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®YSIKH.— Anisotropic Scattering Boltzmann Distributions and
Structural Properties, by C. Syros*. *Avexowvdrin vno tod “Axnadn-

paizod Kaioagog *AleEomoviov.

1. Introduction.

The structural and spectral properties of the simplest form of the
Boltzmann equatijon with isotropic scattering were studied in a previous
work ! from a completely new point of view. This point of view ena-
bled us to find a general solution expressible directly in terms of elemen-
tary functions satisfying the pertinent boundary conditions. In fact it
was shown that the solution of the Boltzmann equation amounts to the
mere solution of an algebraic system of linear equations. In proving
there' a number of theorems on the structural proporties no assumptions
concerning the distributions were made.

The present work extends and generalizes results obtained in (A).
In particular anisotropic scattering is considered here and explicit solu-
tions are obtained which satisfy the required boundary conditions. The
main result presented here may be summarised as follows: The Boltzmann
distribution with anisotropic scattering kernel of degree L in z is a superposi-
tion of distributions of isotropic scattering with coefficients proportional to the
L -1 powers of z. In conclusion the problem of finding the anisotropic
scattering Boltzmann distribution is solved exactly and represented by
elementary functions in a very simple way. The present method allows
to avoid the Riemann - Hilbert problem concerned with singular inte-
gral equations.

2. Distribution properties.

The equation to be studied and solved here is the Boltzmann equa-
tion in one space dimension and anisotropic scattering kernel at a given
constant energy:

z.0.(x,2z) + y(x,2z) = isr K(z,z') y(x,z’) dz’. (2.1)

* K. $YPOY, Katavopal Boltzmann pé &vicétporov oxédaciv xal idiétnreg
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To formulate completely the problem the following definitions are

required :
Definition I.

o K(z,z) =Saiz z, 1=0,1,2,...L) 2. 2)

1=
20 x€A =[a,b];a, b<w
30 z€B* =[—A, A]'=B;yUB_, where the dot «» expresses the

fact that the point z = 0 & B  and B- = B — {O}

4o gM(x) =o0rp(x)=0y fyix,2z)dz, (v=0,1,2..)) (2. 3)
B
o g (x) =fz'vy(x,2z)dz, (1=0,1,2,...L) (2. 4)
B
£
6o g (x,z) = Za; z' o1 (x) (2. 5)

1=0

With the help of the above definitions we state

Theorem I

Let y(x, z) be a solution of Eq. (2.1) with the kernel K (z,2") given
by Eq. (2.2). Let further v (x, z) satisfy the boundary conditions.
v+ (a, 2) = al(2),
Y- (b, 2) = ¥ (2),
where V. (z) and y» (z) are given polynomials or given entire functions.
Then:

1o ¢ (x) is differentiable {(W*x |xEA)A(1=0,1,2, ... L)}.

20 W (x,z) is uniformly differentiable {()va Ix EA) A (Wz] z E B')}.

Proof: From Eq. (2.1) follow immediately the expressions

and

= - S
Yt (x,2) =Ya(z)e = +afe ’ g(X’Z)__z—’ (2. 6)
{ovx IxE A) A (Y2 lzE B},
e "
i \p_(X,Z)=‘l’b(z)e—-_’___’!e——z—g(x,’z) o (2. 7)

{(¢x|xEA)A(Wz|zEB)}.
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By multiplying Eqgs. (2. 6) — (2. 7) by z™ and integrating them
over B4 and B_ respectively we get

@t (x) = e () + 3 a1 [ Brgmps (x = ) @i (x) ' (2.8)
amd () =2 () + S [Bunn (0@ () dx, (@29

where ym+ und ym—(x) are given by

Yo (%) = fz"‘ e ;z_\pa (z)dz (2. 10)

B+

_xob
und g (x) = [ 2™ e Ty (z) dz. 2. 11)

B—

To prove 10 we shall assume (the proof of this assumption has been
given in (A)) that ¢;(x) is continuous {(f‘va Ixed)Al1=0,1,2,... L)} .
By recalling the relation ¢m+(X) + @u—(x) = @m(x) and by omitting
the function ym+(x) and ym—(x) in Egs. (2. 10) — (2. 11) as being by
assumption differentiable we obtain from Egs. (2. 8) — (2. 9) :

x+4+Ax

Jim [on(x+8%) — on ()] (4x)71 = lim 15 [ Ermi (et Ax—x)

b

— Eitm+1 (x — X)) 1 (x’) dx’ + (——)‘*“‘f(EHmH (x"—x—Ax) —

x+Ax
— B (x'— x)) g, (x) dx”
x+Ax Ax+x

[ B (x—x ) @) (=) B (¢ =) qalx) x| ()7 2. 12)

After carrying out the limit operation we get from the first and second
sums in Eq. (2.12) the expression

3 a1 [— ] Buem (s —x) @ () dx'+ (<) [ Fagm (=) 01 () d' ),

whilst the two last sums in Eq. (2. 12) become singular for 1 = 0 at the
limit Ax =0, when m happens to be also equal to zero. However, the
singular terms cancel out mutually and the remaining terms give rise to
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L
expressions of the form 3 a,[(1 —(—)+m)/(1 +-m)] @i (x). It is seen the-
1=0

refore that ¢um(x) is differentiable so that

Pl (x) = lgoén{—-fE1+m(X—-X')(P1(X')dX'+(~)HmfE1+,n(X'~X)cp1(X’)dx’ 8

1— ()

+ 14+ m

e(x) + 1@, m=0,1,2,,,L), (2.13)
where @) (x) =0, ¢ (x) and x{) (x) = 3, (x) + 3 _(x)

This proves 1o. With the help of the continuity property of ¢, (x)
for 1=0,1,2,... L. the following result can easily be seen:

P (x) = 1§oal {(——)\'fﬁwmww (x—x’) i (x")dx" +

b
== (_)1+mel+m+l—v (x'—x) - @i (x")dx’

+ 3 (P W [ ) @
W=t l+m-+41—pn Yo ’
for v=1,2,... In Eq. (2.14) we have used the definition
~ Eiym+1—u(); v<1l+4m N
Bitme1—p(B) = i1 ¢ i P by (2. 15)

To prove 20 we only need to observe that interchange of integra-
tion and differentiation in Egs. (2. 6) - (2. 7) is admissible with respect
to both variables x and z. By direct differentiations we see that the
derivatives are finite and unique and therefore 20 is also proved.

Q E. D.

Remark I. If the scattering kernel K (z, z’) is invariant
against the parity transformation, K (—z, —z') = K (z, z’), then
{o,(x)|1=0,1,2,.. L} satisfy the system of integral equations

b

f m ([x—x) @i (x") dx" +m (x), (m=0,1,... L) (2.16)

a

Ier-

CPm s



140 INPAKTIKA THZ AKAAHMIAZ AGHNQN
Corollary I. From the finiteness of 9, (x,z) {(’v(x IxEA)N
(%*z |z €B)} it follows that

lim z.0,y(x,z) =0. @. 17
z—>+0

Corollary II. From Egs. (2.1) and (2. 17) the remarkable

result follows :
V(x,0) = ao fv(x,z)dz, (2. 18)
B

which is valid also in the case of isotropic scattering kernel.

Corollary III. From differentiability of g(x), (1=0,1,2,...L)
and from Eq. (2. 1) it follows directly that

n—1

v(x,z) = E(.(_Z)Véua‘ 2! o (x) + (—2)" 0x ¥ (x, 2),
[(Ovx|xEA)A(vzzEB)]. (2. 19)

Corollary IV. It follows by direct differentiation of Eq.
(2. 1) that

(I'nl)- 07w (x,2) [.=0 =]+Z_(—)v arp{(x), (n=0,1,2,...). (2.20)

Corollary V.
+ 03 W(x.2) | =0 = F 02 0,9 (X,2) |lsm0 + a; i (x) (2.21)

The proofs of the Corollaries [ to V are very easy and similar to the
proofs given in (A).

3. Solutions and Boundary Conditions.

The relations given in the preceding section will now be applied
to construct explicitly the general solution of Eq. (2.1). To this end the

required definitions are next given.

Definition II

10 yi(x,z) = w(x,z), {(¥x|xEA)A(z|zEBy)}
20 y_(x,z) =y(x,2), {(¥x|xEA)A(¥z|zEB-)}
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» z) — (—)» =3 1 .
30 B (x—a) = <9xf[8n(x—a,¢) ( )exp( - )Jz‘z dz; n>N

kn B+
0; n< N, N is any positive integer

g0 VI (x—a) = d};iSn(x—-a,z)z‘zl'dz; n<N

O0; n>N
((b—a)/2l>

50 L =) Ty kS
0; ¥>n

B el a‘;f [Sn(x——b, i cup <~ 2= b)] e

B-

70 The symbols S, (E,z) represent polynomials of n-th degree in the
two variables £ and z defined by

- S
Su (€, 2) _VZO (n—v)! (—=)
and having the properties :
9 Sy (€, 2) = — Sn—1 (E, Z)
Sa (AE, Az) = A", SnilE, 2)
Z. 65 SH(E)Z) - If' i Sn (E) Z)
- Eu
Sn (E’ 0) = n!
Sa (0, z) = {(—zff
80 A few examples of the above polynomials are :
S,(E,z) =1
S, {E,2) =E—z
S (62) = o7 — bz + '
Silb2) = 37— 2o 422 —
S, (€ 2z) = %- E}T -+ EQZ‘ — EIZ! -+ z*, etc.
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With the help of the above definitions we now formulate the following

Theorem II.

The derivatives of any order of y(x, z) {()va IxEA)A(Nz|zE B)}
with respect to both x and z are finite and unique provided this is true
for the derivatives of any order of ¢ (x); (1=0,1,2... L) (%¢x|x € A).

The proof of Theorem II is omitted here because it follows very
closely the proof of the corresponding theorem in (A).

The solution of Eq. (2.1) is characterized completely by

Theorem III.
Let y(x,2) = ¢+ (x,2z) +y-(x,z) be a solution of Eq. (2.1) on A®B
satisfying the boundary conditions
Y+ (a,z) = Ya (Z)’ ZEB+ (3 1)
and Y—(b,z) = 0 , Zz€B_. (3. 2)
Let further {wl(x,z) [t =20, 1,2, .. L} be a set of isotropic scat-

tering solutions satisfying boundary conditions of the same kind. Then:

19 The linear superpositions
L
Ve (x,2) = 3 arz'ins (x,2), {(Wx |xEA)A(vz[zE€By)} (3.3)

and w_(x,z>=1§0alzlwl_(x,z), {(¢xIxEA)AlvzIzEB)} (3. 4)

are solutions of Eq. (2. 1) provided the kernel coefficients {alll=0, b L}
do not belong to the eigenvalue set of the supermatrix defined by

B = [an( kn + Z Vi Cm) — gy, 811'}- (3. B)

20 The distribution y(x, z) = {4 (x, z) + Y (x, z) satisfies the boun-
dary condition.

30 Each of the L 41 infinite series in Egs. (3. 3) - (3. 4) converges
uniformly on A®B*, provided | 97\ (x,2)| 0| < c.n!

Proof: Let {(u|n=0,1,2,...[1=0,1,2,... L} be the 11
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sets of coefficients determining the 1 1. isotropic scattering solutions
{\pl(x,z)| 1=0,1, ... L}, i. €,

Xx—a

Yi+ (X) Z) - I1__%)(1-1:1 Sn (x—a, Z) _i:=§+1q1“ [Sn (x-—a, Z) il (— Z)ﬂ e T] (3 6)

x—b

and Yi— (X) Z) i go Pu [Sﬂ (X-—-b, Z) o (_ Z)n e~_z—} ) (3 7)

o) (b — a)n—k

where p, = gq,n ( ; {(1=0,1,2,...L)/\(k=0,l,...)}(3.8)

n—k)! '

The coefficients for n=20,1,2, ..N and 1=0,1,2,...L will
be seen to follow uniquely from the boundary conditions, while the
remaining coefficients (,, are to be determined. To do this we have
according to (A) from Egs. (3.3) - (3.4):

Igoal' le [Zax P4 (X) Z) + Y1+ (Xa Z)] ==

: i ay Loal Zl,{ g()v:ll (X—a)qm _I:=%O+[?:1l (X S a)qln +H§O‘YLI (X—b)pln (3 9)

=0 1= {n=

The symbols V', B and y! have been given in a slightly more
general form in Def. II.

Next we apply the operators 0% |x =240 and a;™ 0, |,—0 on both sides

of Eqg. (3.9) for all admissible values of k and 1. In this way we obtain the
following set of linear algebraic equations for the determination of the
coefficients { . [1=10,1,2, ... L|n=N 41, N+2, ... }:

L ® . n , v

s zk(g+zmgg—%%4%=u (8. 13)

1=0 n=N+1 v=0

for '=20,1,2, ... L and k=0,1,2, ...

The constants Cy in Eq. (3. 13) are essentially determined from the
(N 1) X (I, 4 1) first coefficients q, through the relations

; L N e ) n .
d=zzP-m—m@L+zmmﬂ%. (3. 14)
v==0

Since {a1|1 =0,1,2 ... L} does not belong to the set of roots of
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the determinant involved in Eq. (3.13), assertion 1° of the Theorem is
proved.

To prove 2° it is sufficient to see that ¢4 (x, z) and y_ (x, z) satisfy
the boundary conditions given in Eqgs. (3.1) - (3.2). In fact ¢4+ (x,z) and
Y—(x,z) being superpositions of the polynomials given in Def. II, have
the same properties concerning their behavior at the boundaries x = a
and x = b.

Let us first consider Y+ (x, z) from Eq. (3. 6). For x=a the bracket
becomes

Sa(0,2) — (—2)* = (—2)" — (—2)» = 0

and i+ (a,z) becomes therefore

“l’a (Z) = l=i()al s § (— Z)n qln . (3 15)

n=0

From Eq. (3.15) we have at once

s (—)n I+n
qm = m 02 Wal(z) |.=0 (3. 16)

for 1=0,1, ... L and n =0, 1, ... N. This proves 2° and at the same
time gives the (N-4-1) X (L. 1) first coefficients.

Remark II. Itis clear that if y.(z) is a polynomial of z, N is
finite.

Now we have to prove the convergence of the series

Vit (x,2) = °§_°0q1., [Sn (x—a,z) — (—z)e x:a} . (3. 17)

This series converges in fact {(’v‘x IxEA)A(Nz|z€E B+)}.

X—a
Z

Since S,(x—a,z) = (— z)".en(— ), Eq. (3.17) can be writ-

ten in the form

i+ (x,2) = § qin (—2z)" [e,,(——x——a)—e*xz—_aj. (8. 18)

n=0 ¥/

From this equation it becomes clear that

lim [e,,+g(—x_a)—e‘ z ]:o for all ¢ >0, (3.19)
n—»w Z
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where p is any integer, and for all z€B,, i.e., z > 0. On the other
hand ([, satisfies the relation

g = (___)n . gitn Y+ (a, z)
"7 a4 n)! dzi+n

(3. 20)

Consequently, in order that the series in KEq. (3.18) be divergent
the derivatives of i+ (a,z) of order n should increase with increasing n
faster than the factorial n!, but this contradicts the assumption of the
theorem. Therefore i+ (x,z) as represented in Eq. (3.17) is uniformly
convergent on A®B,. Furthermore, since
- o " __pam
nzoqm_(%)_ ~ S ou (Xn_'b)
and Y1+ (x,0) = y1—(x,0) one infers in exactly the same way that the
series in Eq. (3.7) is also uniformly convergent on A®B_ and therefore
Y1(x,z) is uniformly convergent on A®B*. This proves 3°. Since Y (x, z)
is the superposition of a finite number of yi(x, z), Theorem III is proved.
Q. E. b.

4. Conclusions.

The most fundamental result of this work is that the operator

(z - 0x +1) acting on the function 1 (x,z) of the variables x and z makes

it depend only on x in the case K(z,z')=a,. In the more general case
L

K(z,2z') = 3 ai(z.z’)! the application of the operator (z9x 1) on y(x, z)
1=0

L
makes it depend on z exactly in the same way like f2a1 (zz" )My (x,2z’)dz".
1150

This property allows the exact algebraization of the Boltzmann equation.
This result in turn puts the problem of studying the spectral properties
of the equation in question on a very simple algebraic basis. A second
important result is that the method presented here leads directly to such
simple results that the problem of solving singular integral equations
— like in the Case theory — is completely avoided.

Finally the present method is directly applicable also to the pro-
blems of the time and energy dependent Boltzmann equation on which
further work is in preparation.

144 1973
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NEPIAHYIZ

Al yagaxtnootixal ididtnree tig yoammxic éEowoewg tod Boltzmann
uet’ Gvicoteémov muofivog oxeddoswg fueheridnoav xal dxonoimomoridnoay did
Y NIV xaTaokev)y THg yevirdic Mcswe St cvotyua memeoaouévng Extdosmg
(a <x <b). Al edoedeicar xaravoual xgodlovrar ti) Bondeiq oroyeiwddv cvvag-
™oewv xal ixavomololv atotnode tag 6o ouvviirac. Ta dmodeiydévra Vew-
onuora Ggogodv eic: (i) 10 diagooiowov tiic @ (x), (ii) v Uragtv maga-
yoyov ¢(x,z) xai (iii) o)y Oxaefw avamagactdoemy tob Y (x,z) dud xara-

voudv tootpdmov oxneddoswe.
x

‘O *Anadnuainoc #. K. ’AXeEbmoviog xata v dvarolvwoly tic Gvotéow

3 ’ . 3 A\ ’
goyaoiog elme o ndtwot :

Kvoie ITpdedoe,

Méya pégog tdv @aivouévov 1ot Quotxol xdouov cuvictatol eig TV *iv-
ow tijg UAng. “Otav aiitn dmotedfjtar amd molkd coupdtia, 7 mweotyoagn tiig
ovumeotpoeds tov ouvihov didetar O widg EElodosme, narovpévne EE LG M -
cemc Boltzmanmn, 1 6mola meouyodger v tayltmra pugé Ty o6molav
petafdrierar 1) mbdavitng, €v TV couatiov v ebolonerar eic Golouévny Véovy
%ol Vo uvijror ué dolopuévny taybtnra moog Motopévny dievduvory.

Molovér 1) 8Elowoig Boltzmann eival amd aldvog yvworr) eEaxolovdel vo
glvar 10 Gvrieiuevov perétng dia eidae meoumtdoeic.

r SMuegoy Exm THY TLNY Vo magovoldom elg v “Axadnuiav Eoyactav tod
x. K. Zdgov, Gotig foyalduevog eig m)v Edowmaixiyy Kowdmnra Atouniic
*Eveoyelag sl 10 Béhyov 8Eendvnoev doyaciov meol tijc 2Eiodoewe Boltzmann
évtog avicoteémav Ohv. ‘H mepintwoig ality eboloxer dpaguoyiv €is T verod-
vid, ooudtia €xovra ueydiny onuaciov S tovg muonvirovs avtidoaotioag xal

. 3 - ’
NV AATLVOUEQUIEVTIXTY.



