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Material and its Spectral Decomposition, by Academician P. S.
Theocaris*.

ABSTRACT

The spectral decomposition of the fcurth-rank transversely isotrcpic (transtropic)
tensor of ar elastic solid constitutes the simplest kind of decomposition which, expressed
explicitly in terms of the respective engineering constants of the materials, presents certain
advantages over cther forms of decomposition useful in engineering applications. Indeed,
the eigentensors derived from this decomposition present the quality to decompose the
energy of the body in orthogonal components of the second order symmetric tensor space.
In this way energy-crthogonal stress states were explicitly determined associating the
elastic energy components with these stress tensors, which identified with combinations
of the dilatational and distortional strain energies of the field. Thus, it was shown that
the four eigentensors of the spectral decomposition define four characteristic states of
stress corresponding to two states a; and o, which are shears with o, being a simple shear
and o; being a state of stress derived from the superposition of pure shear and simple
shear. The other two eigenstates yield a sum (o3+0,) which is the orthogonal supplement
to the shear subspace of o; and o,. These eigenstates constitute an equilateral loading
in the plane of isotropy of the material, superimposed with either a prescribed tension
(og), or compression (o,) along the axis of symmetry of the material.

* IEPIKAEOYZ I. OEOXAPH, ‘O tavvotig Tetdptng tdEewg évddocewg é&yxapoiwg
lootpémwy péowv xal ) acpatiny droabvdesis tou.
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I. INTRODUCTION

The definition of energy orthogonal stress states was introduced by
Rychlewski [1]. This term denotes stress tensors for the generally anisotro-
pic solid, mutually orthogonal and at the same time colinear with their
respective strain tensors. It was shown [2] that, if a given stress tensor was
decomposed in energy orthogonal tensors, then these tensors also decompose
the elastic energy function. The decomposition of the elastic stiffness or
compliance tensor in elementary fourth-rank tensors serves as a means for
the energy orthogonal decomposition of the stress tensor, the appropriate
decomposition of the fourth-rank tensor being the spectral one.

Similar decompositions, non spectral, of the fourth rank tensor were
also given by Walpole [3], Srinivasan and Nigan [4] and others, in order to
simplify calculations with fourth-rank tensors, and cbtain invariant expres-
sions for the components of the stiffness or compliance tensors.

Indeed, Walpole has presented for the first time a reduction of the
algebra of the fourth-rank tensor to irreducible subalgebras, which were
much simpler than the initial one, and therefore they facilitate any operation
between fourth-rank tensors. In this general form of decomposition Walpole
includes also the spectral decomposition of the fourth-rank tensor, which
possesses the already discussed unique properties in refs. [5] and [6]. Subse-
quently, Walpole decomposes the fourth-rank tensors for all kinds of crystals.
However, all the subspaces contained in these analyses do not correspond
to the spectral decomposition, except for the trivial cases of the isotropic
fourth-rank tensor and the tensor corresponding to the cubic system. Thus,
in refs. [5] and [6], as well as in this communication, the spectral decomposi-
tion was applied for the first time for the fourth-rank tensor S, of compli-
ance of the elastic transtropic material and this decomposition was pres-
ented explicitly in terms of the engineering constants.

Indeed, in the respective decomposition by Walpole [3] the fourth rank
tensor S is expressed by:

S=aA +bB +-cC +fF +gG (1)
whereas the spectral decomposition [5, 6] yields:

s==)-1E1 +ME2 +)‘3E8 +KAEA (2)

6
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In relation (2) the Ajs (i=1, 2, 3, 4) are the eigentensors of S, whereas in rela-
tion (1) the quantities a, b, ¢ are not eigentensors of S. The only common
property between the two decompositions is the identity of the idempotent
tensors F and C with the E; and E,, whereas the E; and E, are totally dif-
ferent than their respective A and B eigentensors.

In this paper it was succeeded to decompose spectrally the compliance
tensor for a transtropic material, representing fiber reinforced composites
and to evaluate its characteristic values. Based on the properties of this
decomposition, energy orthogonal stress states were established. It wes
further shown that the eigen-values of the respective stiffness tensor, when
spectrally decomposed, establish new bounds for the values of Poisson’s
rations of the transtropic material obeying restrictions of thermodynamics.

2. INTERRELATION BETWEEN TENSOR SPACES

Let L be the space of symmetric rank-two tensors over R3. Tensor
space L together with the ordinary definition of scalar product constitutes
a 6-D Euclidean space. We denote by M the symmetric tensor square of L,
that is the space of symmetiic fourth-rank tensors. In symbolic notation,
the above defined tensor spaces are given as:

=sym R3:®@ R3
M=sym L® L

These tensor spaces constitute the appropriate field for the mathema-
tical description of the Ayperelastic solid. This solid corresponds to the class
of material behaviour, whose elements are characterized by a stress and
strain tensor, o and e respectively, (o,e /o,ecL) and by a potential function
T (elastic potential), for which it is valid that =9, T. For small strains e
and isothermal or adiabatic conditions, this is equivalent to Hooke’s law:
6=C.e=Cjjxen (3)
By means of the scalar product defined on L, the elastic potential is expres-
sed by:

2T=O'E=O'u€u (4)



IZYNEAPIA THX 23 @EBPOTAPIOY 1989 83

The fourth-rank tensor C (stiffness tensor) acts as a symmetric linear
operator on L, i.e.:

CL-L,a. C.asvya €L (5x)

transforming the space L into itself. Equivalently, with respect to the scalar
product defined in (3), symmetry of C is expressed by:

a-C-b =b-C-.a Aa, b L. (5a)

With respect to the symbolism used we note that small boldface letters denote
tensors of L, capital boldface letters are tensors in H-space and normally
printed letters denote scalars.

Fulfilment of basic requirements concerning the properties of the strain
energy function, T, implies tensor C to be positive definite, i.e.,

aCa>0vya € L.

As a result, a fourth-rank rensor S, (compliance), exists such that the commu-
tative product of C and S yields the unit element of M-space. Then, equi-
valently from relation (3) and taking also into account that:

la=a va €L

1
C-S = CjjmnSmnx 1= S* C=ljj = —2~(31k311 +3ujx),

one has:

e=S.0. (6)

By means of equations (3) and (6), relation (4) is expressed in an alternative
form:

2T=0'S:0=¢€:C-¢, (7)

which, due to the positive definite property of C and S, assures the strain
energy function to be strictly positive.
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3. FOURTH-RANK TENSOR ALGEBRA

Consider some properties of the M-space tensor in accordance to their
interrelation with square matrices, space of rank six. The set of characte-
ristic values of the tensor S, say A, As,....Aq, are real, but not necessarily di-
stinct. Then: Aj,...Am/m £ 6 and Ag #Ay for K£N (K, N=1,....,m)
and the tensor S disposes a set of roots of its minimum polynomial, which-
in factorized form, can be written as:

(S-A)...(S—Aml)=0. 8

In what follows, no summation convention is adopted over indices K and N.
Then, as it can be readily proved, tensor S is expressed by:

S=ME; +... +MEm, 9)

while tensors Ey are the polynomial multipliers of the Lagrange polynomial
associated with (8). Thus, tensors Ey are given by:

Ev = (SMb-.. (S-Anal) (S-Anal)-.. (S-Aml)

ey 10
and satisty the following relations:
1=E, +... +En
ExEy=0, E ; =B . (1)

By means of the obtained spectral decomposition of tensor S, as in relation
(9), its inverse, say S-!, is simply expressed as:

1

S-l=___
M

Bt %— En . (12)
m

The spectral decomposition (9) and (12), of the fourth-rank tensors over
R® is of great help in the sequel for the determination of energy orthogonal
stress states, but it is also very important per se, since Ay can be expressed by
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means of Sy, which are invariants with respect to changes of the coordi-
nate system. Then, in formulating solutions of anisotropic elasticity pro-
blems, use of the stiffness or comgliance tensors in the forms (9) and (12)
will significantly simplify calculations, since only tensors Ey have to trans-
form their components with changes of the coordinate system, and those
tensors contain a Jarge number of zeros.

Besides the spectral decomposition of S, there is a possibility of many
others which also yield invariant expressions for Sy We note for example
the works of Hill [7, 8]. Srinivasan and Nigam [4] and Walpole [3]. The
decompositions obtained in these papers are appropriate for the formulation
of elastic-inclusion problems or related ones, but they are not offering the
powerful properties of the spectral decomposition and its applications.

4. ORTHOGONAL DECOMPOSITION OF SPACE L

Recalling relations (3) and (5a) and taking also into account the decom-
position of the unit tensor of M-space, obtained through the spectral decom-
position of a tensor S € M, one has the following equivalences:

Is=s, s e L
or:
(Ey+... +Ep)-s=E;s+...4+Ep's, m £ 6
Denoting by S;€L:
sg=Ex'S K=1,...m
it is valid that:
=$, +... +Sm (13)
Moreover, it can be readily proved that:
sg'sy=0 for K#N
or what is the same:
sglsy, K#= N . (14)

For the tensors sg, relation (5a) still hilds:
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I'spn=E;'sm+... +FEm'Sm=5m

and the following important relations are also valid:
Ex-sy=0 for K##N

EK'SK= SK (15)

Then, by means of relations (9) and (15), it can be seen that, for the linear
symmetric operator S € M on L, tensors SxEL are eigen-elements and the
associated eigen-values are Ay, that is:

S'sm=(ME; +... +AnEm) Sm=AuSm (16)

The analysis already presented by means of relations (13-16) could be sum-
marized in a classic theorem of linear Algebra as follows:

Theorem:

L: sym R*® R?, supplied with a definite positive inner product (scalar).

S: L— L symmetric linear operator. For, if Agx is an eigen-value of S and
Lix (S)CL is the set of all sx€EL, such that S-sg=Agsk, the following propo-
sitions are valid:

1 L)\k (S) CL, SIL)\k - L is onto and 11, that is S:L)\k —bL;\k.

2. L=Lyy(S) +... +Lm(S) /Lix(S), Lyx(S) being orthogonal for KzN.
Lx(S) are called eigen subspaces, associated with Ag.

The proof of the theorem is also given by the same set oi relations (13-16).
Subspaces Lyg(S) are constructed by means of the action of linear symmetric
operators Eg, i.e.:

Lik(S)=(sx /sk=Ex s, S € L). (17)
In classic mathematical symbolism this is denoted as follows:
Lyx(S)=InEx

(L-Lx(S))=KerEg, (18)

where Im denotes the image set of operator Ex, while Ker its kernel set.
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The above-cited analysis, based on the theory of linear symmetric
operators, consists of well established topics of linear algebra, which can
be found in any classical textbook, as for example in these of Lang [9],
Bishop and Goldberg [10] and others. An equivalent analysis, argumented
in a somehow inverse way was also given by Rychlewski [2].

5. ENERGY-ORTHOGONAL STRESS STATES

Consider again the hyperelastic solid solely characterized by its pro-
perty C or S. Then, for a given stressing, o, of it, Hooke’s law makes corre-
spond an associated straining €, or the inverse, that is:

€=S'G=(AIE1 +--. +)\mEm)‘G=7L161 +u- +lm¢m. (19)
Then, the strain tensor e can be written as the sum of elementary tensors ex:
€=¢,+... +€n (20)
and the following is valid for these tensors:
€x=MAxOg, k=1,...m (21)
where no summation convention was adopted over K, as it has been already
stated. The background for the definition of energy orthogonal stress states
is now well prepared.
Definition:

Two stress states og, oy, EL of the hyperelastic solid C are called energy
orthogonal if:
1. °K°°N=O
2. O'K‘GN:O
It will be useful, in the sequel, if we remind a classic theorem of the linear
symmetric operator theory, appropriately translated in tensor symbolism.
Theorem:

Let S:L—L a symmetric linear operator, and oy a non-zero eigen-ele-
ment of it. If exEL and ox-ox=0, then:

S'O'K.LUN
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The proof of the theorem is trivial.
From the definition of eneigy-orthogonal stress states and the just above
cited theorem the following considerations are in order:

1. The orthogonal decomposition (13) of L-space is on the same time

energy orthogonal. That is, eigen-elements oy of the solid S are energy ortho-
gonal.

2. If o is an eigen-element of S, then tensors og and ex are colinear.

3. For an isotropic fourth-rank tensor S, of a linear hyperelastic solid,
although while for a tensor ¢ and the associated e colinearity is not in ge-
neral the case, there exists two energy-orthogonal stress state, op, op defi-
ned as:

o= —13— tre 1®1, 1=3§ (22)
and:
a,+op=a, ayap=>0 (23)

or which, of course, it is valid that o}, is parallel to €, and oy is parallel to
€p. A similar decomposition for the transversely isotropic S-tensor with
vo€EL is the subject of the present paper.

4. The energy-orthogonal decomposition provides a powerful means
for the decomposition of the elastic potential T of generally anisotropic so-
lids, as for the case of isotropic ones. Then, any quadratic limit condition
of elastic behaviour can be provided with a bound on some of the parts of
the decomposed elastic energy, or,in other words, each quadratic yielding
condition has a definite energy interpretation [1].

For, if we consider relation (4) defining the potential function T, one has:

2T(°)=°"€=G ‘S-o= (01 +... +°m)’(11E1 +...lﬁ,Em)'(0’1 +--. +Cm)=
=110'1-0'1+...+7Lm0m-0‘m. (24)

Recalling relation (21), the expression for the potential function can be re-
cast as follows:

2T(¢) =0;"€; +... +o’,;,€m

or what is the same:
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T(ay+... +on)=Te() +... +T(om)= —;— Mire % +... +7umtra§1 > (25)

Thus, any characteristic state oy has its own elastic potential T(oy), which
does not depend on the action of other ogs. This decomposition of the elastic
energy is as simple as this of the isotropic solid and is valid for any class ot
anisotropy. For example, triclinic crystals have m=6 By means of relation
(25) or (24) the condition for positive definite T attains its most rational
foom. That is simply:

N > 0.dn > 0. (26)

6. SPECTRAL DECOMPOSITION OF THE TRANSVERSELY ISOTROPIC FOURTH
RANK TENSOR

Consider now as an example the decomposition of the compliance
tensor of § a transversely isotropic linear elastic solid. Of course any other
similar tensor related with different material properties will decompose
in the same manner.

We suppose the Cartesian coordinate system which the stress and
strain tensor components are referred to, being oriented along the principal
material directions, with 33-axis normal to the isotropic (transverse) plane.
Using engineering constants with subscript (T) to denote elastic properties
on the isotropic plane and subscript (L) the corresponding ones on the nor-
mal (longitudinal) plane components of the S-tensor, associated with the
adopted Cartesian system, are given by:

Suu="Sss=1/Er

Sssss=1/EL

Snge=Sen=vr (Er

S1193= Ss311="53239="S3sea=—v1, [Er, (27)
Sia2s=S233a="S3223=Sg2sa=1 /4G,

S1015=S1sm=Ss11s=Sun=1 [4GL

S1018=S1901=Sq110=Sner=1 [4Grr.

All remaining Syg; are zero. Furthermore, between engineering constants
of the transverse plane holds the well-known isotropic relation:
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1 /2GT=(1 +VT) /ET.
The characteristic values of the associated square matrix of rank six
to tensor S, defined by (27), were found to be:
n=(1+vr) [Ex=1/2Gr
A=1/2Gy,

2 8 1
A= (L-vr) [2Ex+1 2By, +{[(1-vr) [ 2Ex-1 /2B +2v 1, [E |}
2 2 Y
M= (1-vz) ]2Bq+ 1 2EL - {[(1-v2) | 2E¢-1 2B ]2+ 2v /B ] F (28)

That is, two of its characteristic values, namely 2, and A,, are of multiplicity
two. Then, the minimum polynomial of tensor S is a quartic, and has as roots
A A, A3 and A,. The associated four idempotent tensors of the spectral decom-
position of S are given by:

1

it
E=E =3 (bikbji + bjxbp - bjjby)
@ 4
E;=E = 5 (budji~+buaj+bya +bjxan)
3
Ea =K =f®f= fufkl (29)

ijkl

4
E,=E  —8®g=gguabfgEL

The second-rank symmetric tensors a and b, figuring in relations for E, and
E,, and are defined by:

a=k®k

a+b=1, (30)
with k being the unit vector of R3, associated with the 33-direction of the
Cartesian coordinate system. Tensors f and g are also axisymmetric and they
depend on the components of tensor S. They are given by:

f= 1%— cosw b J-sinwa
[
g= 5 sine b-coswa (31)

with:
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- [(1-vg) ]2Bq - 1 2]
00820 = [y 2By - 1 2B 128 BT

\

where o is a characteristic angle which together with the four eigenvalues
M, Az, Ag, Ay define explicity and in the simplest possible way the mechanical
behaviour of the transtropic material. Angle w is called the eigenangle of
the material.

It is worthwhile mentioning again that for the characteristic values
given by relations (28) and the corresponding idempotent tensors of relation
(29) it is valid and can be readily checked that:

I=E, +E, +E; +E4
S =ME,; +xE; +7\3Es +7\4E4-

It is interesting to note that relations (28) and (33) correspond to the
decomposition of the isotropic elastic solid in the case for which it is valid
that: E;,=Ery, GL=Gv, vp,=vy. Then, relations (33) are written as follows:

1=E, +Ep, S=2E,+ApEp (34)
with:
r=1/3K, Ap=1/2G, Ep=%| ® 1, K=E /3(1-2v. (35)

7. CHARACTERISTIC STATES OF L, FOR TRANSTROPIC S

Let define the orthogonal subspaces of L in terms of which the space
of second-rank symmetric tensors, L, is expressed as their direct sum, and
which also constitute characteristic states of tensor S, that is they satisfy
the following relations:

with m running from 1 to 4, and Ay given by relations (28). These stress
states are simply defined by equations of the form:

on=Enc (37)
with E;, given by relations (29). Denoting by o the contracted stress tensor,
which in the form of a 6-D vector is written as follows:

o=[o,, 05 03, 064 o5 o, (38)
carrying out the calculations implied by relations (37), one finally has:
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1 1
= [—2‘ (01'02),7 (61-03), 0, 0, 0, O’o]T
°2=[0) 0; 07 Oy Os, 0]* (39)

1 ' 1
o= [72; (01 +03)c080 +038ine ][F COSw, \/i2_ cosw, sinw, 0, 0, 0 ]T

1 . | 10 T
o= [ F (61 +02) sinw-c3c080 ][ V—g_smm, @;51nm,-cosw, 0, 0, 0]

It is of course valid that e=0;+0,-+06;+0,.

As it may be derived from relations (3), the characteristic states of
stress, which correspond to the spectral decomposition of the compliance
tensor S of a transtropic material, decompose the random stress tensor in
a constantly prescribed manner. That is, states o, and o, are shears, with o,
simple shear and o, a superposition of pure and simple shear. The sum of
o, and o, is the orthogonal supplement to the shear subspace of o, and a,
These two states, i.e., o5 end g,, constitute equilateral stressing in the plane
of isotropy and prescribed tension or compression along the material axis
of symmetry.

Then, for a loading o, for which it is valid that:
¢ € Ly (S)
the corresponding coaxial strain tensor and elastic energy are given by the
following simplified relations:

€=Ax0
2T=Mx0 0. (40)

For a state of random stressing, which does not belong to any of the
subspace Lyg (S), the strain tensor and the elastic energy are given also in
simplified form, i.e., relations (19) and (25), after performing decomposition (39).

As it is known from isotropic elasticity, the strain energy density at
any given stress, o, can be separated into two parts, the voluminal and the
distortional, accounting for recoverable elastic energy stored by dilation and
distortion of the solid respectively.

Such a separation for the anisotropic solid, with identified parts as pre-
viously, is not in general conceivable. By means of decompositions of the
stress tensor in the form of (39), it is possible, however, to distinguish some
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loadings or classes of anisotropic materials, for which such a decomposition
of the elastic energy in dilatational and distortional parts constitutes a well
defined process.

Let consider again the transtropic solid and its characteristic stress
states, given by relations (39). The associated with o, and o, strain tensors,
€ and e, are related with pure distortion of the form, without any volume
change. This is obvious, since the only normal strain components are those
of tensor €, for which it is valid that:

and of course:

2 _ 38 2 0
Thus, the following part of the elastic energy of a transversely isotropic
solid:

2Td =)\1°1' 0 +)\203'03 (41)

is purely distortional elastic energy.

The remaining parts of the decomposition (39), i.e., o; and a,, they
are not associated solely with distortional or dilatational elastic energy.
Their respective tensors €; and €, produce both a volume change and a shape
distortion. However, for some loading configurations, or special material
characteristics, the work produced by the stresses o, and o, could be iden-
tified with a dilatational strain energy, or a distortional one.

Consider as an example the transversely isotropic materials which
satisfy the following equation:

(1-vg) [Ex=(1-v) [Ey, (42)

where v, vr, E, and Ep can take any value, where the moduli E;,, Eg
must be positive and vy, vy assume values for which all A are positive, in
order to maintain the positive definite character of the elastic potential
function, T.

Then, by means of relations (28), (32) and (39) it can be proved that
the work of stresses o, is expressed by:
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MGy'0y (43)

This quantity expresses a dilatational strain energy whereas, on the other
hand, the work of g, is a distrortional one.

8. CONCLUSIONS

The energy-orthogonal decomposition of the space of secondrank sym-
metric tensors, and especially of the stress tensor o, was obtained by means
of the spectral decomposition of the symmetric fourth-rank tensor, S, which
defines, in an unambiguous manner, the positive definite elastic energy fun-

ction:
2T=g-S-0.

The decomposition of tensor e thus obtained for the transversely iso-
tropic solid, gave four orthogonal (-energy) stress states, which decompose
in a clear and radical manner the elastic energy function.

Two of them, i.e., o; and o,, are solely associated with a distortional
elastic energy, whereas the remaining two denote in general both voluminal
and distortional elastic energies.

An interesting geometric interpretation arises for the energy-ortho-
gonal stress states, if we consider the «projections» of ox in the principal 3-D
stress-space. Then, the characteristic state o, vanishes, whereas stress states
¢,, 63 and o, are represented by three mutually orthogonal vectors oriented
along directions with the following associated unit vectors:

1 1
€e;: (v_i— ) _ﬁ_‘ ,0 )
ey (\% COSw, % CoSw, sino)) (43)

i — :
€, (\72: Sinw, SInw, -CoSw §-

The eigenangle « was defined by relation (32), where it was expressed by
means of the components Sy of the initial Cartesian coordinate system.

It is of interest noting that vectors e; and e, lie on the plane ¢;=ao,,
where by (0,0y0,05) we denote the stress principal Cartesian coordinate sy-
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stem. Vector e; subtends with axis o, an angle( % - ) » whereas vector e,

subtends with the same axis angle (n-w). Vector e, is perpendicular to axis
o3 and to the plane o,==¢, and lies on the deviatoric w-plane.

Let the initial coordinate system (0, o,0403) transform to the one dic-
tated by the directions of e;, e; and e,, with axis ¢, having the direction
of e; and axis o, this of e, If the new coordinate system is denoted by
(0,616203), then it is obvious that the expression for the elastic energy function
becomes:

B3 ?r% +ATE g _g‘, -

By normalizing the total energy 2T giving the value 2T=1, equation (44)
represents an ellipsoid, centred at the origin 0 of the coordinate system and
having as axes of symmetry the directions, e, e; and e,. The lenghts of the
semi-axes of the ellipsoid along the axes of the coordinate system are respec-
tively 1/VA, 1/VA, and 1/Vag.

Moreover, if the fourth-rank tensor S describes the isotropic solid, then
relation (44) represents an ellipsoid of revolution with its major semi-axis
along e, having the direction of the hydrostatic axis, i.e., 6;=6,=03;, and
the equal two semi-axes lying on the deviatoric w-plane. In this case, A, =i;=
Ap and A=A, with A, and Ap given by relations (35). The representation of
the elastic energy for the isotropic solid by the ellipsoid of revolution is due
to Beltrami according to Stassi d’ Alia [11].

Thus, the energy orthogonal stress states, decomposing a given stres-
sing @, were shown to also decompose appropriately the elastic energy fun-
ction, as described by relation (25), and when represented geometrically in
a principal stress space, they lie along the directions or the semi-axes of the
ellipsoid reprenented by relation (44), which is the geometric representation
of the elastic energy function, when it is normalized to 2T=1.
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HEPIAHWYIE

‘0 TavvoTis TETapTNg TdEews évdboews &yxapolwg lgotpémwy péocwy xal ¥ paopa-
Teh) dmoouvdesic Tovu.

To yvwotov xpiriplov dotoylng Tév i@y 1o Stwtumwdiy Smo vév Huber,
Mises xai Hencky (HMH) el wdv y@pov tév xvplwy tdoewv elvat xardiihov
&' EhxoTinds lobrpoma oTeped il mapovcidlovra paivbueva Sixpopdy dvroyiic
elg épehnuopdy xal OAIYw. TO xpiriprov adrd elc Tov y&pov 6V xvplwy Tdoswy
dmeuovilerar O¢ xUAwdpog xuxhiiic Eyxapalag Suxtopfic wd %Eove cupperplag
vy U3pooTatindy &Eova elg TOV YBpov TEV wuplwy ThoEwy.

To xpirhprov adrd émeberdlyn Omd 7od Hill, vo 1948, &’ dpBétpoma GTeped,
wh mapovaudlovra mwhAw awvbpeva Sapbpou dvrtoxiic cis dpehnvopdy xal BATYL.
Eig miy mepintwow tév dpBotpbmwyv otepedy 6 témog adtdg Stappoic xal dotoytus
naplotatar Omd EMetmTioD xvAivdpov pt &Eova cupuetplag mdAwy TOV H3pocTa-
Tixdy &Eova.

Acdopbvov 87i dmavia T oTEpex T& Yprowomolobpeva ele TG Epapuoyac
mapouotdlovy 10 Qawdpevoy Tig Suxpopds avroxiic elg Epedxvopdy xal OATYw, Ta
xprripLa adTe pévov 8’ iSavixde mepirrdoels elval kaTdAAA.

Kourhpix T omoto AapBavouy Om’ Eduw twv 16 Qauvbpevoy diapbpon dvroxig
(PAA) elvar T xpLTplo T THPLOTMUEVE &TO [LOVOYMVOUG Emipavetag, O TO xpL-
whptov Coulomb (xwvind) émpaveir, 1773), 76 xpithprov Hoffman (1967) xal
70 xpuinprov Tsai-Wu (1971). *Extéc todrwv, ta émola clte Oswpobvrar elduixal
TEpLTTOOE, T@V xateTépn Eupavilouévay, elte slval dmnpyaiopéva xal dxatdh-
MAa, Tehevtalng slonyfnoay dmd tol ouyypagéws To &k TEpLoTPOYTS CuUUsTEIKK
napaBorostdi xal T& EMeimtixa mwapafBoroedd 8 iobrpoma N 6pObtTpoma aTepea
avriotobyws. Kal al 300 povéywvor adral émpdvelnt Suetnpolv Gg &Eova cuppe-
tplag &Eova mapdAAnhov mpde Tov U8pooTatindv, 6 Gmolog peTamimTel Xal TAVTI-
Cetor mpdg tov B8poctatixdv &Eova ik Ta mapaBohoetdi &x mepLaTPOQTG, KATIA-
Mha 8 fobtpoma péoa.

Elvat yvwordv 8t Sk ta loérpoma oTepea 1) muxvéTs Thg EAxaTixig évep-
velag mapapoppwoswy (ITEID) Sbvartar va yowpiodij elg 3o 8poug, #vor el wpv
évépyeray petaforiic Tol Gyxou A Stoyxwtiely &vépyeiav xaxl el Ty aTpaguedy
dvépyerav. Ipdypate, duk dVo Tuyalug @opriceic @, xal @y, edpioxopévas érhs Tig
Ehaamixdig meployis, N oAuey (IIEI) T(e,+op) didetar dnd iy oyéary:
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T(ey+ep) =T(oy)+ T(op)

*AMa % (ITEIT) éxdotne gopricews, Bdoet Tol véuov Tod Hooke, SiSerar dg

T (0y)=06yS6; xal T (op)=o0p's-op

8mov s &xgpdler TOV TavuaTiy 4dne TdEews évdbocws ToU HAuxol.

Té &bpoiopa v (IIEIT) 8tder:

T (oy+0p )=06y-S:6,+6,'S-6p+206,-S-0p

*Amodeuevietat §tu pévov S T lobrpoma oTeped Oy's'op=10 xal Emouévws elvar
duvatdg 6 Sxywpiouds T6v SVo popedv taév IIEIL, d¢ dverépw dvepéoby.

Hpoyevéorepar mpoondletar Siupdpwv EmioTnubvey xatéhnbav elg 10 cupmé-
paope 6tu S T6 dvisbrpomov dua 7 &rocivdesis TEV Sbo popedv dvepyeluag Stv
elvar Suvaty xai TowoutoTpbmwg 1 mpoomdfeta yevixedoews Tob xpriyplon Stppoiig
tév Huber-Mises-Hencky xal xaliepdicews tig orpoqueiic évepyelag mapapop-
phoEwy G xpoipov peyélovg Sk thy Evapfw Tic Stappoiic Tol dvicotpbmon wé-
cov &métuye, dedopévov 8ti dmedetyfy 8tu wévov elg eldixag mepimrdoelg, émov Ta
pérpa EraoTinbétTog Tob cdpatog elvar T adta TPdg Thg Tpeig xvplag Sicubivoeig
TGV TaoEwY (xVBixa xpuoTadAind cuoTuata ) elvar Suvaty) %) TotadTy &mocdvieats.

Katémy 1¥g Oewpyriniic dnodetfews Omd ol Rychlewski 8tu ik 10 dviob-
Tpomoy odux ioyver 1 Suvatdrne dmocuvdécews Tol EAacTinol Tou Suvauixod o
otpopuen xal Stoyxwtied) (IIEIL) napovordlerar €36 4 towdty dmooivdeois,
éxtos Exelvov mod Tapovsidlovy xatadAfhwg oculevypévas EAacTixdg IdbTyTac,
xal elg TaG TEPLNTWOELG THG QuopaTiic Gvalloews Tol TavueTod TeTdpTne Td-
Eewg &vdbcews Tol péoov.

Hepropilopevor elg v &vduapépovsay mepintwowy Tév yxapsiwg lootpbmay
péowy, mod yemorwomorolyvrar TOANATAGG chuepov elg Tag dpapuoyds mepLypd-
pousv TV Qaopatix)y drocdvdeow Tol Tavuetol évdboews S Tol wéoov xal 8tSo-
pev Tag pilac Tol layloTov ToAvwVOEEY Tov ut Teds dvriaToyolvrag iStoTavuaTde.

Hpdypart, v 6 Tavvetis TerdoTng Tdbews Tig &vdboewg S Tob pecov dva-
b ele Todg Biotavuetac Tob o), Todg dvrioTouyodvrag el Tag Stomiwdg Ay,
drmodetxvietar 871 Sk Tag poptiosig oy of dvrioTolgor TavuoTal mapaRopPdGEWS
€ clval dvdhoyor dvtioT bywsg, pé Abyov dvadoylag Thv dvrloToyyov iStoTiudy Ak
v ouvnpinpévny pé Exactov iSotawotly oy Ilepartépw, of iStotavvotal oy
Emadn0cicvy v oyéoiv:

o'S-ony=0 =N 1)

4 ! 4 3 /7
oméTe ouvayeTtat N xatwtépe bTNE Twv.

Ot Botavuotal oy Enadndsbowy v oxéow op-ox=0 8 Tiuag tév k # N,
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nal elg Ty meplmrwow adty 16 Eaotindy Suvauxdy T(o; + 654...0y) loobras
avticTolyws Tpdg o &Opolopa:
T(e,)+T(o;)+... +T (ox)

Dopriceig Sid TavuoTdy éxbvrwy Tag dvetépw iBbTTas dvoudstnoay évep-
yeaxds dpboymvior popricei xal Tolro elvar Suvartdy 8 eloaywyic ToB yevixev-
pévov vépov Hooke ex =My oy elg wiv ouvbipxny (1) v dmodetfwpey 8t
Gk'S'GN=Uk‘€N= 0 duwx k = N

‘H oyéorg adrh) dmodaxvier 81t & tavueric tdoews ok elvar dpuoydviag
mpdg TOV TavueThy €y xal Emopbvag TO EowTepiedy Tou ywbuevoy loolrar mpedg T
wndév, frou i tdowg oy Ov mapdyst Eoyov pd Ty mapaubppwary ey (Six k % N).

Awi xaprectavdy mhalolov dvapopdic Tpdg TO dmoioy dvapépopey TAG Guvi-
oThoas TGV dvetépw TavuaTdy, xal oD bmotov ai Siewbiveeig Tavtilovrar pd Tig
wvplag drevbivaeis Tob péoov xal pd tov &Eova 65 G5 Tov oYty &Eova Tob péooy
sbploxovrar al cvvieTéour 100 Tavuorol &v8boews Sy Exmeppaouéval GuVApTHGEL
7ol pétpov xal ToU Abyov Poisson tol Yo, xabog nal al éxppdoeig tév iSto-
@y Ay 700 Tavuorol évdboews, &x @Y Gmolwv dlo slvar SumAfs moANamAbTYTOS
xal Emopéverg 6 dowlpds @y Spbpwy Sromudy Ay xol Sjjia meproptletar eic
téocapas.

Meportépew Sidetor 16 odvoroy TGV TavueT@dY {EN} 700 TavueTod | ol Gmolot
npopavids &vépyovral mahw ely Téoompag xal Opilovrar &md Tods oupusTpikols
TavwoTas @ xal b xalve xal dnd Tode Tavvorac fxal g EEnpuévous dnd Tag cuvi-
6 :imong ToL S.

e

Kat” adrov tov 1pdmov 6pilerar nAfpws 1) paouatiny &vdAvotg Tob TavueTed

v
H

&vdboewg S. Téhog, Gpiletar 7 iSroywvia w Exppalouévy cuvaptioer T@v paye-
vix@yv otalepddv Tol cmpatos, cuvdystat 3¢ 16 cuumépacpa 81t al Téocapes idio-
Tl Ay ol 1O dptopa @ &moteholv TV dmhovotépay mevtdda peyeldv Ta dmoix
opiovy TAMpwG THY pMYavikY GUUTERLPOPRY TavTds Eyrapcing icoTpbmov uésov.

"Enl 7% Bdoer adrdv tév mipdv bpilovrar ai téooapes iStotavuotal 6, oy,
O3 xal Oy GUVKPTYGEL TGV G, Gy, O3, Gy XAl Of CUVLGTWORY T&Y TACEWY XAl TN
yoviag ©, arodemvietar 3& 8tu ol {Sotavvotal 6; xal 6, clvar amoxAivovres xal
mapapévouy ol adrol 8 BAa T Eyxapoiwe lobtpoma péox, &v &vriBécer mpdg Tole
iStotavuoTas o3 ¥al Gy, of dnolol EapTdvran éx TGY TGV TGV GLVLGTWGEAY TOD
toavwetol S xal ol Gplopatos . Ol Tawertal 6; xal 6, mapiotoly Swtuhoetg
xal 8) 6 6 TaptoTd dmAY NdkTpow, vd 6 6 - TavueTiig %o fupdy SikTunow pi
iméplzow amAfc Sutunhoews. Ol Tawotxl 63 xal 6, mapetoly Tprafovinds 6e0xs

Tdoslg dmoteAovpévag &md U0pecTaTINdY EQEAXUGROY xaTX TO LobTpomov Emimedov
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at Umépbeowy ud dbovixdv Epehxuoudy xate tdv loyupdy &fova 7ol uéaov Sk TOV
0y - tavueThy xal dEoveayy OATY xata Tov adrdv &Eova Sk TOV G4 - TaVLGTV.

Kata cuvémeiav 4 drooivdeais Tol tavuetol 6 tév tdeswy ik o dyxapoiwe
lobrpomov cdpa 3idst Sbo xataortdoeis cuvdcopbvag dmovAeioTixds pE THY oTpo-
iy Ehaotieny &vépyelay, &vad al dmbhotmwor Sbo mapioTolv cuvduasuods Stoyxw-
Txdg xal atpouxiic &vepyelag. ‘H dmoolvdeaic adtd) dmotedsl Tiv dmAovatdTyy
Suvativ Sux 6 éyxapolwg lobrpomov cdpa.



