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*I016poepdc tig 6hoxAnpwtint éElcwatg timov Cauchy modrov 1) devtéoov eldoug
(1 ovornua towvtov dEodoewy) dtvatar ve Emhvdf douduntxde 8 dvayoyiic sic
ovoTnuo yooumx®v EEodoemy. At v dvayoylv tavtyy 1 idiéuoopog 6hoxAnowtin
gklowoig Epapudlerar eig dolouévov aoudpuov xotaddilw; énlsyouév'wv onuelwv tov
draotinatog 6hoxknowosws xai xatdmv yonotpomoteiton uédoddc tic Gordumtixdic 6ho-
nknedoewg dua v meocéyyiowy @V GroxAnowudrwv tig EElcmosng tavtng. “H uédodog
avttn dmotelel yevixevow tijg evoéwg yonotpomotovuévng uedddov Gorduntixiic Emhi-

oewg 6AoxAngowtixdv gEowosmy timov Fredholm.

ABSTRACT

A Cauchy type singular integral equation of the first or the second
kind (or a system of such equations) can be numerically solved by reduction
to a system of linear equations. For this reduction, the singular integral
equation is applied at a number of appropriately selected points of the integ-
ration interval and then a numerical integration rule is used for the appro-
ximation of the integrals in this equation. This method consists a generaliza-
tion of the corresponding method widely used for the numerical solution of

Fredholm integral equations.
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An effective method of numerical solution of Fredholm integral equa-
tions consists in the reduction of such an equation to a system of linear equa-
tions after the integrals occurring in this equation are approximated by sums
(through the use of an appropriate numerical integration rule) and the equa-
tion is applied at the abscissae used in the numerical integration rule [1].

In the case when the kernel of a Fredholm integral equation of the
first or the second kind consists of a regular term as well as a Cauchy type
singular term (the part of the integral corresponding to the Cauchy type term
defined in the principal value sense), then we speak about a Cauchy type sin-
gular integral equation or, simpler, a singular integral equation. In this case
the above-described method of numerical solution of Fredholm integral equa-
tions was believed not to be applicable, since numerical integration tech-
niques could not be used for Cauchy type principal value integrals. The stand-
ard technique for the numerical solution of singular integral equations has
been their reduction to equivalent Fredholm integral equations of the second
kind, according to the developments of Muskhelishvili [2], followed by the
numerical solution of the latter. The results of Muskhelishvili were genera-
lized by Pogorzelski [3] to more complicated cases of singular integral equa-
tions, that is to more general classes of the regular part of the kernel. Pogor-
zelski showed that, in general, the reduction of a singular integral equation
of the first or the second kind to a Fredholm integral equation of the second
kind is not always possible. It may be noted on this point that the singular
integral equations to be considered here belong, in general, to this class.

On the other hand, several investigators succeeded in reducing some

Cauchy type singular integral equations of special forms to systems of linear
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equations by developing numerical integration rules for the evaluation of
Cauchy type principal value integrals through expansion of the integrands
into a series of orthogonal polynomials. In this way, Kalandiya [4] treated the
case of singular integral equations of the first kind of the form:

%fw(t)%(ti—dt —i—fw(t)k(t,x)tp(t)dt L) sl |

where w(t) is a weight function of the special form:
w(t) = (L—gT (14T, E52)

@ (t) is the unknown function assumed regular along the integration interval
|[—1,1], k(¢,x) is a regular bounded kermel along the integration interval
(with respect to both its variables) and f(x) is a regular function along the
same interval.

Furthermore, Erdogan and Gupta [5] have developed a method of numer-
ical evaluation of Cauchy type principal value integrals of the form:

1

1 sz(t) _("x dr, (1. 3)

t

==l
with weight function w(¢) given by Eq. (1.2), and applied it to the reduction
of Eq. (1.1) (or a system of such equations) to a system of linear equations

of the form:

kzlAk m + k (¢, x,)}(p(tk) =7 (on) S, el B0 iy (1. 4)
where #x are the abscissae and Ay the weights used in numerical integration
rules of the Gauss- Chebyshev type for regular integrals and x, are properly
selected points of the integration interval (obtained as roots of Chebyshev
polynomials), the number m of which may be equal to (n—1), n or (n +1),
n being the number of the abscissae used. In the first case one more linear
equation, resulting from some physical condition, supplements the system of
linear equations (1.4). Nevertheless, Erdogan and Gupta [5] did not realize
that their method of numerical evaluation of Cauchy type principal value
integrals of the form (1.3) was indeed the Gauss- Chebyshev method, accu-
rate for integrands polynomials of up to 2rn degree, believing that it was

accurate for integrands ¢ (¢) polynomials of up to (n—1) degree only. This
2
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misunderstanding has not been realized even in two more recent papers on
the same subject (Erdogan, Gupta and Cook [6], Erdogan [7]), as well as in a
paper of Krenk [8], who generalized the results of Erdogan and Gupta [5] to

the case of singular integral equations of the form :

1

a0 o+ 2 [un 2D at [ortne0a =10 (5)

with weight function w(¢) of the form :

w(t) = (1—e)*(L+2)f, (1.6)
where :
1 A—iB 1 A—iB
8=p sl mr b, B= pain S+ M, atf=MAN=—ux, (1.7}

where N and M are integer numbers and the index #x is restricted to the
values (— 1), O and 1.

We can also mention that Krenk reduced the singular integral equation
(1.5) to the system of linear equations (1.4) after having used the properties
of Jacobi polynomials and implicitly derived the Gauss- Jacobi numerical
integration rule for Cauchy type principal value integrals of the form (1. 3).

Recently, Theocaris and loakimidis [9] showed, by using the same
method used in Refs. [5] to [7], that the methods of numerical evaluation of
Cauchy type principal value integrals derived in these references and used :
for the reduction of the Cauchy type singular integral equation (1.1) to the
system of linear equations (1.4) were accurate for integrands ¢ (¢) polynomials
of up to 2n degree. Thus, their characterization as Gauss - Chebyshev methods
was completely justified. The same proof used in [9] may be easily extended
to the case of the Gauss - Jacobi numerical integration rule used by Krenk [8]
for the numerical solution of the Cauchy type singular integral equation (1.5).

On the other hand, in recent years several papers regarding the numer-
ical evaluation of Cauchy type principal value integrals have appeared.
Among them, we can mention the papers of Hunter [10], who generalized the
Gauss - Legendre numerical integration rule for the numerical evaluation of
Cauchy type principal value integrals, and of Chawla and Ramakrishman [11],
who generalized the Gauss-Jacobi and the Gauss-Chebyshev numerical
integration rules for the numerical evaluation of the same type of integrals.
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Furthermore, Theocaris and Ioakimidis [12, 13] developed a quite general
method for the evaluation of Cauchy type principal value integrals, permitting
the application of any numerical integration rule for regular integrals to the
case of Cauchy type principal value integrals.

The results of Hunter [10] and of Chawla and Ramakrishman [11] have
been used by Theocaris and Ioakimidis ([14] and [15] respectively) for the

numerical solution of Cauchy type singular integral equations of the form:

1

)1
A (%) w(x) @ (x) + B(x)fw(t)ti_(%dt —{-J w(t) k(t,x) p(t)de = f(x), (1.8)
L —1

where A(x) and B(x) are bounded continuous functions in the integration
interval [— 1, 1], k(¢,,x) is a regular bounded kernel in the same interval
with respect to both its variables ¢ and %, except for a =+ 1 when it may
become unbounded like 1/(¢—x), and f(x) a known function possibly present-
ing weak singularities near the end-points x = + 1 or the integration inter-
val. According to Refs. [14, 15], a Cauchy type singular integral equation of
the form (1.8), with w(¢) equal to unity or given by Eq. (1.6) respectively,
can be reduced to the following system of linear equations:

Ty —I—k(tk,x,)}w(tk):f(x,), e B P R (1.9)
if the points x,. of application of Eq. (1.8) are properly selected.

At this point, it may be noted that the special case of Eq. (1. 8) where
A(x) =0 was treated by Erdogan, Gupta ann Cook (6] and Erdogan [7] under
the assumption that the constanrs a and f entering Kq. (1. 6) for the weight
function w(¢) are different from zero and, of course, greater than (— 1). These
authors have reduced Eq. (1.8) (with 4 (x) =0) to the system of linear equa-
tions (1.9), possibly supplemented by one more linear equation, after having
used the Gauss- Jacobi numerical integration rule for regular integrals also
for Cauchy type principal value integrals without any justification. Recently,
it was shown by Theocaris and Toakimidis [15] that the selection of the points
x. of application of Eq. (1.8) as proposed by Erdogan, Gupta and Cook [6, 7]
was not the correct one. This fact resulted in a very slow rate of convergence
of the results obtained from the numerical solution of Eq. (1.8) to their cor-

rect values with increasing values of n.



12 ITPATMATEIAI THX AKAAHMIAYZ AOGHNQN

Besides the Gauss- Chebyshev, Gauss-ILegendre and Gauss- Jacobi
numerical integration rules, several other Gauss-type numerical integration
rules have been used by Theocaris and Ioakimidis [16, 12] for the numerical
solution of Cauchy type singular integral equations of the form:

b

A@w@ o +86 [wo 2wy [owkeno0d=re),

a

p (1. 10)
gl

where w(x) is a properly determined weight function and [a, b] the integration
interval associated with the numerical integration rule in use.

Although the Gauss-type -numerical integration rules seem to be the
best practically useful numerical integration rules for the evaluation of regu-
lar or Cauchy type principal value integrals, nevertheless in most cases when
a Cauchy type singular integral equation of the form (1.10) is to be solved,
special interest is placed upon the values of the unknown function ¢(¢) at the
end-points @ and/or b of the integration interval. In this way, if a Gauss-type
numerical integration rule is used for the namerical solution of Eq. (1.10),
an application of the interpolation (or rather extrapolation) methods will be
afterwards necessary in order that ¢(a) and /or ¢(b) be determined. But,
since Gauss-type numerical integration rules are accurate for functions ¢ (2)
polynomials of up to (2n — 1) degree, while the interpolation (or extrapolation)
methods are accurate for functions ¢(¢) polynomials of only up to (n—1)
degree, it is evident that interpolation (or extrapolation) introduces consider-
able error in the values ¢(a) and /or ¢(b), which are of particular interest.
In this case, the use of Radau-type (or semi-closed-type) numerical integra-
tion rules, containing among their abscissae one of the end-points @ and b,
or of Lobatto-type (or closed-type) numerical integration rules, containing
among their abscissae both end:-points @ and b, seem to be the best possibili-
ties although a slight reduction in the accuracy of numerical integration is
possible, since these types of numerical integration rules are accurate for func-
tions ¢ (¢) polynomials of up to (2rn—2) and (2rn — 3) degrees respectively [17].

For the numerical solution of Cauchy type singular integral eguations,
Lobatto-type numerical integration rules were introduced for the first time
by Theocaris and Toakimidis, who treated the cases of the I.obatto-Chebyshev
rule [9] and the Lobatto-I.egendre rule [14]. The results contained in Ref. [9]
have been subsequently taken into account by Krenk [18], who derived by a
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complicated method the Lobatto-Jacobi method for the numerical solution of
Eq. (1.5), under restrictions (1.6) and (1.7). A much simpler derivation of
the same method was made by Ioakimidis and Theocaris [19, 20]. Moreover,
the same authors applied the Lobatto-Jacobi rule for the numerical solution
of Eq. (1.5) not subject to restrictions (1.6) and (1.7). Furthermore, the method
of constructing Iobatto-type rules from the corresponding Gauss-type rules
and the corresponding interpolation methods are given in Refs. [12] and [16].

On the other hand, some Radau-type numerical integration rules have
been applied to the numerical solution of singular integral equations by Theo-
caris and Ioakimidis, who used for this purpose the Radau-Legendre rule [14]
and the Radau-Jacobi rule [19] and gave [12, 16] the method of constructing
Radau-type rules from the corresponding Gauss-type rules, as well as the cor-
responding interpolation methods.

In this paper, a general treatment of the methods of reduction of sin-
gular integral equations of the form (1.10) to systems of linear equations of
the form (1.9) will be made, in a way independent of the numerical integra-
tion rule used, which will be assumed completely known in advance. This
treatment will be based on the application of numerical integration rules to
the evaluation of Cauchy type principal value integrals. Several generaliza-
tions to some cases of Cauchy type singular integral equations of special type,
like singular integral equations along contours or singular integral equations
associated with complex singularities at the end-points of the integration

interval, will be also made.

2. NUMERICAL INTEGRATION RULES
FOR CAUCHY TYPE INTEGRALS

A first method for the computation of a Cauchy type principal value
integral / is by using its definition as a principal value integral [2, 3]:

I—ft_xdt=el_r>r(1)[f ‘)d+f } @.1)

x+€

where ¢ is a positive number, tending to zero. A sufficiently broad class of
functions g(¢), for which the integral (2.1) exists for » inside the interval
(a, b) but not coinciding with its end-points a or b, is the class of functions
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satisfying the Holder condition [2, 3] in every simple subinterval of the inter-
val [a, b] not containing the points a or b. These functions g(¢) are permitted
to present weak singularities at the points @ and b. In the sequel, it will be
assumed that the functions g(¢) belong to this class.

Now, if we define the complex function @(z) by:

b

@ (2) :ftg# de (2.2)

Z
a

and apply the second Plemelj’s formula [2, 3] to the boundary values @t (x)
and @ (x) of this function at a point x of the integration interval (a, b),
we find that :

1=0@) =5 [0t @) + 0 ()] (2.3)

or, in another writing :

b b
1—fg(” ‘L[limf ()dt—{—hm —g—(f)—dt}. (2. 4)
(R0 z=—>X == 72=>X t—2
a Imz>0a Imz<0a

This equation denotes that a Cauchy type principal value integral may
be computed as the sum of two Cauchy type integrals which are not principal
value integrals. Now we can apply an appropriate numerical integration
method, taking also into account the logarithmic or weak power singularities
of the function g (¢) near the points @ and b, if such singularities exist, for the
approximation of the integrals in the right-hand side of Eq. (2.4). If this

rule is of the form :
b

fw (t) @ (2) dt =ki;l Ay @ (tx) + En, (2.5)
we see that :
f’w (2) ;p—(tl dt :kélAk—Z(i—kl e q)(x)—z%— + E,, (2. 6)

where w(t) is the weight function due to the singularities of g(¢), that is:
gt) = w(t)p(), (2.7)

where ¢(f) is a regular function along the integration interval. Also in Eq.
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(2. 6) the point x is assumed not to coincide with anyone of the abscissae #c or
the end-points @ and b of the integration interval. Furthermore, in Eq. (2.6)

the fuction p,(z2) is the polynomial of degree n:

n

Palz) = TT (z — &) (2.8)

k=1

associated with the integration rule in use and the function ¢, (z) is defined by :

qu (2 —f Pald) g (2.9)

L=z

When z€E (a, b), the integral (2.9) exists only in the principal value
sense and hence it should be interpreted as a Cauchy type principal value
integral and computed by using Eq. (2. 1) or Eq. (2. 4). It should be also
mentioned that the term of the error term E,, as in Eq. (2.5), due to the pole
of the integrands in the integrals of the right-hand side of Eq. (2.4) was
computed as pointed out in Ref. [21] and extracted from E,. This part is the
second term of the right-hand side of Eq. (2. 6), where the second Plemelj’s
formula was also taken into account for the boundary values of the function
gn(2). This means that in Eq. (2. 6) ¢.(x) is a Cauchy type principal value
integral.

In this way, the error term E, in Eq. (2.6) may be computed as if the
integral of its left-hand side were a regular integral and all methods of error
estimation in numerical integration rules remain applicable. One last remark
concerns the class of functions ¢@(¢) for which the error term in Eq. (2. 6)
vanishes. On this subject, it can be easily seen that, if the numerical integra-
tion rule applied for the calculation of the integral of the left-hand side of
Eq. (2. 6) is exact, in the case of regular integrals, for integrands ¢ () poly-
nomials of up to p degree (where generally n— 1< p< 2n—-1), then this rule
will be exact, in the case of Cauchy type principal value integrals of the
form (2.6), when the function ¢ () is a polynomial of up to (p—1) degree.
This fact follows immediately from the methods of error estimation [21]. We
can thus say that, when integration rules are applied to Cauchy type principal
value integrals, then more accuracy is generally obtained, after the same
computational' effort, than that obtained in the case of regular integrals if

in both cases the same function ¢(¢) is considered.
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3. APPLICATION TO THE NUMERICAL SOLUTION
OF SINGULAR INTEGRAL EQUATIONS

Now it is quite possible to try to numerically solve a Cauchy type sin-
gular integral equation of the form :
b

4@ 0@ o+ B[00 2D dt [0 ke p0d - ),

a

(3%L)
a <@ <abl

In Eq. (3.1) the integration interval [a, b] may be finite or infinite.
In both cases the first integral of the left-hand side is defined in the principal
value sense. Also the funtions A4 (x) and B(x) are assumed continuous, bounded
and different from zero along the integration interval [a, b], the weight
function w(¢) is assumed to be positive along the integration interval and
satisfying the Holder condition in every simple subinterval of this interval
not containing its end-points a and b. At these points the function w(¢) may
present any type of logarithmic or weak power singularities. It must be noted
that the right-hand side function f(x), although assumed to satisfy the Holder
condition in every simple subinterval of the integration interval (a, b) not
containing the end-points a and b, nevertheless is permitted to present loga-
rithmic or weak power singularities near these points @ and b. Also the
kernel % (¢, x) is supposed to be a continuous function with respect to both its
variables in the whole interval [a, b] without singularities at the end-points
of this interval, except when x = a or x =b. Then it may become unbounded
like 1/(¢—=).

In this way, the weight function w(¢) must be selected in such a way
so that its behaviour near the points @ and b be compatible with the behav-
iour of the functions A(x), B(x) and f(x) near these points. This function
w (¢) was introduced in ‘order that the really unknown function ¢(t) be con-
sidered without any singularity along the whole integration interval [a, b].
It is further assumed that it satisfies the Holder condition along this interval.
A method of finding the weight function w(¢), which basically depends on its
behaviour near the points a and b is presented in Refs. [6, 7] for a special
case of the singular integral equation (3.1). For more general cases, a gene-
ralization of this method is completely possible if the developments of
Refs. [2, 3, 22] are taken into account.
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Under these assumptions and the final assumption that the integrals
occurring in Eq. (3.1) exist for every value of the variable x inside the open
interval (a, b), we can apply a method of numerical integration of the form
(2.5), with the same weight function w(¢) and integration interval [a, b] as
in Eq. (3. 1), for the approximation of the second integral of this equation and
of the form (2.6) for the approximation of its first integral. Thus, we find

after ignoring the error terms :

()“’(“)‘P(M%—B(x) A (p(k)‘c —(}7(:?6) QuEi; 4
3 Pn (3 ‘))

+ 3 Ak, 9 9 () = f().

Equation (3.2) is an approximation of Eq. (3.1) generally satisfactory
enough. Furthermore, we can apply this equation at a number of points x. in-
side the open interval (a, ) and, in this way, reduce it to a system of linear
equations. If Eq. (3.1) were a Fredholm integral equation, the points . could
be selected the same with the points ¢.. But, in our case, such a selection is
evidently impossible because in this case the numerical integration rule (2. 6)
is not valid. It is easy to see that, in our case, the most appropriate selection
of the points of application of Eq. (3.2) is to select them as roots of the
following, generally transcendental, equation :

gn (%) .
A (x) w — B(x) —/——— = 0. B8
(@) w(x) — Bl L2 (3.3)
If x, (r=1,2,...,m) are the roots of this equation, we obtain the fol-

lowing system of linear equations :

lE_IIA LB_(xf) + k(e %) @) = flx), r=1,2 ..., m. (3.4)
If m=n, by solving this system of linear equations we can find the values
of the unknown function ¢ (¢) at the points ¢ (k= 1,2, ..., n) and, afterwards,
by using the methods of interpolation, and perhaps of extrapolation too, an
approximate expression of the function ¢ () along the whole integration
interval [a, b].

If m > n, then we can take into account only n of the linear equations

of the system (3. 4), ignoring the remaining equations, although this technique
3
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introduces considerable errors in the values of the function ¢(f) near the
points x., for which the corresponding linear equations have been ignored.
One better solution of this problem is to change the numerical integration
rule used and to use another rule with a reduced number m of points x, .

Such a rule could be, for example, a rule containing among its abscissae #. the
end-points @ and b of the integration iuterval.

Finally, if m < n, then the system of linear equations (3.4) must be
supplemented by one more linear equation, so that its solution be possible.
These supplementary equations are in most cases possible to be found and
belong, in general, to two kinds: On the one hand, it is possible that some
of the unknown values @ (¢c) of the unknown function ¢(t) at some abscissae
tx be known from physical considerations whence one more equation results,
or, better, the number of unknowns in the system of linear equations (3.4) is
reduced by one. On the other hand, in a lot of cases the unknown function
@ (t) should satisfy, besides Eq. (3. 1), one more integral condition of the form :

b
”

Jw(t) ko(t) @(t) dt = C, (3.5)
where the kernel k,(¢) is assumed to be a continuous function in the interval
[a, b], without singularities near the points a or b, and C is a constant. After
applying a numerical integration rule of the form (2.5) for the integral of Eq.
(3.5), we find after ignoring the error term :

élAk % () miles) =G (3. 6)

This equation can be taken into consideration for the solution of the
system of linear equations (3.4).

We must also remark that, in general, conditions of the form (3. 5)
resulting from physical considerations should be taken into account even if,
in this way, some of the points x. should be ignored in the system of linear
equations (3. 4).

Although the number m of the points x, of application of Eq. (3. 1) has
been completely investigated in some cases of specific Gauss-, Radau- and
Lobatto-type numerical integration rules [9, 14, 15, 19, 20], in general, such
an investigation is quite difficult, since it requires to find the number of roots
¥, of the generally transcendental equation (3. 3) inside the integration inter-
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val (a, b). Here we will restrict ourselves to a simple remark assuring in
most cases the existence of a sufficient number of such points .. To achieve
it, we consider Eq. (2. 6), expressing the general form of a numerical integ-
ration rule for the case of a Cauchy type principal value integral, applied
for @¢(¢) = 1. In this case, the error term E, vanishes and, because of the

definition (2.9) of the functions g,(z), we obtain :

S A LR

k=1 X¥— Ik Da(o)hie

Then Eq. (3.3), the roots x. of which are sought, takes the form:

As) w(#) — Bis) gola) = B(x) 3 —2F

k=1 lx —%

(3. 8)

Since in most cases all the weights Ay are positive numbers, the functions A (x)
and B(x) have been assumed bounded, different from zero and continuous
along the whole integration interval and the function g¢,(x), defined by Eq.
(2.9) for n =0, satisfies the Holder condition inside the integration interval
(a, b), except its end-points @ and b, (since an analogous behaviour has been
assumed for the weight function w (¢)), it is evident that Eq. (3.8) has an odd
number of roots x. (and probably only one such root) inside each one subin-
terval (fx, tiy:) of the integration interval (e, b) defined by two successive
abscissae t. and #cy,. Hence, there exist at least (n— 1) roots in total. In
some special cases, an analogous reasoning assures the existence of one or two
more roots % in the subintervals (e, ¢;) and (¢, b) (where 6 < 6, < ... < ty).
Nevertheless, this depends on the behaviour of the weight function w () near
the end-points @ and b of the integration interval.

Finally, we can remark that the developments of this section can be
easily generalized to the case when, instead of a single singular integral equa-
tion of the form (3.1), we have to solve a system of such singular integral

equations.

4. SOME SPECIAL CASES

Several special cases of the theory developed in sections 2 and 3 and
regarding the numerical evaluation of Cauchy type principal value integrals
and its application to the numerical solution of Cauchy type singular integral

equations are of particular practical interest.
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As in the case of regular integrals and the corresponding Fredholm
integral equations, we are interested in highly accurate numerical integration
rules. Such rules are the rules based on orthogonal polynomials and espec-
ially the rules of the Gauss-, Radau- and Lobatto-type, which are exact in the
evaluation of regular integrals of the form (2.5) for integrands ¢ (¢) polynom-
ials of degrees (2n—1), (2rn—2) and (2r — 3) respectively [17] and in the
case of Cauchy type principal value integrals of the form (2. 6) for integrands
@ (¢) polynomials of degrees (2n), (2n— 1) and (2rn—2) respectively. The
development of these general and very useful numerical integration rules for
the case of Cauchy type principal value integrals and their application to the
numerical solution of Cauchy type singular integral equations can be found
in Refs. [16] and [12].

Some of the rules of the Gauss-, Radau- and Iobatto-type associated
with the classical systems of orthogonal polynomials can be used in a lot of
practical applications and, in this way, special attention has been paid on them.
These rules were derived in Refs. [16] and [12] and based on the general
theory developed in these references. Also their properties during their appli-
cation to the numerical solution of singular integral equations have been
completely investigated, in some cases in separate references. These special
highly accurate numerical integration rules and the corresponding methods of

numerical solution of singular integral equations are the following :

i) The Gauss-, Radau- and ILobatto-Legendre rules associated with the
Legendre polynomials ane their modified forms. These rules assume as integ-
ration interval the interval [—1,1] and as weight function the function
w(t) = 1 (see Refs. [16], [12], [14]).

ii) The Gauss- and Lobatto-Chebyshev rules associated with the Chebyshev
polynomials. These rules assume as integration interval the iterval [—1,1]
and as weight function the function w () = (1—¢)E "> (1—{—1:)i‘/2 (see Refs.
(16], [12], [9]).

iii) The Gauss-, Radau- and ILobatto-Jacobi numerical integration rules
associated with the Jacobi polynomials, whose special cases are both the
I.egendre and the Chebyshev polynomials. These rules assume as integration
interval the interval [—1,1] and as weight function the function w(t) =
=1 —0—2¢)(1~+12)f (a, > —1) (see Refs. [16], [12], [15], [18], [19], [20]).
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iv) The Gauss-Laguerre numerical integration rule associated with the
Laguerre polynomials. This rule assumes as integration interval the interval
[0, ) and as weight function the function w(t) = exp (—¢) (see Refs. [16], [12]).

v) The Gauss-Hermite numerical integration rule and its modified form
associated with the Hermite polynomials. This rule assumes as integra-
tion interval the interval (— o, ©) and as weight function the function
w(t) = exp (—¢*) (see Refs. [16], [12], [23]).

When using these rules, associated with the classical orthogonal polynom-
ials, to the numerical solution of Cauchy type singular integral equations of
the form (3. 1), we can completely investigate (under the assumption that the
functions 4 (x) and B(x) reduce to constants) the number and location of the
points x. of application of Eq. (3.1) during its numerical solution, based on
a theorem of Sturm’s type reported by Porter [24]. A complete analysis, based
on this theorem, in the case of the Gauss-, Radau- and Lobatto-Legendre
numerical integration rules can be found in Ref. [14] and in the case of the
Gauss-, Radau- and Lobatto-Jacobi numerical integration rules in Refs. [15],
[19] and [20].

Furthermore, recently Theocaris and Tsamasphyros [25] generalized
the rules associated with the Jacobi polynomials to the case when these rules
include among their abscissae arbitrary points of the real axis outside the
integration interval [— 1, 1]. Thus, the Radau- and ILobatto-Jacobi rules
including among the abscissae used one or both end-points of the integration
interval are derived as special cases. Although the results of such a general-
ization of the previously mentioned rules associated with the Jacobi polynom-
1als is of some theoretical interest, nevertheless, it is of limited usefulness
in the case of Cauchy type singular integral equations occurring in practical
applications, both because the values of the unknown function in a singular
integral equation is seldom of any interest outside the integration interval
and because, even in the opposite case, no assurance that a sufficient number
of points «, of application of the singular integral equation inside the integ-
ration interval (— 1,1) can be proved.

One can finally mention that in the case of Gauss-, Radau- and Lo-
batto-type rules, once the unknown function has been determined at the
abscissae ¢ used in such a rule, then an approximate expression of this func-
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tion along the whole integration interval can be easily obtained as a series of
the orthogonal polynomials associated with the rule in use. Such formulae
have been given by Krenk [26] in the cases of the Gauss-Chebyshev and the
Gauss-Jacobi rule and by Theocaris and loakimidis [16], [12], in the general
case of an arbitrary Gauss-, Radau- or I,obatto-type rule.

5.  APPLICATION TO CRACK PROBLEMS

The methods of numerical solution of Cauchy type singular integral
equations presented in this paper are applicable to a broad class of Applied
Mechanics and Engineering problems where Cauchy type singular integral
equations may arise.

Among the problems normally reduced to such integral equations are
crack problems examined in the framework of Plane Elasticity [12, 27]. Sev-
eral general methods for reducing such a problem to a Cauchy type singular
integral equation can be found in Ref. [12]. In most cases, the most interesting
result from the numerical solution of the Cauchy type singular integral equa-
tion associated with a crack problem is the values of the unknown function
at the end-points of the crack, which are proportional to the stress intensity
factors at these points. In this way, the Radau- and especially the Lobatto-
type methods, including among the abscissae used one or both end-points of
the integration interval respectively, should be preferred over the Gauss-
type rules.

Among the crack problems reduced to Cauchy type singular integral
equations and numerically solved in several special cases of practical interest,

we can mention the following problems :

1) The problem of a simple smooth curvilinear crack in an infinite isotropic

or anisotropic elastic medium (see Refs. [12], [18]).

ii) The problem of a periodic array of simple smooth curvilinear cracks in
an infinite isotropic elastic medium (see Refs. [12], [29]).

iii) The problem of a doubly-periodic array of simple smooth curvilinear
cracks in an infinite isotropic elastic medium (see Refs. [12], [30]).
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iv) The problem of a star-shaped array of simple smooth curvilinear
cracks (or a star-shaped crack) in an infinite isotropic elastic medium (see

Refs. [12], [31]).

v) The problem of a symmetrical or asymmetric cruciform crack in an infi-

nite isotropic elastic medium (see Refs. [12], [9], [32]).

vi) The problem of an edge crack in an isotropic elastic half-plane (see
Ref. [12]).

vii) The problem of a branched crack in an infinite isotropic elastic medium
(see Refs. [12], [33], [34]).

viii) The problem of a periodic array of semi-infinite cracks in an infinite

isotropic elastic medium (see Refs. [12], [23]).

One can also notice on crack problems occurring in Plane Elasticity that :

i) All general problems of curvilinear cracks of arbitrary shape cannot be
solved in closed-form or by the methods of integral transforms. The most
appropriate method for their solution is their reduction to Cauchy type sin-

gular integral equations.

ii) The Lobatto- (or Radau-) type methods, when used for the numerical so-
lution of singular integral equations resulting in crack problems, have the
advantages that no extrapolation is required for the determination of the
stress intensity factors at the crack tips and at the same time the results
obtained are much more accurate than the results obtained when using Gauss-
type methods, with the same number of abscissae, or methods based on the
expansion of the unknown function to a series of orthogonal polynomials.
The Lobatto- (or Radau-) type methods for the numerical solution of Cauchy
type singular integral equations have been introduced for the first time by

the present authors.

Furthermore, one can notice that several other problems of Mathemat-
ical Physics, based more or less on the concept of Green’s functions (like the
problem of the flow past a curvilinear arc), can be reduced to Cauchy type
singular integral equations and solved in exactly the same way as crack

problems.
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6. THE CASE OF CONTOURS

In several applications we have to numerically solve Cauchy type sin-

gular integral equations of the form :

A (2o) & (to) + B(‘o)f tg_(_t)tu dt +fK(t; to) g(t) dt = f(t) (6.1)
I, L
along a contour L. In Eq. (6.1) the kernel K(¢,¢) and the right-hand side
function f(¢) are assumed to be regular functions of the points ¢, ¢, of
the contour L.
In order to numerically solve a Cauchy type singular integral equation
of the form (6.1), we are based on the modified form of the trapezoidal rule

for periodic functions [35] :

2n
2n—1 k
fg(sws =~ Sel)+ B, m=, (6.2)
k=

n
0
and the corresponding formula valid for the case of Cauchy type principal
value integrals of periodic functions and derived by Chawla and Ramak-

rishnan [36] :

2n
Sy 2n—1 e k

g(s) cot 5% ds = TS g(si) cot X% + 2mg(o) cotno, s = —=. (6.3)
2 =0 2 n

0

Since the function g(¢) in Eq. (6.1) can be considered as a periodic
function of a real variable s or o (e.g. the arc-length) varying along the
contour L, one can solve Eq. (6. 1) on the basis of Egs. (6.2) and (6.3) in a
completely analogous way to that used for the case of Eq. (3.1) and developed
in section 3. Thus, when selecting the abscissae s along L as shown in Egs.
(6.2) and (6. 3), it is sufficient to select the points o, of application of Eq.
(6.1) in such a way that :

Aty (01)) + B (2 (07)) cot no, = 0. (6. 4)

On this point, one can notice that Eq. (6.4) is analogous to Eq. (3.3),
valid for the case of Cauchy type singular integral equations along a part of

the real axis.
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Although the above-described method of numerical solution of Eq. (6.1)
is applicable only when the ratio B(t) /4 (&) is a real function, nevertheless
special techniques can be used even when this ratio is not a real function.
For example, when A(#) is a real constant and B(f) an imaginary constant
(or vice-versa), one can apply Eq. (6.1) at first by using the abscissae sy and

the points of application o, given by :

kr L 2r—1)= i

Sk = e
i : 2n ) :

ST P (6. 5)

and then by using the points o, as abscissae and the points s; as points of
application of Eq. (6.1). In this way, one obtains a system of 2r linear
equations immediately reduced to a system of n linear equations as in the
case when A (z) and B(¢) were real functions.

The method of numerical solution of Cauchy type singular integral
equations along contours was applied to the numerical solution of the first
fundamental problem of Plane Elasticity for a finite region bounded by a
smooth contour of arbitrary shape, or an infinite region with a hole deter-
mined by a contour of arbitrary shape, with quite satisfactory results [37].

7. THE CASE OF COMPLEX 'SINGULARITIES

The numerical solution of Cauchy type singular integral equations of
the form (3.1) in the case when either then functions 4 (x) and B(x) or the
weight function w(x) are complex is of particular interest in a lot of cases.
Since the investigation of Eq. (3. 1) in this general case is difficult, we will
limit ourselves to the case of Eq. (1.5), under restrictions (1.6) and (1. 7). In
this case, the Gauss-, Radau- and Lobatto-Jacobi rules can be used, at least
when the ratio 4/B is a real constant.

In the opposite case, it was proved by Theocaris and loakimidis [38],
both theoretically and through numerical applications, that it is permissible
(under some usually fulfilled conditions) to use as points . of application of
Eq. (1.5) points lying in the complex plane outside the integration interval.
That is, although in general no points of application of Eq. (1.5) can be
determined in the integration interval (—1,1), since the weight function

w(x) as well as the corresponding Jacobi polynomials result to have complex
4
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coefficients, nevertheless, we can work exactly as in the case of a real weight
function w(x) and Jacobi polynomials with real coefficients without any
change in formulae used.

It may be noted that this technique, which seems a little strange, has
been used for the first time by the present authors and proved quite effective
in the numerical solution of Egq. (1.5) with complex singularities. Such
equations could be solved up to now only after an expansion of the unknown
function to a series of the corresponding Jacobi polynomials, as proposed by
Erdogan, Gupta and Cook [6, 7]. The method proposed by these authors, com-
pared to the method proposed here, requires much more computational effort
and is much less accurate for the same number of linear equations used.
Of course, in the case when the values of the unknown function at the
end-points of the integration interval are of interest (e.g. when stress inten-
sity factors are to be computed), the Lobatto-Jacobi rule should be preferred
over the Gauss-Jacobi rule. In this case, the end-points of the integration
interval are included among the abscissae used although all other abscissae
and points of application of Eq. (1.5) are, in general, complex numbers and
lie outside the integration interval.

We could add on this point that Theocaris and T'samasphyros [25]
proposed in the case of complex singularities that either the points of appli-
cation of Eq. (1.5) be arbitrarily selected in the integration interval (—1, 1)
and interpolation methods be used for the expression of the unknown function
at these points, or the imaginary part of the complex singularities be ignored.
Of course, it is evident that the method proposed here should be preferred
over both these methods.

Finally, the case of more general classes of Cauchy type singular integ-

ral equations with complex singularities is under investigation and it is hoped
that the extension of the method proposed here to the numerical solution of

such equations (based on their application at points of the complex plane
generally lying outside the integration interval), will be possible.
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B CiOINE Trilin Sl OFNUS

In this section, we will in brief summarize the results obtained by the
present authors in this paper, as well as in the papers previously referenced,
on thc subjects of numerical evaluation of Cauchy type principal value
integrals, of numerical solution of Cauchy type singular integral equations
and of the determination of stress intensity factors in Plane Elasticity crack

problems :

i) It was shown that the previously available methods of numerical solution
of Cauchy type singular integral equations, developed in Refs. [4] to [8] and
reducing such an equation to a system of linear equations with unknowns the
values of the unknown function at the abscissae used were exact for integrands
polynomials of degree up to (2n— 1) and not (n — 1) as it was believed. In
this way, they were completely equivalent to the corresponding methods based

on Gaussian integrations rules.

i1) The same method used in Refs. [4] to [7] for the derivation of the Gauss-
Chebyshev method of numerical solution of Cauchy type singular integral
equations was used for the derivation of the Iobatto-Chebyshev method of
numerical solution of singular integral equations, accurate for integrands

polynomials of degree up to (2n — 3).

iii) The Lobatto-type methods of numerical solution of Cauchy type singular
integral equations are very convenient for the numerical solution of such
equations arising in Plane Elasticity crack problems, since, in this way, the
determination of the stress intensity factors at the crack tips can be made

easily and accurately.

iv) It was shown that all usually used numerical integration rules for regular
integrals, with an arbitrary number and location of their abscissae, can be
extended to the case of Cauchy type principal value integrals, with no change
in their abscissae and weights if one more term, corresponding to the pole of
the integrand inside the integration interval, be taken into account.

v) By an appropriate choice of the points of application of a Cauchy type
singular integral equation, the additional term mentioned previously vanishes.
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In this way, such an equation can be numerically solved, as if it were a
regular Fredholm integral equation, by reduction to a system of linear
equations, possibly supplemented by one or more additional conditions.

vi) The Gauss-, Radau- and Lobatto-type numerical integration rules are, in
general, the best rules to be used for the numerical solution of Cauchy type
singular integral equations, in the same way as in the case of Fredholm
integral equations. By using special forms of interpolation formulae, the
unknown function in a Cauchy type singular integral equation, once determined
at the abscissae used, can be expressed in a polynomial form along the whole

integration interval.

vii) Several elementary theorems can be used for the determination of a
minimum number of points of application of a Cauchy type singular integral
equation. In the case of rules of the Gauss-, Radau- and Lobatto-type and
associated with the classical systems of orthogonal polynomials, an exact
investigation of the number and location of the points of application of a
Cauchy type singular integral equation can be made, under the additional
assumption that the ratio of the coefficients of the free term and the Cauchy
type principal value term of this equation is a constant. In this frequently
encountered case, it can be shown that the points of application of the integ-

ral equation alternate with the abscissae used.

viii) In the case of Cauchy type singular integral equations along contours,
the modified form of the trapezoidal rule for regular and Cauchy type prin-
cipal value integrals of periodic functions can be used in such a way that the
numerical solution of such an equation can be made in a manner similar to
that used for singular integral equations with an integration interval lying

on the real axis.

ix) In the case of Cauchy type singular integral equations with complex sin-
gularities, it is possible, for a sufficiently broad class of equations of this
type, that the points of their application used lie, in general, outside the
integration interval. ‘The same is true for the abscissae used. In this case,
the methods used for Cauchy type singular integral equations with real sin-
gularities can be extended, without modifications, to the case of Cauchy type

singular integral equations with complex singularities.
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x) The methods of numerical solution of Cauchy type singular integral
equations presented in this paper, as well as in a series of papers by the
present authors, make it clear that the numerical solution of such an equation
is by no means impossible and in most cases it requires about the same
amount of computational effort as the numerical solution of a regular Fred-
holm integral equation. Thus, it is believed that in future a lot of problems
of Mathematical Physics will be solved by reduction to Cauchy type singular
integral equations, which combine accuracy and effectiveness, and not by the
presently used less accurate (like the finite-elements) or less effective (like

the integral transforms) methods.
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NEAI MEOGOAOI API®OMHTIKHZE EIIIAYSEQX
IAIOMOP®QN OAOKAHPQTIKQN EEZISQSEQN

Mia &x t@v uedodov dux v dGorduntuny Exidvory Shoxknowtixdv #Eiedoswv
tnov Fredholm ovvictarar el miv dvayoyny wdc toiadtng #Ewodosme eic ovotnuo
Yooy EElcwoemy, Evita ta évumdoxovra elg v &Elowowy GhoxAneduara mooseyyi-
covran 9 adeoopdrwv, xatémy Epaguoyiic xatadhidov uedédov dordunuxiic Ghoxin-
ewoews, xal 1) 8Elowoig Epaoudletar €ig Tdag teTuMuévag Tag yonowomomndeioag sic ™mv
uédodov aouduntixic 6Aoxinodoewe.

Eig mv mepintwory §rov 6 muonv tiig 6Aoxinomtixiic EEiodoeme timou Fredholm,
medTov 1) devtégov eidovg, dmoredeitar dmod Spakov Soov xai iiduoppov Goov Timou
Cauchy, ourotuey meol idropdopov 6roxAnowtixiis 8iodoswg timov Cauchy. Eig v
aegimtwoly  tady 1) meonyovuévag dvagepdeica pédodog Gotduntxiic Emilioswg dmi-
oteveto dtr dgv NdUvato va Epaguoodfi. ‘H dmdoyovea texviy S v douduntixnv
gnidvowy dopndepov 6loxdnowtix®v 8Elowoewy (tdmov Cauchy) cuvistrato eig tiv ava-
yoyny tov elg iooduvduovg 6Aoxknomrixdag EEiodoelg tomov Fredholm devtépov eldoue
val eig v &v ovvexela Gordunuxiy Entlvory tdv tekevtalwy. “H uédodoc abty eloa-
xVetoa Vo tob Muskhelishvili, &yevixeddn Uxo 1ol Pogorzelski i molvmhoxwré-
eug meQLTTMOELS 1dlopudepmv 6hoxAnowtixd®v éElcwoewy. Ovtog amédeitev Gtu 7 dvaywyi)
idropdopov Groxdnowtixils EElodoemwg mewTov ) devtégov eidovg elc GhoxAnowrinnv
éElowowv tomov Fredholm devtépov eldovg v elvar mdvrote duvary. Snueodrar &v-
tatdo Ot ai év xonoer eig v Mmyavixnv didpogpor 6hoxdingmtixal EEwodoeig, ik
tag 6molag Eviiageodueda Nuelg gvravda, dvixovv eig v xatnyoolav adriv.

"EE dAhov, dudgpogor ogsvvnral xatwodwoav va dvaydyouvv dolouévac idioudo-
@ovg OloxAnowtinag EEowoelg tomov Cauchy elg cvoriuata yoauwxdv EEowoemy,
dw yonoewg nedodwv Gorduntixdis 6AoxAngwoswg S TOV Holoylopov Avolv TIU@Y
oloxAnowpdrov timov Cauchy, th Pondele dvantitems thg 6Aoxingwtéac mosdtnrog
elg dpdoydvia modlvovupa. Ottw 6 Kalandiya eig thv Sofetinnv “Evoowy  dvéntute
oxetuny pédodov dua v aoripuntiny éxtdvowy Wdopdepmv 6loxAnowtindv EElcwoswy

To®Tov £1dovg TOU TUmOUL :

1

5
| L
T

-1

(t)—;p—_(ti-dt —i—fw(t)k(t,x)tp(t)dt=f(x), sl ] (E.1)

5
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c

6mov 1 ovvdotnolg w(¢) elvar M ovvdotnolg Pdoovg, 1 6moia §dewonidn Eyovon TV

ooV :
Wi ) s Bl ams, (E.2)

@ (t) eivar M dyvwotos ouvdornetlg, Yewgovuévn 6ualn elg t0 didotnuo 6AoxAnodoems
[— 1, 1], &(¢ %) 6parog mepooyuévog muolv dvrog tod daotiuatog 6Aoxinowoswg xai
f(x) opakn cvvdotnolg &vtog tol avtol daoTipatog.

’Exiong ot Erdogan xai Gupta cig tag H.IILA. dvéxtvEav uédodov dordunti-

%00 brohoylopod xveiwv ttudv 6AoxAnowudrwv timov Cauchy tiic noopig:

(=%

1 :fw(t) AUk (E.3)

ue v avty ovvdotnow Pdoove w (¢). *E@honocav 8¢ v pédodov tavtmy S v
avayoynv tig gEwowosmg (E. 1) el ovotmua yoauwwmdv gElcdoswv thg noo@pig :

n 1 ,

Bt ke, x,)}(p(tk) i il D ke (Bid)
Omov f eivow ob tetpumuévar xai Ax ta fdom T yomowmomorovuevo eig v uédodov
aovdpumuindic 6AoxAnodoewg Gauss-Chebyshev Oiwa xowa 6doxknodupare xoai . eivo
ratollAog Emleydueva onueloa eig 10 didotmua 6Aoxinowoews (Aaufavéueva dg otCon
wolvovipwv Chebyshev), 6 dowduog m t@v 6molwv dVvatrar va sivar Toog mEOg
(n—1), n ) (n+ 1), to0 doduodb n dnhotvrog t0 mATjHog @V TeTuUMUévy, al dmotol
gMipdnoav elg 10 dudotnua 6loxknodoswe. Eig tny wegintwowv dmov m =n — 1, amar-
teltow uio 8wl whéov yoouunt) oxéolg, mEoxVTTOVOX €% TVOg (uolxiic ouvhixng tod
wooPAMjuatog, 1 6moia cvumAnowvel TO cUoTnuUe TOV Yoauux®v EElcdoswy.

’Ev tovtog, oi Erdogan xai Gupta 0gv dvredigpimoav 8t 7 péVoddg twv
aorduntixiic 6Aoxknowoswg TMro modymatt 1 uédodog Gauss - Chebyshev, 1 o6moic
glval axeBng 8” 6AoxAnodparta pe modvdvoua faduod péyor 2n, xal xiorevov 6Tl Tjto
anouPng 8 6hoxinoduata pue wolvwvvpo Baduod péxor (n—1). ‘H mageEdynoic adtn
ovveylodn elg oepav dmuooctevoewy Vo ol xadnynrot Erdogan xai t®v cuveoyat@®v
TV, ouumeoeAndn d& xal eig dnuocsievoy tod Aavod &oevvmrod Krenk, yevizevoav-
tog T Gmotedéopara t@v Erdogan xai Gupta eic mohvmhoxmtéoag 6hoxAnowtindg

8Elomoslg Th)g HooPTig:
1

Aw (x) ¢ (x) + gfw(t)%dt +fw(t)k(t,x)<p(t)dt = fiz) < “(E.5)

=1
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ue ovvdotnowv fdoovg w(t) tiHg poopiic :

w(t) = (1 —12)*(1+41¢)f, (E. 6)
dmov :
1 A=—B 1 A—iB
a— i In A7 B +N, f=— i In Y +M, a+f=M+N=—=x, (E.T)

omov N nat M elval axéoaor Goudpol, 6 8¢ deintng % haufdver tag tupag (—1), O xai 1.

*Avagégopey ot M texvix) tob Krenk g8aciodn sig ididtnrag t@v mwohvwvipmy
Jacobi xat §tu oUtog ouviyays, xwolg vo t0 avtiingdi, v Aeyouévny Gauss-Jacobi
uédodov aouiuntiiic 6loxAngwoswg Ok xvotag Tiwdg Wdoudopmy 6AoxAnowudrov Ti-
wov Cauchy,

Tehevraiwg, 6 6@V peta tod %. Toaxeuidn arédeitav, yonowmomotoavreg TV
admy pédodov pe tov Erdogan xal tovg ovvegydrag tov, 6t ai uédodor dorduntixod
vmohoytopod tig xvolag twuilg Woudopwv 6Aoxingwudrtov timov Cauchy, ai yonowo-
moindeloal vwo tod Erdogan xal tdv cuvvegyatdv tov, nooav axoBeic d° 6AoxAnow-
téag cvvaptioelg @ (2) molvaovuna Paduod péxor 2n xal odyl uéxor (n — 1), bg magedé-
xovro 6 Erdogan xai ol ovveoydral tov, amodeifavreg olitwg Ot modymatt 1 teyvixn
1 Eépaguocdeion Um0 tovtwy ovvémmrte pue v uédodov Gauss - Chebyshev xai yevi-
nTEQOY UE TV pédodov Gauss - Jacobi.

’EE dAlov dAdou gosvvmrat, ®g 6 Hunter eic tv *Ayyiiov xai of Chawla xal
Ramakrishnan sig tv *Ivdiav, 8yevixevoav tag uedédovg dotduntiniic 6Aoxinodosnc
Gauss - Legendre ag’ évdg, xai Gauss - Jacobi xai Gauss - Chebyshev da¢’ £tégov,
St tov aouduntixov mooadioglopov xvplwv Tiu@v  6AoxAnowudrov timov Cauchy.
ITepontéow, 6 oud@v petd tod %. “loaxewuidn avémtvEav yevixny uédodov dorduntixod
vrohoyiopnod 6hoxknowudrov timov Cauchy, gmitoémovoay v Epaouoynv oiacdimote
uedodov dGorduntnilc 6AoxAnowoswg Egpapuolouévng elg xowd 6horknoduare xai eig
tduopooa 6AoxAnoduarta.

Otrwg émetetydn dordununn Exilvoic WBroudopwv 6roxknowtindy EEicdoewy

il HoQepi)g -
1 1
t 5 ! ,
40 0@ o + B[00 LD di+ [0 ko990 d = (), ©9
= —1
omov al 4 (x) »al B(x) eivar mepoayuévar ouveyels cuvaQtnoglg gig t0 didotnua 6Ao-

whnodoswe [— 1, 1], £ (¢, x) elvar duakog mepoayuévog muenv eig 10 adto didoTnua g

TEOG AuoTéag Tag METAPBANTAC £ xal ¥, &xtog TOV TM@Y x = + 1, xal f(x) yvworn
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cUVAQTNOLG, Mav®s Taovaetdlovoa Govevelg 1Olopooplag Taea Ta dxea tol diaoti)-
natog OAoxAnomoewc.
Svueovog meog v uédodov tavtny 1) avoréew £Elowotg duvatal va Gvoaydi

gic 10 xdrwd ovotnua yoaumwx®v EELoWoEmy

% Bx)

k=1 b — %¢

il k(thxr)J @ (tx) ‘:f(xr), i P (E,$))

Goxel T onuela X Epaouoyiic thg OhoxAnowtixis 8Eodoswg va Exovv xatariirog
gmAey).

*Ev ovveyeta €deiydn Gt 1) &xhoyd) tdv onusiov X, E@aguoyils tiig 6AoxAnow-
wxig 8Elodoemg, Mg mooetddn Umo tdv Erdogan, Gupta xat Cook O tiv &idwxnyv
meotmrwow 6mov A (x)=0, d&v 1o 1) oo, 6dnyovoa elg Poadurdtny ovyxhiowy tdV
amoteleopdrwy.

*Extog tdv pedédwv dotdunuxilc 6hoxknowoswg Gauss - Legendre, Gauss -
Chebyshev xai Gauss - Jacobi, &yonowwomorInoav xai €regor uédodor Gordunmtixiig
ShoxAnodoemwg S v Enthuowy thg katwtéom yevixmtdtng idtopoepov 0AoxAnowrixiig

gElowoemg -

il x>+Bx>f dt+f Bl ) ) ),

a << X< by

(E. 10)

Gmov 1) cuvdotnotg Pdoovs w(x) meocdiopiletar xataldilmwg €ig 1o didotnua Ghoxin-
owoews [a, b].

IMood to yeyovoe 6t ai pédodor dorduntiniis 6hoxAngwoewg timov Gauss gai-
vovror v eivar af xatolnAdteoa nédodor dorduntinod voroyionol xvotwv Tiudv idio-
uéepwv 6rloxinomwudrov timov Cauchy, &v tovtoig &lg moAdag meQUATMOELS *OTAL TNV
gnihvowy Wopndopwv 6hoxAnomtindv Elcdocwy EvoLapéel ldrdg 1) T TG AyvdoTou
ovvagtioews @ (¢) eig ta droata onueia a xal b 1ol dwaotinatog 6AloxAnodoemg Tiig
drondopov 6hoxdnowrtixiig EEowoewe. Eig tv mepintwowy avtiy, &av yonoiwmwomoindoiv
at pédodor aouduntixiic 6Aoxinodoewg timov Gauss, dmaiteitor vo Epoguoodii uédo-
d6¢ tig magepuPoliic, 7 mdilov mooexfolriic, dua tov xadoolopndv TOV TV @ (a) nal
@ (b) tilg dyvawotov cuvagticews @ (¢) el ta dxoa @ xal b 1ol Stactijparog GhoxAn-
owoewg. “AAAd, dedouévou Gt al uédodor dorduntixiic 6AoxAnowoewg timov Gauss
glvon axoBels dua ovvapuioels @ (¢) molvdvopa Baduod péyor xal (2n—1), &vd ai.

uédodor tilg mageuPolriic 7 mooexBoliic elvar dxoieis dud ovvagtiioeg ¢ (¢) modvdvuua
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Baduod uéyor (n — 1) poévov, eivar mpopaveg Gt al pévodol mapeuforic 1) meoexPolig
glodyouv onuaviixd opdiuata eig tag twag @ (a) xal @(b) tig ovvapriosws @ (¢),
al 6motlal mwagovotdlovy eldinov dvdiagéoov.

Eig m)v mepoimtwowy avtnv 1 yonowwomoinoig t@v nedddwv dorduntiniic 6hoxin-
owosmg tomov Radau, 1) fjuxkeiotov timov, meoilaufoavovodv petaly t@v TETUNUEVOY
TV v éx TOV dxowv Tol daotiuatog OhoxAnowoswg a 1 b, 1) TV uedodwv timov
Lobatto, 1 #Aetotol t¥mov, megithauPavovo®v petalld TOV TETUNUEVOV TOV GUEOTEQX
0 Gora GAoxAmomoswe, magovoidletar dg 1) xalvtéoa duvarn Avoig, xad’ Goov 1) axol-
Bera tig dorduntiniig 6hoxinowoewe dia t@v uedddwv avt@v Ehatrovtar dAlyov wdvov,
apot al puédodor adtar lvor axouBeis dud ovvaptioeg @ (¢) molvdvuno Baduod péyoer
(2n — 2) nai (2n — 3) dvroroiywe.

Al pédodor Gorduntiniic 6hoxknowosmg timov Radau xal Lobatto sionyInoav
dua Tov vodoytopuov xvpiwv Tiudv 6AoxAnowudrov timov Cauchy 10 medtov Umod Tob
omhotvrog xai 1ol %. Twaxewuidn el ospav #1dn dnuootevdéviov dodowv eig T
EEwTEQLROY.

Eig mv dvaxoivwoiv adtv mogovotdletor yevixy uédodog avaywyiig idondopmvy
oloxAnowtik@v EElomoewv thg yevirdic wooeiic (E. 10) eig ovotiuata yooupwxdv &Ei-
owoewv tig noopiis (E.9) xata tedmov dveEdotnrov tig yomotmomotovuévng uedodov
agorduntindic 6AoxAnodoswg, fitig Yewoeitar yvworn &x t@v mootéowv. "Ex tijg neddédov
avtilg mEoxvpav Yevixevoelg Epaguolopevar gig v aorduntuy EntAvoy Wdlondepov
6LoxAnowtix®v £Elowoswv timov Cauchy eidudv woppdv, Gmwmg . . Wioudogpwv 6ro-
xAnowtin®v EEl6WoEMY %0Td Uixog *AeLoT®V xaumvAwv 1) idioudopwv 6hoxAnowTixdv
gElcocmv ovvdeoudvov ué wyadiwag dopoogiag el T dxoo tod diactijuaroc
6hoxAnomosme.

Awa tiig OteEodixig tavtng mekétng, 1) Omota Emeerddn O mEMTNY QOQGV xal
glg v Mav évdiagépovoav megimtwory, Gmov al ididpopgpor 6hoxAnowtixal EElomosig
meotéyovy uryadixag diopoppiag eig ta dxgo tod dactiuatog GAoxAnodosws, mEoéxv-
Yoy to EETIG *UOIWG CUUTEQUOMATO *

1) *Aznedeiydn 0w al meotmdoyovoar uédodor dotduntixot vroAoyiopol xvolwvy
Tudv dopndepwv 6loxkngowudtov tmov Cauchy xai gpapuoliuevar gig tv Gotdun-
v Exilvowv Wdiopdopwy 6hoxinowtix®v &Ewowoswv timov Cauchy sivor axoifeig
S 6hoxAngovuévag cvvagtiosig wolvavupa Baduod (2r — 1) xal ovyl (2 — 1), dg &mi-
otevero uéyor onueoov. Kata ovvémeiov eivar dmolitwg looddvapor meog tag avriotoi-
yovg uedodovg tag Paoilopévag eig uedddovg 6Aoxinowoewe timov Gauss.

2) ‘H avth dwadwocio 1) avoamtvydeloa meog eligeowv thjg pedddov Gauss -
Chebyshev &gonowmomodn »at da v GvdmtvEly tijg uedddov Gorduntiniig dmAv-
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oewg ooy 6Aoxknowtinwv EElowoswy Iobatto - Chebyshev, 1 6mota eivar axou-
Bg dwa wolvavupa Baduot uéyor (2n — 3).

3) Al pévodor Gouuntiniig 6AoxAnowoswe timov Lobatto eivaw xardAinlor dud
v éxtlvoy WBopdopwv 6Aoxinowtixdy 8Elcdoswy, ai 6molal Gmavidvral eig mEoPfAN-
woto Bhaotixdtnrog, %ol 0N onyuatwuévov mhaxdv, xad’ Goov avtar dmitpémouvv TOV
an’ gvdelag, dvev meoexPoAilg, mEOoOLOQIOUOV TV cUVTEAEOTMV EVIdoews TAOEWV €ig
TO %00 TOV QWYUQY.

4) *Amedeiydn 6ti Ghar ai uédodor, ai 6motar cuviVwg yEMOLLOTOLOVVTOL ik
1oV GordunTinov vmohoylondy cuvidwv 6hoxinowpdroy, e tvyatov aorduov xai Yoy
OV TeETUNUévoY Towv, Ovvavtal va émextadolv ol €lg TV TEQITTOMOW %UQIOV TIU®DV
doudopwv 6roxAnowudrov timov Cauchy dvev GAlayfic T@V TETUNUEVOY %Ol TOV
Boagdv, Goxel novov va Anedf vx’ Sy eic i whéov Goog, AvticToLy®V €ig TOV TOhoV
tiic 6hoxAnoovuévng cuvaptiicewe Evtog tod daotinatog GAoxAnowoenc.

5) A natarinlov éxdoyiic t@v onuetwv Epaouoyiig tov Wiopudopmv 6Aoxknow-
tx®v £Elowoewy 6 émi mAéov oUtog Goog Ovvatar vo undeviodi. Kat’ adtov tov 1o6-
wov ai tolavtal &Etowoelg dvvavrar va dmAvdolv dorduntindg, ®g Bav Noav rRowol
ohoxinowtinal gEowoeg tomov Fredholm, O dvaywyiis slg cvotiuata YOoouuLx®v
gElooswy duvduevo xato TEQImTWOLY VO GuMITAnowUolv Otd pudg 1) TEQLOGOTEQWY
oo VETwV cuvInx®v.

6) Al pédodor aoduntxiic OGhorAnodosws t@v tnwv Gauss, Radau xal
Lobatto amotehotv xat’ doxny tag xahvréoag uedodovg dwa v dorduntixny ExtAvoy
idtoudopwv 6loxAnowtindv Eodoewy, GOg dxoPdg loyler »al d cvvnVerg 6AoxAnow-
tnag &Elodosig. ALV’ Epaouoyiic eldndv timwv maepforiic M dyvwotog cuvdotnolg €ig
v i0époopov  6hoxknowtinnv EElcwowy timov Cauchy, eddig g meoodiogiod eig
molopévag tetumuévag, dvvaral va Exgoacdi Vmo poe@ny mohlvwviuov €@’ dlov tol
dwaotnatog 6hoxAnomosms.

7) Awdgooa otoiyelndn dewouata dvvavror va Epaguoodoiv dua tov xadopt-
opov tod ghaylotov Gotduol TV onuelwv E@aomoyts mag dtoudopov GrhoxAnomtixnig
gEwowoewg tomov Cauchy. Eig v meolntworv tdv pedédwv Gauss, Radau xai
Lobatto &v cuvdvaou® pé 1o xAacoixa cvetiuota dodoymwviov molvwvipwy ddvatat vi
gmtevy 9 6 whjong xadoglopdg Tob oot xal tig Yoswg TV onusiov Epaguoyiig
tiig topdopov GroxAngwrixiis EElcdoewg Vo v mEbcdetov moovmbdeowy Gtu 6 Adyog
T®V ovvieheotdv tob Ehevdégov Gpov xal tob Ghoxknoduatog tomov Cauchy tic 2Elom-
oewg eivar otadeds. Eig v cuvidn avtiv meolmtwowy i tag Epaonoyds dtvartar va
detyd1) 6t ta onuela Epaguoyils tig 6hoxAnowtixiic 8Elcdoewg Evalddocovral pg tog

YLOMOLUOTOLOVUEV OGS TETUNUEVAG.
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8) Eig v aepintwory idioudopav Shoxknowtixdv &Eowoewv timov Cauchy
AT UT*0G *AEWGTOV xaumVhov, 1 TomoTOMUEVY WooQY Tig uedddov tdV toamelinmv
d wowva g xal Wdiepogpa GhoxAngduato TeQLOdx®Y GuvaoTnos®Y dVvaTal Vo yoNoL-
pomotnVfj xatd TololTtov tEdmov, Mote 1 dotduntiny &nidvole t@v EEcdoswv adTdV Vi
dvvatar va Emrevydf xat’ dvdloyov tedmov dxeivov, 6 6moiog yomotuomoteitar i idio-
ropovg 6roxAnowtixdag 8Eiowoeig ug didotnua 6AoxAnowoews xelevov &l TV TOOYMOL-
ol dEovog.

9) Eig v neoimrwoy idiopdopwv 6roxhnowtindv EEledoewv timov Cauchy
peta pyadux®dv  idiopoopudv elg T dxga tod dtactiuarog 6hoxAnodoswg eivan duva-
TV, dua oyeTindg evpelav Tl &Elcdoswv Tol TUmOU avTOV, VA xelvral TO ONUElc
gpapuoyiis T O0AoxAnowtixiic &Elodoswg &xtog tol daotiiuartog GAoxAnowoesws. To
avto duvaton vo toxun xal O tag tetumuévos. Eig v meolntwowy admyv ai 10m yom-
owpomormdetoar uédodor dua v aorduntixv éxidvowy idroudopwv 6hoxinowtindv EElow-
oewv tUmov Cauchy dvvavrar va Emextadolv dvev tpomomoroewy ol O TV meplmtw-
owv tdopdopmv 6hoxknowtindy 8Eodoemv tomov Cauchy pe pryadixag idiopoopiac.

10) Al pédodor dorduntniic émidvoewe idopbogpmv ShoxAnowtixdv EElcwoswy
timov Cauchy ai magovoiacdeioor &ig thv dvaxoivwowy tavtny, O¢ %ol €ig TEONYOU-
peva dodoa tob Guhotivrog xal tod cuvepydtov tov, nadiotoly qavegdv 6tL 1) dordun-
T &nilvolg totovtwv EElomosmwy xat’ ovdéva Todmov eivar advvatog, eig mAslotog Of
TeQUTTWOELG Grottel to avto mAfidog dotdumTixdv Umoloylopudv g xal el TNV mEQi-
atwowy ovvidov 6hoxdnowtik®dv EEwwwoewv timov Fredholm. OUrw moteveton St eig
10 péMov ompavtinog Gorduog moofAnudtov Tig nadnuatixiic Puowxiic da Svvavror va
gmllovtal 3 avaywyiig tov elg idioudogpovg 6AoxAnowtixdg EEcdosig timov Cauchy,
al 6moian ovvdudlovv axoifeiav xol dmoteheouatindétinta, &g GVTLROTAOTOOLY TOV OAL-
yoteQov AdmoteAeopatix®y xai axolfdv uedédwv tdv memegacuévwv otolyslov 1) TOV

ohoxAnowtir®@v ueraoynuatioudv, uedodwv edigloxoudvav el yevinNy 01OV G1UEQOV.



