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MAOHMATIKA.— Heegaard splittings of differentiable manifolds,
by George M. Rassias®. *Avexowddn im0 tod "Axadnuaixod ». Pidw-

vog Baoikeiov.

1. H. Weyl [1] had defined abstract differentiable manifolds in
1912. The importance of this geometric object was indicated by the
work of H. Whitney [1]. L. S. Pontryagin had developed methods
for using differentiable functions and mappings to prove topological
problems.

Much information about the topological structure of a differen-
tiable manifold has been obtained from the use of a special class of dif-
ferentiable functions, so called Morse functions, in honor of M. Morse,
who invented the topological theory of differentiable functions on a
closed manifold, known as Morse theory. This theory has proved to be a
very powerful idea in differential topology especially in the structure
of differentiable manifolds.

Of course, the basic idea about Morse theory had been obtained by
Poincaré [1]. There have been notable applications of Morse theory in
solving various problems in and outside Mathematics, by many mathe-
maticians — especially R. Bott [1], J. Milnor [1,2], S. Smale [1-3],
and R. Thom [1, 2].

S. Smale [3] verified the importance of Morse theory in attacking
difficult topological problems by proving a fundamental theorem on the
structure of differentiable manifolds, the so-called h-cobordism theorem,
which has several important applications, including the proof of the
generalized Poincaré conjecture (i.e. any homotopy n-sphere, n>4, is
homeomorphic to the n-sphere), and also of the generalized Schoenflies
conjecture,

The h-cobordism theorem is one of the most important and inte-
resting theorems of the field of topology, especially of Differential topo-
logy. Through this work, S. Smale generalized the well known con-
struction of any closed orientable surface in the form of a sphere with
handles by inventing the construction of attaching handles to higher
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dimensional manifolds. The present work is a part of lectures given by the
author at the International Congress of Mathematicians in Helsinki (Finland),
the period of August 15-23, 1978.

2. Let M be a closed (i.e. compact without boundary) C* differ-
entiable manifold and f: M —> R be a C® differentiable function on M.

Definitions. A point pEM is a critical point of f iff the
induced map f,:TM,—> TR¢qy is zero, where TM, is the tangent space
of M at p. In other words, choosing a local coordinate system

(xy, ... xn) in a neighborhood W of p, we have that
of of
jx—l(p) =...= axn(P) = 0.

A real number a€R is said to be a critical value of f if £7'(a)
contains a critical point of f. If f7'(a) contains no critical points, then
a is a regular value of f. (Of course, every number not belonging in the
image of f is a regular value of f). A critical point p of f is said to be

9%

In other words, this matrix defines a symmetric bilinear form
on the tangent space TM,. This bilinear form is the Hessian of f at p.
The index of a critical point p of f is defined to be the maximal
dimension of a subspace of T'M, on which the Hessian of f is negative

non-degenerate iff the matrix ( (p)) is non-singular.

definite.

A C% differentiable function f:M-—> R is said to be a Morse
Sfunction if f has only non-degenerate critical points. Morse theory studies
the connection between the topological structure of a differentiable
manifold M and the Morse functions defined on M. By a handlebody of
genus p(>0), we mean a 3-dimensional disk D® with p solid handles
attached on D3 It is known (Seifert-Threlfall [1]) that any closed,
orientable 3-dimensional manifold can be obtained from two handlebodies
of the same genus by identifying the boundaries.

A closed orientable 3-dimensional manifold is of genus p (>>0) if
it can be obtained by identifying the boundaries of two handlebodies of
genus p, but cannot be obtained by identifying the boundaries of two
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handlebodies of genus less than p. A Heegaard Splitting of genus p (= 0)
of a closed, orientable 3-dimensional manifold, is a decomposition of M
as M= HUH’, such that HNH’'=0H =0H’, H, H’ are handlebodies
of the same genus p (>0) and HNH" is a closed orientable surface of
genus,p. Now, we are going to give a Morse theoretic proof of the existence
of a Heegaard splitting for any closed 3-dimensional manifold.

Theorem 1. Every closed C* differentiable orientable 3-dimen-
sional manifold M admits a Heegaard splitting.

Proof. By S. Smale [2], there exists a nice Morse function
f: M — R, having exactly one critical point of index 0, and one critical
point of index 3.

Thus we may assume that the critical values of f are 0, 1, 2, 3.
Now, we consider the inverse image N by f, of a regular value a, 1 <a<2,
and we have that N is a 2-dimensional submanifold of M. Comnsider
H={x€M/f(x)<<a} which is diffeomorphic to

(S'XD? 4 (S'XD? 5 ... 4 (S'XD?
p times

After that, consider H'= {xEM/f(x))a} which is diffeomorphic to

(B¢ D®) e (S\DB . . . 4 (SlXDz_)
ptiwmes

Then, HNH'= {x EM/f(x)= a} is diffeomorphic to

(81XS!) 4 (S'XSY) 4 ... 4 (S'XS!)

p times

Note that H and H’ have the same number of copies of S! X D?
since the Morse function f defined on M has the same number of critical

3 .
points of index 1 and 2. This is true, because 0 = x(M) = 3 (—1)'c,,

1i=1
and by assumption cg=c3=1. Thus, ¢; = cy.
Hence, M admits a Heegaard splitting. Q. E. D.

In the following theorem, we show the existence of a Heegaard
splitting for compact 3-dimensional manifolds with non-empty boundary.
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Theorem 2. Every compact 3-dimensional manifold M with
non-empty (orientable) boundary OMsEA@ admits a kind of Heegaard
splitting, 1i.e.

M=HUH, HNH'=/HNIH’

where H, H' are handlebodies of the same genus.

Proof. Case 1: oM is a connected orientable surface of genus n.
Then, there exists a Morse function f:o0M — [0,1] having critical
points p;, Pg, ..., Pem, and a Morse function

g :0M X [0,1) = [0,1]

such that the critical points p;, ..., pen are not critical points of g.
Then, extend g to a Morse function

G: M —> [0,1]
such at G =g on oM X[0,1).

Consider G“’(%) which is a compact 2-dimensional manifold

with boundary, so that the critical values corresponding to the critical
points of index 1, are less than the critical values corresponding to the
critical points of index 2.

o oo (1) = ()

Then, G“'(%) decomposes M into two submanifolds H, H’

having an equal number of critical points of index 1, and of index 2
respectively. In other words, H, H' have the same genus since H, H’

intersect on the same surface namely dHNO0H' = G_1<%).

Note, 0H = G“(%) U <6M n G“(O,H ) and

&

o =l L —~f 1
oH' = G (2>U<6MHG (2,1}>.

HNH = 0dHNOH = G"(%).

Thus,
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Hence, M admits the requested Heegaard splitting.

Case 2: OM is disconnected (i.e. consists of a number of closed
connected orientable 2-dimensional manifolds). In this case, we repeat
the same argument as in the previous case for each of the connected
boundary components, and so we get again the requested Heegaard
splitting. Q. E.D.

Theorem 3. Let M be an open (i.e. noncompact without
boundary) connected manifold of dimension n. Then, there exists a
Morse function f on M such that

a. The function f has no critical points of index n.
b. The function f is proper, and,
c. The function f has a single critical point of index 0.

o]
Proof. We can write M=UM;, OMi=g, M cintMy,.
=1

Then, Mi4;—intM; is a compact manifold with boundary. Now, since
M; € int M;, it follows that

0 (Mi+1‘—int M,) = 6Mi+1 + dM;.
Consider the cobordism
Wi = (Mit; —int M;; M4+, oMy).

Then, there exists a Morse function f; on W; (i.e. fi: Miy; —int M; >
->[i, i+1] such that fi'(i)=0oM;, fi'(i+1)= 0M;y, and all the cri-
tical points of f; lie in (M;y; — int M;) — dM;— dM;;; and are non-
degenerate).

Then, the function defined on M (f: M — R) which equals f; on
Wi for each i is a proper Morse function.

We cancel critical points of index 0 against an equal number of
critical points of index 1. So, all critical points of index 0, except a
single one, are cancelled.

Now, by a duality argument (i. e. turning the manifold upside down)
we cancel all critical points of index n against an equal number of
critical points of index (n—1) until we eliminate all critical points
of index n.
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We are repeating this process for each cobordism W; so that f; has
the above properties and fiy; has the additional property that fo,, = f,
on Wy for each 1 <k <{i. Taking f:M—> R so that f =f; on W, for
each i=1, ..., ®, f has the requested properties. Q.E.D.

Corollary 1. The fundamental group of any open 2-dimen-
sional manifold is a free group on a finite or countable set of generators.

Another combinatorial proof of this corollary is given in Ahlfors -
Sario [1].

Corollary 2. Any open 2-dimensional manifold which is
simply-connected, is homeomorphic to R2
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NEPIAHYIZ

Eig v nagoloav goyaciav dmodewxviovrar ta dxérovda tola Sewpruarta.
Ta dvo modrta Yewovjuata dvagéoovtul elg Ty Epaguoyny tiic Sewotag tod Morse
e v anddebiy tiig Umdotewg €vog Srapeoiomol xatd v onuaciav tol Hee-
gaard, ovopalopévov Heegaard splitting, dud ndoav C* Swugoplopov, moooa-
varoriowov, cvpmayh totdidotatov morkamAdinta dvev ovvépov, ¢ Enlong dud
v anddelbuy tmdoEewg Evog xatahlnlov Heegaard splitting 8ua mdoav C® Sua-
pogiotpov, mposavatoricipov, cvpmayi] morharhdrnra netd cuvdgov.

Ta dvorégw 8o cvpnepdopata dmoterotv Sepehiwdéoraro xal omovdand-
tato dewoinata mog aAngectépay xatavonoly tot mediov Tiic doudic TV ToLdia-
otdrov morAamiotirwy.

To rolrov dedonua dvagéoerar eig Ty dnddelEwy Gndolewg uiag yonoinov
ouvaprijoewg 1ol Morse &ml mdong C* dwagogisiuov, ouvagolc, xal ui cvuma-
yolic n-diaotdrov morlamAdtnrog dvev ouvdgov S mdvta Quaxov GoLduov n.
‘H omovdadtng tol avwtégw Yewonuatog ngoxvnter 8x 8o modd Evdiapepdvrav
rogiopdtov avtod elg 10 nedlov t@v didtastdrwv morlanlotirwy.

Ta ovunepdopata tiig mugovorg foyusiag dmotreholv €v péoog &x 1oV Jew-
onudtov avaxowwdéviov g 1o International Congress of Mathemati-



108 [TPAKTIKA THE AKAAHMIAT AGHNQN

cians in Helsinki of Finland (Awdvég Zvvédoov tdv Madnuoatix®v elg
10 ‘Eloivrie tiig ®whavdiag) tmo tob ovyypagéwg tiig foyaciag adriig »ata
v zepiodov 15-23 Adyovorov 1978.
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