e‘ﬂy‘L)' cosyy, =V 1 ——[1 — —A)\l] * sin20

Bt .
Or cos(0 —Z-YIL)=2-V1—— [1—— T] - sin*—cosf (37)

which defines the part Yy, 0f the source which takes place
in the reflecrion of a «Lefty beam parallel to the central ray SC.

Broadening from «Right» Rays

For the calculation of the broadening ar'cl*"l-\l'\1 from the «Righty ray
S,N, Fig. 7 gives that:

(HT) =(HN)-sin[ _;’— —(® +<p)]=2'R.cos (8+9)

(HU)=(HK).cos(6 +2'9)=Rcos(0 +2'¢)
(KV)=(HT) —(HU)=[2cos(0 +9) —cos(0 +2'¢)]'R
(KV)=(KN,)-cose=R-cose

cose=2-cos(0 +¢) —cos(0 +2°¢) (38)
~ ~ T
Also arcHN, —arcIG=2: [—2— —(0 +9) ] ‘R=[r—2:(0+9)]'R
Or arcHF —arc ﬁ:F —arcﬁ=[1¢-—~2'(0 +o]'R
Or 2[5 —0 | R—areN;F—arclG—[r—2:(0 +-o)I R

2 Vi)
And arclG=2-¢'R—arcN,F

And are H/NI +a1‘cN:FI - arcfla —{—arc&]zn" R

Or arclﬁ—arcNﬁ‘ -{-arcﬁ‘l —l—arcfa +arc@=n-R

Or 2 [% . } - R—areN,F +2-¢ R+ 2¢ - R—areN;F +2'¢'R=n'R
NF

And finally i o +2:—b Angular broadening from (39)

the «Right» ray S,N
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But the angle ¢ is defined twice: geometrically and from the A\ spread of
the X-ray beam. From Fig. 7 we have that:

(HW)=(HN)" sin [—;‘— —(0 +<p)] =2Recos(0+¢) (HW)=(HS,)cosy,

*(HS,)=(HC)'sin [% —0—7,] =2R-cos(0 +7,)

(HW)=2-R-cos(0 +,) cosy,
08(8 +p)=cos(6 +,) cosy, (40)

which defines the angle ¢ from the dimension vy, of the source. Also, the Bragg
equation gives that:

sin(0 4 )=(1 +%)'sin6 (41)

sothat we have to first compare theangles ¢ and oy, If o(py, Eq. (39) gives
the broadening, where ¢ and ¢ are defined by Eqs. (40) and (38) respectively.
If @) ¢p, the ¢ and e are defined by Eqgs. (41) and (38) respectively. In this
case, (p) 1), Eqs. (40) and (41) give that:

cos(6 -}-YzL)-oosY2L_—_V1 _[ 14 _A)\Z\_ ]2 -sinZ%0

Or cos (0 +2'Y2L) =2'V1~— [1 -+ % ]a'sinzﬁ —cosf (42)

which defines the part y; of the source which contributes

t o the reflection od a «Right» beam parallel to the central ray SC so that the
angles v, and yg define the widest beam parallel to SC that reflects from

the crystal.

Total Broadening
From Eqs. (34) and (39) the total broadening is given by:
arcM:T\I, Total angular broadening

=y - —3 42 (o0 +9) from abeam parallel to the (43)
central ray SC

*In Fig. 7 the line CSg is not plotted.
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Perceptive Total Angualar Broadening

The perceptive total angular broedening » is given by:
~~ 25 A~ 7~ £ =N
29°R-=arcBCI 4-arcM;N,=arcBC 4-arcCG +arcGl +areM, N,
o~ £~ £~ 2N 7~ P
=arcDC—arcDB +-arcCG +arcGI4-areM, F HarcFN,

~ G

=2'w'R—(arcFM;,—2'w'R) 42-¢'R +(2:¢"R—arcFN,)
+arcl\"ﬂF + arcF/‘T‘Il

And finally 1 n=2(c> +9)

Beam Convergent to C

The «Left» and «Right» rays strating from the points S; and S, of the
source (Fig. 8) and convergent at C are incident on the crystal at angles 6 —v,
and 0 -y,, respectively. These rays are reflected only if:

TRSET (44), Yo (Yo, (45)
where the angles v'; and Y'y, are defined by the following equations:
sin(0 —y’lL)=(1 — —A)-\A)'sin(*) (46), sin(0 + Y’zL)=(1 -I-%J.sine (47)

The angles 1, and v, determined by the FWHM of the line define the

widest convergent beam permitted to reflect from point C on the crystal.
It is easy to show that the corresponding broadenings are that:

2N
FS
A on 9.y, (48), 5 =iy (49)

and the total angular broadening from both «Left» and «Right» rays conver-
gent to C is given by

Total angular broadening from (50)

PN
arc 5,8, .
"R =2(11+72) a beam convergent to C

If the relations of Eqs. (44) and (45) are not fulfilled, the v, and vy, in Eq.
(50) must be replaced by y'; and ¥ n
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Fig. 8. Broadening from a convergent beam to C (Y1<Y'1L- Ya <y’2L).

Total Broadening from a Beam Parallel to SC and from a Beam Convergent to C

The widest beam parallel to SC reflected from the crystal is determi-
ned by the angles v, and vy, defined by Egs. (37) and (42). Using Egs. (37)
and (46) and Egs. (42) and (47), we compare the angles y, and y'; and
Yo, and ¥’y and find that:

Y’IL (Yep, (51), Yer, (leL (52)

As shown in Part II, Fig. 3, evenif v, =v, the point N, (Fig. 8) lies «up»
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the point S,;. So the broadening from the «Right» ray S,C includes the
broadening from the «Right» ray S,N.

Suppose that 11 Yy, (y, (53)

then, both the rays S;M and S,C are reflected by the crystal. As it has been
shown in Part II, Fig. 3, the point M; lies «under» the point S;;, so that the
broadening from the ray S,C includes the broadening from the ray S;M, and
the total angular broadening from rays both parallel to SC and
convergent to G is:

arcS’:Sn Total angular broadening from
o Rz - =2(Y1+2) rays both parallel to SC and con-  (54)
vergent to C when v (¥'y; ¥y,

If y,)y's, in the above equation, y, must be replaced byy’, as defined
by Eq. (47). Now suppose that v’y {yi {y;. In this case, the limit «Left»

ray to C starts from a point of the source corresponding to the angle
Y1y, and the limit «Left» ray parallel to SC starts from a point correspo-

nding to the angle v, . Let us examine the broadening from each of them.
The broadening from the «Left» ray to C is 2y, . The broadening from
the «Lefty ray parallel to SC is [Eq. (34)

A~
arcFM,;

R =0 42'0—3

Equations (36) and (46) give that wp=y';; so we can write:

=
arcFMl_

g =0+2vy,—38 (55)

We will now show that 0)3 or cosf{cos3. From Eq. (33) we have to show
that:

c0s0 ( 2:cos (0—e)—cos(0—2'w)

Or c080 —cos(0 —w) ( cos8(0 —w) —cos(0—2-w)
. ) ) . 30 . o
Or —2 sm[e———z-] sm—2—< —2 sm[(—)—-2—] smT
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3o }

or sin[ 0——(0—]) sin[e — =5

2
and, therefore 6 ) 3. Equation (55) implies that the broadening caused from
the «Left» ray SM, includes in this case the broadening from the «Left» ray
S,C. So the total angular broadening from the rays parallel to SC and conver-
gent to C is:

o S/R’I Total angular broadening from pa-
e 2’.__’_—_-2-.{2 +6 +2:0—3 rallel to SC and convergent to C (56)
beams, when ¥’y {7y, (¥,

where o and 3 are defined by Eqs. (36) and (33) respectively, and ="y,
defined by Eq. (37). If v/, ) Yzr, 0 Eq. (56), v, must bereplaced by Yy, defi-
ned by Eq. (47). Now suppose that Y'1.{11 € Y1, In this case, the limit «Left
ray to G starts from a point on the source corresponding to the angle Yy,
and the limit «Left» ray parallel to SC starts from the left end of the source
corresponding to the angle y;. To examine which is the larger contribution,
we will use either Eq. (54) or (56).

Beam Convergent to the Points M and |or N Defined by the Limit Rays S; M,
S,N Parallel to the Ceniral Ray

Convergent Beam Intersecting at M

The ray 5,M parallel to SC (Fig. 9) intercepts the crystal planes with
the angle 6 —w. The ray S,M intercepts the crystal planes with the angle
68— 4. We will show that 6 —w +y ) 6. We have that:

- arcS:S\2 arcEO = areEO
2R 2R nthoR
- arc?ﬁ) o a@(} arcﬁE aroEO B Aarc;EO o arcfﬁE
R T 2R 2R ~ 2R M7 3R 2R
reEO
arc
(‘Yl""‘ 2R (X

and consequently 60— +4y>0. The angle y isdetermined by the source
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mo s g

=~
-~
LS
~

Fig. 9. Broadening from a beam convergent to M.

size and Jor from the natural width of the X-ray line. From Fig. 9 we have
that:

(HJ)=(HM)"sin [—g— —(0—o +x] =2R-cos(0 —o+x)
(HJ)=(HS,) cos(x —7,)

. m
(HSp)=(HC)"sin [—2— — — y,] =2'Rcos(0 + v,)

(HJ)=2"R-cos(8 + 7,) cos(x—7,)
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008(0—0 1) =C08(0+ v,)c08(x—,)
c08(0 —m)—-cos(0 +7,) cosy,

sin(0 —o) 4-cos(0 4-y,) siny, o

And finally tany =

where the angle o is defined by Eq. (35). The natural FWHM of the X-ray
characteristic line imposes for the limit ray the following relation:

sin(0—o ) =(1 —}-%—)-sine (58)

which defines another value yp, for x. If xy<<x;, we use the value y from Eq.
(57) for the broadening. If y>%;, we use the value y; from Eq. (58) for
the broadening.

From Fig. 9 we have for the angle 3 that:

(HL) = (HM) - sin[—;— — (6—a+7) ]=2-R-cos(e_m )

. (HL) _ 2'R-cos(d —o-4y)
= cos(0 —2'0+y)  cos(0—2w-+y)

k=1 ()~ [t i)

(KP)=(KQ)cos(0—2'® +x)=[2:cos(0—a +y )—cos(0—2'0 +%)]'R
(KP)=(KS,,)-cosd

c0886=2r¢08(0 — © +y) —cos(0 —2'®w +y) (59)
And we have for the broadening that:
arc S;i? +arc fc ~+are CB =24R

225N 22 P
arcS,,F 4 arc FC— arc CB=2:(0— 2'0 +%)'R

and arc2'S::F —|—arc2'ﬁl=2'(9— 204y +8)'R
Or arcSy P 4-2:0-R=(0— 20 - +8).R
arc S;:F

And finally =8 4x—0—2® Angular broadening (60)

from the ray S,M

If x )x;, the ray to M starts from a point S', corresponding to an angle smal-
ler than v,.
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Convergent Beam Inlersecting at N

The ray S,N parallel to CN intersects the crystal planes with an angle
0 +¢, and the ray S;N intersects the crystal planes with an angle 6 +-¢—y
(Fig. 10). In this case, every one of the following relations is possible:

04+0—v)0 0 +o—y=0 0+o—y (O
(@>v) (p=v) (e V)

Fig. 10. Broadening from a beam convergent to N.
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The angle ¢ is defined by Eq. (40). We write Eq. (24) as:
cos(@ +6—2y,)=2:(cos0—sinf.sing) —cos(¢p +0) (61)

If the angley, is equal to the angle y, calculated from Eq. (61), then 6 4¢—y=6,
and the ray S;N is tangent to the focusing circle with Eq. (26) giving
the broadening from that ray. If v, is larger than that calculated from Eq.
(61), then )0, 0-+9—y (0, and vy (y;, where y;, is determined from
the equation:

. A ;
sin (0 +-@—yp)=(1— —x)\—)'smﬁ (62)

If vy, is smaller than that calculated from Egq.(61), then y(8; 6-+¢o—w )80
and y (v, where y, is determined from the equation

. Ak .. .
sin(0 +o—yy)=(1+—-)sinb (63)
For the geometrical determination of y, we have the following from Fig. 10:
(HJ)=(HN)sin [%—(e +(p—\p)]=2'R'cos(G——<p +y)
(HJ)=(HS,).cos(y—y)=2R-cos(y —v,)
(HS,)=(HC)'sin [% — (8 —v1) | =2R-cos(8—1,)

(HJ)=2-R-cos(6 —y,) cos(y —7,)
€08(0 +¢—y)=cos(0 —y,) cos(y —v,)

__c08(04-¢)—cos (6—y,) "cosy,
" c08(0—y,) siny,;—sin(0 +¢)

And finally tany, (64)

If y{vy; where vy, is determined from Eq. (62) or (63), we use for the
broadening the value of y calcuted from Eq. (64). When w Yy, wyy, is
given by Eq. (62) or (63). To determine the angle ¢, we have from Fig. 10:

s

(HT)=(HN)'sin |- — (0+¢—y) |=2-R-cosg) +¢—y)

(HU)=(HK)-cos(8 +2:9—y)=R-cos(8 +2:90—)
(KV)=(HT)—(HU)=[2"cos(0 +¢—y) —cos(6 +-2-¢ —y)]'R
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(KV)=(KS,,):cose=R-cose
cose=2¢08(0 +-o—y) —cos(0 +2-¢ —y) (65)

And we have for the broadering:
~ Y Ve T %
arcHF 4-arcFS,; —arcIG=2 [_2_ —(0+¢ —\V)] ‘R=[r —2:(0 +¢ —y)]'R
Or archS\11 ~arcI’(§=2-(\y —o)'R
and arcS’:I —{-arc’I-(:z -+ arcGC= (0 +29—y +¢).R
and  arcFS, +are§,I +arcGC=(0 +2:9—y +&) R +2(y—o) R
Or  arcFS, +2eR-+29R=0+y-+e)R

~
arcFS,,;

Angular broadening (66)

And finally rom the ray S,M

=04y —e—2¢

Total Broadening from Beams Convergent to M and N

From Egs. (60) and (66) we have the total angular broadening:

= ng Total angular broadening from
___”_sz +y 48 —e—2(¢ +o) beams convergent to the points (67)
R M and N

Broadening from a Divergent Beam Generally
«Leftr Ray
The «Left» ray S;M starting from the end S, of the source (Fig. 11)

intercepts the crystal plane at an angle 0-+a—®. Every one ofthe following
relations is possible:

0+a—w)0 040 —o=0 04o0—o (6
(@) ) (a=0) (a (@)

We examine the most interesting case 6-+o—w)6. Then, the angles o
and o for the limit ray must fulfill the relation:

sin(0 4+-o0—ow)=(1 +—Axl-)°sin6 (68)

From Fig. 11 we have:



348 I[IPAKTIKA THE AKAAHMIAY AGHNQN

Fig. 11. Broadening from the «Lefty ray S;M.

(HJ)= (HM)sin [_%— —(0 +a—-—a))] —=2-R-cos(0 +0—a)

(HJ)=(HS,) cos(a+¥,)
(HS,) =(HC)sin | 5~ —0 1| =2R-cos(0—12)
(HJ)=2'Rrcos(0—yy) cos(a +71)

¢08(0 +o—w)=c0s(8—y1)cos(e +-1)

which gives with Eq. (68):

(69)



IYNEAPIA THS 13 NOEMBPIOY 1986 349

1— [ 1+ —AXL] t"'sinz()

cos(o -+7v,)= P -y (70)

Equations (69) and (70) define the angles « and . For determination of the
angle 8 we have from Fig. 11:

(HW) = (HM)'sin [lz‘— —(0-+a— o) | =2"R-cos(0 +a—w)

(HQ)= (HW) _ 2'Recos(0 +o—o)
= cos(0+o—2®)  cos(0 +a—2'w)

(KQ) = (HQ)—(HK)— [2oCea) ).

(KP)=(KQ) cos(0 +a—2-®)=[2'cos(0 +a—n)—cos(0 +o—2-®)]'R

(KP)=(KS,;) cosd=R"cosd
€088 =2"c08(0 +-a—n)—cos(0 +o0—2'0) (71)

And for determination of the broadening arcFalz

e N 27N =)
arc S;;C+ arcCB=2:3'R arcS;;CG—arcCB=2'(04+0—2'0)'R
Or areS,.C = (84 o—2'04-8)R

=3 7~~~
Also arcFS;; 4 areS,,C=2'0-R

Or arc FS); (0 +-0—2'0+5)R=20R

=
. 3 :
And finally 2025 RSH—=9 + 20— T f;;’;df;‘;“gsg‘;m the 9y

«Righty Rays
The «Right» ray S,N starting from the end S, of the source (Fig. 12)
intercepts the crystal planes at an angle 68— +¢. We see that:
B <arc& ( arcCG
2R 2R
or B9 and 0—B-+9)0, so that for the limit ray S,N the angles B and
¢ must fulfill the relation:
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Fig. 12. Broadening from the «Rights ray S,N.

sin (0—B+9)=(1 +—A}~L)'sin9 (73)

It is also easy to show that on increasing B, the difference @—fp increases
so that Ya(Vey, ° If y2) vs;, then B=0 and Eq. (39) gives the broade-
ning. From Fig. 12 we have:

(HW)=(HN)sin [ —(@0—B-+¢) |=2Recos(0—B-+0)

(HW)=(HS,) cos(B +73)
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(HS,) = (HC)'sin [iz il 72] =2'R-cos(0 +7vs)

(HW)=2"R-cos(0 +,) cos(B +v2)
c08(8—B +-¢)=c05(0 +v2) cos(B +7) (74)

which gives with Eq. (73):

= -
cos(B +v,)= cos(0 +7v,)

Equations (74) and (75) define the angles B and ¢. For the determination
of the angle ¢ we have from Fig. 12:

(HT)=(HN)sin [ 5 —(8—B-+¢)|=2R-cos(0—B-+¢)

(HU)=(HK)'cos(6—B + 2:¢)=2'R-cos(6—p +2'9)
(KV)=(UT)=[2-cos(6—B+ @)—cos(6—B +2'¢)I R
(KV)=(KS,,)-cose=R-cose

cose=2'cos(0—P +o)—cos(6—P +2-¢) (76)

And for the broadening arcS;ﬁ:
arc Sl +-arcFC=(0—B+2¢9+¢) R

.
arcS,, F —e429—0—P Angular broadening from (77

finall
And finelly R the limit «Right» ray S,N

Total Broadening
Equations (72) and (77) give the total angular broadening:

=
31‘051@51_ =20 +¢) +-e—a—p—3 Total angular broedening from
R a divergent beam generally
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IOEPIAHVYIX
To cpdApa éotidoews eig 10 acpatooxéniov Johann édxtivwv Roentgen

To opdipa Eotidoews clg T paopatooxbémov Johann dxrtivev Roentgen
drohoyiletar oradiuxds 31’ Eva ISavixdy xpdotalhov & 6molog Bewpeitar Tedetwg
adxpavi)s elg Ty dxtivoBorixy Roentgen xai tol 6motov T dvaxhévra émimeda
elvar mapdqha mpdg THY dvaxAdowv Emipdveiay 700 xpustdAlov. [Tapéyovrar
TapducTpoL EmiTpémovoul THY xAoyny TV dxstdoewv TiE TNYNc dxTivoBoAlag,

oUVAPTNGEL THG &vepystaxic SlaxplTixific ixavéTyToC.



