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MAOHMATIKA.— Modular hyper -lattices, by Maria Konstantinidou -

Serafimidou*. *Avexovd i 170 tob *Axadnuaixod x. D. Basihelov.

In [3] paper the definition of a hyper-lattice has been given, which

is the following :

Definition 1. We call hyper-lattice a set H on which a hyper-operation
avb (union) and an operation aAb (intersection) have been defined,

which satisfy the following axioms:

I. a€aVva al\a =a

II. aV/b="b\Va " “aAbl=Ib/Na

II1. (aVvb)Ve=aV(bVve), (aAb)Ac=aAn(bAc)
IV. a€laVv(aAb)]N[aA(aVvD)]

V. a€aVb=b=DbAa.

Examples 1. a) The set H = {O, 1} with a hyper-operation 0\ 0 = 0,
Ovli=1v0=1, 1vl=H and an operation OAO=1A0=0A1=0,
1Al =1 is a hyper-lattice. Respectively, for OVO=H, 0v1l=1v0=
=1vl=1 and ONO0=LA0=0A1=0, 1Al="1.

b) The set which is given in the diagram

X we N

Fig. 1.
a-

is obviously a A-semi-lattice. If a hyper-operation VvV is defined as
xVy={zEH:y<Z}, for each pair x, yEH with x<{y and
bve=H.. {a, b, c} then it is easy to verify that the structure
(H, A\, V) is a hyper-lattice. It is obvious that the sup(a, b) does not exist.

* MAPIAZ KQNETANTINIACY - SEPAQEIMIACY, Ilepi eldixfig xatnyoplag Omep-

SixTuwTOV.
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In the present paper I deal with the class of the modular hyper-

lattices, which are defined as follows:

Definition 2. We call a hyper-lattice H a modular one, when in
addition it satisfies the axiom

a<b7'&>a\/(c/\b)= (aVvec)Ab

for any ¢ € H (as in the case of lattices).

Remark 1. Obviously, in every modular hyper-lattice we have

aV(bAa)=(aVb)Aa.

Examples 2. a) The ordered set H = {o,a, u} with an obvious ope-
ration and a hyper-operation as oVVa=aVo=a, oVu=uVo=u,
uvu = {a, u} is a modular hyper-lattice.

b) The ordered set H, which is given in the diagram below is veri-
fied that is a modular hyper-lattice when the operation is defined as

aANa=aAb=bAa=aAc=cAa=bAc=cAb=aAd=dAa=a
bAd=dAb=Db, ecAd=dAc=ic, dAd=.d

and the hyper-operation as in the following table

vial b e hd
alal b e |d
b|bl{a,b)} & |4| Fis 2
cic| 4 ({a,clid
d|d] 4 d |H

Proposition 1. If a,b elements of H such that a<b, then

the relation
aA(cvb)S{lavbAblve]Aa

is held for any c € H.
Proof. Indeed, because of a<(b, that is b&aVb, we obtain

bAb=be(aVvb)Ab = (b\vb) E[(aVb)Ab]Ve=aA(bVec) &
E{[(a\/b)/\b]Vc}/\a.
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Proposition 2. If a,b, cEH such that a<b and c is com-
parable with either a or b, symbolically c4a or c+4b, then we have
[av(eADb)]N[(aVvec)Ab]# @.

Proof. Suppose that ¢<b, thus ¢ Ab=c¢, from which we obtain
aV (c Ab)=aVc Because it is also a< b, there will be an element
xEaVe = aV(c/b) such that x<b [3]. Therefore bAx =xE(aVc)Ab,
thus

[avicADb)]N[(avc)ADb]#~<a.

If a<lc, itis a Ab<CcAb, which, because of a < b becomes
a<cAb, that is cAbEaV(cAb). Also, from the fact that a<c, and
thus from the fact that cEa\/c, we obtain cAb€E (aVb)Ab. Therefore

and in this case we have
[av(cADb)]N[(aVe)Ab]=+a.

If we work in an analogous way for the case in which it is b<lec,
and for ¢ < a as well, we see that the proposition is also true.
Obviously, when a, b, ¢ are elements of a hyper-lattice and fulfil

the conditions of the proposition 2 we have
aV(cAb) = (aVec)Ab.

In the continuity, H will present a modular hyper-lattice, and we

have the propositions:

Proposition 3. If a,b,c are elements of H, then it is

a<hb
cVa=cVb!=a=h.
aNa = cADb

Proof. Indeed, provided that H is a modular hyper-lattice, from
the fact that a<Cb it follows that a\/(cAb)= (a\Vc)Ab, which because
of the relations c\VVa=cVb and cAa=cAb becomes aV/(cAa)=(b\Vc)Ab.
Thus b&av/(cAa), because it is bE(b\/c)Ab. On the other hand, we
have av/(c/Na) = (a\vc)Aa [rem. 1]. Therefore it will be b€ (a \/c)Aa.
From this relation it follows that there will be an element x Ea\v/c
such that b=xAa, that is b<{a. Because it is also a<{b, by suppo-
sition, it will be a = b.
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The conditions of the above proposition are not sufficient in order
the hyper-lattice to be a modular one, as we see it in the example (1. b),
where, while the conditions are held, the hyper-lattice is not a modu-

lar one.
Indeed, this hyper-lattice is not a modular one, because
b<x=bV(Ax)=(bvc)Ax
since b\/(c/\x)=b\/c=H..{a,b,c}
and (bve)Ax = [H. .{a,b,c}]/\x ={H . .{a,b,c}}. .{ZEH:X<Z}
although the relations

a’ < b’
c'\va” = ¢/\/b’
c./Nva =rci/bt

are held, as it is obvious, only if a’=b’.

In the lattices, as it is known, the above proposition is held and

inversely.

Proposition 4. For a,b,c,d of H we have

a<c

£ = av[dA(cvb)]=[(avd)Ac]vb.

Proof. Since H is a modular hyper-lattice, it will be

b{d=dA(cvb)=bv(@dAc)=av[dA(cvb)]=(avb)vI(dAc)
and
ac=>avdAc=av(dAc)=[lavd)Aclvb =

=[lav(dAc)vb=(avb)v(dAc).
Therefore a\/[dA(c\vb)] =[(avd)Ac]vb.

Likewise, as in the previous proposition, the above conditions are
not sufficient for a hyper-lattice to be a modular one in contrary with
the case of lattices, where, it is known, this happens.

We already know example (1.b) that for any (a,b) € HXH, the
sup (a,b) generally does not exist. After that, we examine the upper
bounds of a and b, and also their position with respect to the union
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a\/b, when, of course, they exist. The following proposition refer to
such bounds of two or more elements, which, as we shall see, play an
important role in the structure of the modular hyper-lattices.

Proposition 5. If a,b,d are elements of H, we shall have a<d
and b<ld, if and only if for every xEav/b it is x <d.

Proof. Because H is a modular hyper-lattice the relation a<(d
implies the relation a\/(bAd)= (a\vb)/Ad, which because of the rela-
tion b <{d becomes a\vb = (a\/bj/Ad Consequently, for each xEavb
there is an x’Ea\v/b, such that x’ANd = x. From this relation we con-
clude that for each xgawvyb it is x<d.

The inverse of the proposition is not necessary to be proved,
because, (3], it holds generally in every hyper-lattice.

Proposition 6. If a,&H for every iEI={l,2, n}, neN
and d €H we shall have a; < d for all i €1, if and only if for every
XEajVvag\V...Vvan it is x<d.

Proof. 'The proposition will be proved by induction on the natural
number n.

Obviously the proposition is held for k =2 [pr. 5] and we suppose
that it is held for k =n—2. Thus, if for each i€ l. {n} it isway<€id,
then we shall have

yVaVv...Vay = d/\(al\/ag\/. 2 \/a,,_,).
From this relation and if a, € H such that a,<(d we obtain

@1V agv...Van) Va. = [dA (apvagV. . .Van)] Va, =>a;vaV. . .Va, =

wea,\V...\/an—1 wea,\/...\/an—1

=] U (aavWw)]Ad = (apvagy...vas)Ad.

wea,\V...\/an—1

Therefore for each xEa;\va,\/...\va, there exists an x'E a;\Vas
V...Van such that x=x'Ad. Thus, it follows that for every
XxEa;VazV...VvVa, we have x<d.
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Inversely, if for each x Ea;\Va,\V/ ... \Va, itis x < d then, because
of ai<C xif\/aﬂ' -Va_VaV. . Va, () [8], it follows that a;<{d.

Corollary 1. If a;€H for every i€l = {1, O n}d € H and a; <] d,
then d is an upper bound of the sub-hyper-lattice h, which is generated
of the elements a;, as, ..., an(?).

Proposition 7. If an upper bound d of two elements a,b of a
modular hyper-lattice belongs to the union a\/b, then it is unique and further-
more it is d = sup (a, b) = sup (a \/b).

Proof. Because of a<(d and b<(d, we have x<(d for each
xEavb [pr. b]. If now there exists another element d’, such that it
belongs to the union a\/b and a<(d’, b<{d’, then, for every xEavb
we shall have x<(d’ and thus d<(d’. Likewise it is proved that d'<Cd,
and so it is d = d’. So, we conclude that a union a\/b possesses at most
one upper bound of a and b. On the other hand, for any other upper
bound d; of a and b, it will be x <{d, for each x Ea\/b and thus d<{d,
|pr. b). Therefore it is d = sup (a,b). Similarly, if d* is an upper bound
of the union a\/b, it will be [pr. 5] an upper bound of a and b and
thus d <{d*. Thus d = sup (a\/Db).

(1) In [3] has been prooved that for each pair (a,b) € H X H there exist
elements x?vb, Xng € aV/b, which are called distinguished elements of the pair (a, b),
such that a <x?V®, b<{x}VP. So, we have the distinguished sets of the pair (a, b)

VP — {szbe a\V/b:a <x2vb} . &VP = {x:Vbe a\/b:b <szb} .

More generally, for a,, a,, ..., a, € H there exist elements

xngazv' c-8; 1 Vajpg...Vay
1

for each i €I _—_{1, e ,n} which are called distinguished elements of the n-ple
(a;, asy - .., a,), such that a, < x:xvaiv' --Vai_1Vaj4 V.. .Vay
1

(2) A subset h=@ of a hyper-lattice H is its sub-hyper-lattice if it is a
hyper-lattice with respect to the operation A and the hyper-operation \/ of H
and it is prooved that hAh&Sh and h\Vh&h,

The sub-hyper-lattice h & H which is generated of a subset h"S H is the
union of the subsets of H, which are created when we apply the operation A
and the hyper-operation \/ on the elements of h' in any way and in a finite
number of times.
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Corollary 2. If a<b then b = sup (a\/b). In the same way the following

proposition is proved.
Proposition 8. If an upper bound d of n elements ay, as, ..., an
of H belongs to the union a;\/a;\/...\/an then it is unique and
= sup{al, Q. an} —isupilay W agsVe. o5/ an).

Corollary 3. If d € H satisfies the conditions of the proposition 8, then
it is the supremum of the sub-hyper-lattice which is generated of the elements

a;, ag, ..., a, and furthermore it is its maximum.
Proof. Indeed, if h is the sub-hyper-lattice which is generated of
the elements a;, as, ..., a,, then [corol. 1] d is an upper bound of the

elements of h. However, provided that d satisfies the conditions of the
proposition 8 and because of the way of the construction of h we shall
have d =suph. On the other hand d € h, because

d€Ea;vasV...VVa.Eh,

so d is the maximum element of h as well.
Remark 2. 1t is evident of the previous that for every a,bEH we have

adE &= LN (avb) =+ 2.

Proposition 9. If a,b,c are elements of H, then

csEa c<b|

= a=Db.
av/c=b\c

Proof. From c< a, that is a€a\/c, it follows that a = sup (a, c).
Thus, (pr.7) it will be a = sup(a\/c)=sup (b\/c), because a\/c = bvec.
Consequently, it follows that b<Ca. Similarly, from ¢<{b we obtain
as={ib ¥ T*hus“a='b.

With respect to the existence of the supremum of two elements of
a modular hyper-lattice, we have the following propositions:

Proposition 10. If for a,b & H there exists a couple of elements
(x:Vb, szb) e H® ¢ vt comparable, that is x:Vbﬂ- szh then

b
sup (a, b) = max(x:V’, xgvb).
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Proof. Obviously, if d=max(x:Vb, xzvb) we have a<{x2V"<{d
and b<x2vb<d, that is the element d is an upper bound of a,b and
furthermore it belongs to the union a\/b. Therefore we have

d = sup(a,b) [pr. 7].

Proposition 1l. If &V° = avb, then there exists the sup (a,b)
and it is sup (a,b) Ea\vb.
Proof. 1t is already known, [3], that there exists the element
aVbE avbh = ZoY® for which we have b <xavb. Therefore, there exists
VPeayb = &2YP such that xa = Xb =d, thus d = sup(a,b) and more-
over sup(a,b) Ea\vb.
Corollary 4. 1f Z2V*=avyb then card &i'° =

Proof. Indeed, if there exist elements szb’ 'aVbEé?favb, it follows
aVhb

that x2VP= x""VP = gup (a, b) [pr. 11].

Proposition 12. If a,bEH and av(aAb)=a, then there exists
the sup (a,b) and sup(a, b) Ea\/b.

Proof. In fact, we shall have [rem. 1] a = a\/(a/Ab) = a/\(a\/b), from
which it follows that for each x €a\vb it is a < x, thus VP = av/b.

Therefore there exists the sup(a,b) and we have sup (a, b) € a\vb [pr. 11].
With respect to the proposition 11 and the corollary 3 we have and

the following proposition:

Proposition 13. In every modular hyper-lattice the union a\/b
is a set of one element if and only if ayvb =&5'" =& .

Proof. In fact, it is evident that if a\/b=c we shall have
&2VP = 22V° = ayb. Inversely, if ayvb = &2Y° = &LY® we shall have
card (a\vvb) = card &P = card VP =1 [cor. 3], thus, the union awb is
a set of one element.

The following proposition gives us the conditions under which,
with the presupposition the existence of the sup(a,b), we have

sup (a, b) €E avb.

TAA 1978
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Proposition 14. For a,b,d€H we have

i) If a<{d, b<d and a=b, then sup(a,b)Eavb
ii) If a{d, b<{d and b £a, then there exists the sup(a,b) and
it is sup(a,b)= dEavb.

Proof. i) It is known [3] that, when in a hyper-lattice the relations
a<{d, b<{d and a=:b are held, then there exists the sup(a,b) and
it is sup(a, b)=d. Now, in order to prove that d €avb, it is sufficient
to prove that d€ &.'". We suppose that d & 22" From the relations
a<{d, b<{d, which are special cases of the relations a<d and b<d
respectively, it follows that for each w € avb we shall have w<d [pr. 5].
Thus, it will be a<{x*Y"<d, which is opposite to the supposition. The-

a

refore d € &2V° S avb.

ii) At first, we shall prove the uniqueness of the element d. Let us
suppose that there exists another element d’ such that a <{ d” and b<(d".
If d4+d’, then we shall have a<d<d’ or a<d’<d, that is absurd. If d//d’,
because of a{d and, a<{ d’, from the theory of lattices we have dAd’'= a.
On the other hand, since H is a modular one b<{d’=(b\vd)Ad =
=bwv(d’Ad), from which, because of b<{d, that is d€bvd, and
dAd'=a, it follows that dANd"=a&byva. Thus b<{a, which is also
absurd.

With respect to the existence of sup(a,b), it is sup(a,b)=d,
because d is the smallest of the upper bounds of a and b. In fact, if there
existed a d; such that a<{d;, b<{d; and d;<d, then we should have
a<{d;<d, in contrary with the supposition. Therefore sup(a,b)=d.
Finally, we have that sup(a,b)Eayb, that is d Eavb, and it is proved
as the part (i) of the proposition.

Corollary 5. If a,bEH and d{a, then there exists not an element

x Eav/b, different from a and greater or equal to b, and it is obvious that
a = sup (a\vb).

Proposition 15. If a,b,d€EH such that a<{d, b<{d and
b£a then aAb<b.

Proof. We suppose that a/Ab { b. Then, there will exist an element
x €H, for which we shall have aAb<x<b. From this relation we
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obtain aAb<{xAa<bAa, that is aAb = xAa. Consequently we have
xV(@Ab) =xv(@Ax)=(xva)Ax [rem. 1].
Also, because of the relation x<(b we have
xV(@aAb) = (x\va)Ab,
since H is a modular one. From the last two equalities, it follows that
(xva)Ab = (xva)Ax,

Moreover, it will be x £ a, because if x<(a, then x/Aa=x and
according to above we shall have x = a/Ab, fact which does not happen.
From the relations a<{d, x<d and x £a, we have [pr. 14] d€avx,

from which we obtain
dAb=bE(aVvx)Ab = (x\a)Ab = (x\va)Ax,

So, it follows that there will be an element z € x\/a, such that b=zAx,

that is b<Cx. However since and x<b, it will be x =b.

Corollary 6. If a,b,d€EH such that a{d, b<{d and a=kb, then
aAb<{b and aAb<a,

Proposition 16. If for a,bEH itis a/Ab<a and there exists
a d€avb such that a<d, b<{d, then b<d.

Proof. Suppose that bok d. Then there will exist an element x € H
for which the inequality b/< x<d will be held. From that we obtain

bAa xNa<dANa =a.

However, since aAb < a, it will be either a=aAx or xAa=bAa.
So, we have two cases.

i) Suppose that a =a/Ax, that is a<{x. In this case we have
two sub-cases: 1) x Eav/b. Then x as an upper bound of a and b and
since it belongs to the union a\/b, it will be equal to d, because of the
uniqueness of the latter, fact which is absurd. 2) x € a\/b. Then x as an
upper bound of a and b and since it does not belong to the union a\/b,
it will satisfy the relation d<x, also absurd.

ii) If aAx =bAx, from the relation d Ea\/b we obtain

dAx =x€E(avb)Ax=bv(aAx)=bv(aAb)=(bva)Ab.



212 [IPAKTIKA THS AKAAHMIAS AOHNON

Therefore, there will be an element z € a\/b, such that x =z /b, that
is x<{b. Thus it will be x =b, which is also absurd. Consequently,
it is b<d.

Corollary 7. If a,bEH and the relations aAb<a, aAb<{b are
satisfied, and if there exists a d€a\/b, such that a<d, b<{d, then it
will be a{d, b<d.

The proposition 16 can be also stated as follows:

Proposition 17. If x,a,b are elements of H for which the relations
x<a, x<b and a £b are held and if there exists a dEa\/b, such that
a<{d, b<Cd, then it will be b < d.

Proof. In fact, from the relations x {a, x<(b and a £ b it follows
that x =a/Ab. So we have the proposition 16.

Now we shall study the modular hyper-lattices within which all
the bounded chains have a finite length. Relatively, we have the follow-
ing proposition, which, as it is known, is held in the theory of the

modular lattices as well.

Proposition 18. A modular hyper-lattice within which ull the
bounded chains have a finite length, satisfies the condition of Jordan-Dedekind,
that is, all the maximal chains which have the same ends have the same length.

Proof. If b < a the length of the maximal chain between a and b
is obviously 1. Let us consider the diagram below, in which as we can

see it is b a.
e
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We shall prove the proposition by induction on the length of a
maximal chain between two elements.

Let us suppose that the proposition is true if between two elements
there exists a maximal chain of length n—1. Suppose now that between
a,b & H there exists a maximal chain of length n, that is

b=as<...a3{a;{a,=a
and another maximal chain of length 1, that is
b = b1< ...l)2<b1<ao=a.

If a;=by, itis evident that the proposition comes true. If a;=~by,
because of the relations a;{a and b;<a, we shall have

a = sup (ay, by) Eayv by [pr. 14].

Therefore, by the proposition 15 it will be c<a; and c< by,
where c¢=a;/Ab;. On the other hand the maximal chains between a,
and b have a length n—1, thus those ones between b and ¢ will have a
length of n—2, since c<a;. Consequently, since c< by, the maximal
chains between b; and b will have a length n—1. Therefore, we have
l—1=n—1, that is | = n.

With respect to the modular hyper-lattices, we have the following
properties :

Property 1. Every sub-hyper-lattice of a modular hyper-lattice is a
modular one.

Proof. 1t is easy to be verified.

Property 2. In every modular hyper-lattice H with a zero element, the
interval 1 = [0,a] for every a € H is a sub-hyper-lattice of H.

Proof. In fact, if x;, x,€[0,a] we have o<{x;Axy;< a, that is
X1 A X3 € I. On the other hand, for each wE x;V/ xp it will be oCw<a
[pr. 5], thus x;\v/ x; & 1. Therefore I is a sub-hyper-lattice of H.

Property 3. The homeomorphic image of H, f(H) (), is a modular
hyper-lattice.

(1) Let H,, H, hyper-lattices. A mapping f: H,—> H, is an homomorphism
if for each couple of elements (a,b) E H, X H, we have f(a /b)=1(a)vf(b) and
f(a/Ab)=1(a) A\ f(b) and it has been proved that the homeomorphic image f (H,)
is a sub-hyper-lattice of H, and also, f is an isotone mapping between H, and H,.
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Proof. 1t is already known that f(H) is a hyper-lattice. If a,b,c € H
and a<{b, by the definition of a modular hyper-lattice we should have

a\V(cAb) = (avc)Ab.

Also, because of the isotone of the homomorphism a <b = f(a) <f(b).
So, if we get the left side of the previous equality, we have

flav(cAb)] = f(a)Vv[i(cAb)] =1f(a)v[i(c)Af(b)].
On the other hand, of the right side we take

flave)Ab]l=1f[ U (wADb)]= U H(wAb)= U [f(w)Af(h)] =

wea\/c wea\/c wea\/c
= flave)Af(b) =[f(a)vE(c)]Af(b).
Thus, f(a) <f(b) =>1f(a)Vv[f(c)Af(b)] = [f(a)vE(c)]AL(b).
Therefore, the hyper-lattice f(H) is a modular one.
Property 4. For any elements a,b,c € H we have
tavibAglAlbyveAa]lnfaAabvibAcycAa)}+e.
Proof. In fact, it will be
[av(bAIA[bV(eAa)] 2[av(bAc)] ALY,
Also, since c/Aa<{a, by the definition of the modular hyper-lattices,
we shall have
(@Ab)V(bAC)V(cAa) = (b/\c)\/[(a/\b)\/(c/\a)] =
= ®AVIl(cAa)vb]Aal 2 (b Ay [HAVPAL] =

== (b/\ C) V{XE,CAa)Vb/\ a: xf)C/\a)Vb c %g/\a)vtx} = U [(b A C) V. (XE:Aa)Vb/\ a)]
XSAa)Vbext()CAa)Vb

which, because of the relation bAc<b<x{" and the modularity
becomes equal to

U [[bAVa]AXY ] = [(bAc)va] AZEADY,
Xl()CAa)VbEéz‘fécAa)Vb

As consequence of these we have that

[[QV(b/\C)]/\[bV(C/\a)]] n [(a/\b)v(b/\c)v(c/\a)] = [(b/\c)\/a]/\a‘lf{f’\”)\’b%g,
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This property, when H is a lattice, is obviously the identity
[av(bACc)]A[bv(cAa)] = (aAb)v(bAc)V(cAa).

Property 5. In every modular hyper-lattice H, for any a,b,c€H
the relation aAb € [(aAb)V(anc)AllaAb)V(bAc) is held.
Proof. In fact, from the relations aAb<Ca and aAb<(b we obtain

respectively
(aAb)V(aAc) = [(anb)Ve]Aa and (aAb)V(bAc) = [(aAb)Vc]Ab
from which it follows that

[aAnb)V(ard)Allaab)vVbac) =[[(arb)Ve]Aa]Al[laAb)Vc]Ab]=
=[[(aAb)Vc]A(aAb)] Al@aAb)V[@aAb)Ve]] 3(aAb)A(aAb)=aAb.

Property 6. The product() H of a family of modular hyper-lattices

{Hi}ieA is a modular hyper-lattice, and inversely, if the product H of a family
of hyper-lattices {H;}ieA is a modular one, then all H; for any i€ A are

modular ones.

Proof. 1t is already known that H is a hyper-lattice. If now for
a,bEH, it is a<h, this is equivalent with a;<Cbh; for any i€ A, by
the definition of the product of the hyper-lattices. Also, since all H; are
modular ones, it follows that for a;, b;, ¢; € H;, because of the relation

a; < b; we have
a;V(bjAci)=(a;Vci)Ab; for each i€ A.
So, if a<{b, we have
aV(bAc)={aifieaV{biAcitiea={{wiliea: wi€aiV(biAc)} =
={{Wi}ieAZWiE(ai\/bg)/\Ci}={aiVbi}ieA/\{Ci}ieA=(a\/b)/\c.

(1) The product H of a family of hyper-lattices {Hi}iGA’ which is defined
as the product of sets, can be ordered by the relation R as follows

aRb & a; A b, =a; or equivalently aRb4&=b; & a; Vv bi for each iEA.

Also, it has heen proved that H is a hyper-lattice when the operation

and the hyper-operation \/ are defined as follows :

a/Ab :{ai A\ bi}ier\ and a'y/b :{{wi}iEA:WiEai‘,’ bi}.
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Inversely, suppose that H is a modular hyper-lattice. If a; < b; for every
i€ A, it is equivalent with a<(b, which gives

aV(bAc)=(aVc)Ab =>{ai}ieAV{bi/\Ci}ieA =
= [{ai}iGAV{Ci}iEA] /\{bi}ieA=>{{Wi}ieAlWiEaiV(bi/\Ci)} =
= {{Zi}ieA:ZiE ach,)/\bi} = aiV(bi/\Ci) = (ai\/Ci)/\bi

for every i€ A. Consequently, the hyper-lattices H; are modular ones.
Finishing with the modular hyper-lattices, we prove the following

lemma which is useful in order to prove the proposition which follows.

Lemma 1. If f(H) is the homomorphic image of H and if f(a)=
=a*c f(H) is the image of the element a € H, then for every b*c€ f (H) which
covers a*, there exists a b € H such that a<b and f(b)=Db*

Proof. The relation a*<{ b* implies b*€ a*/ b* and by the corollary 4
we shall have that b* is the unique element of the union a*\/b* for which
the relation a*<b* is held. If now cEH and f(c)=Db* then

f(ayc)=1f(a)yyf(c)=a*yb*.
However, in the union a\/c the set &:'° is included for which we have
(&) S f(ayc) = a*y b¥

that is, the images of the distinguished elements of the pair (a,c) will
bellong to the union a*\b*. On the other hand, since a<(x."“, we have,
because of the isotone of the homomorphism f(a)<f(x:\/°) that is
a*<f(x¢). Combining this relation with the above, we have £(x2V€) = b*
for each x2V°€ &iV°. Consequently, there exists a b=x2°, which is

not necessarily the unique which satisfies the requirements of the lemma.

Proposition 19. If {(H) is an homeomorphic image of a modu-
lar hyper-lattice H, within which every ascending chain is stationary, then every

maximal chain of f(H) is also stationary.

Proof. Suppose that in f(H) there exists a maximal chain, which
is not stationary one

o dub4... dat...
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If now a; € H, such that f(a1)=aT, by the previous lemma, there will
exist an a,€ H such that f(ay) =a3 and a;<a,. Consequently, if the
chain af { af < ... < al... is not a stationary one, then and the
chain a;<a,<...<a,<... because of its construction is not a statio-

nary omne, fact which is absurd.

INEPIAHYH

Stv waovoa doyacia moaymoarevopar pid 10wt xatnyoela vwegdixtum-
v, 0 ToomKG Umeodtvwtd, ta Omota 6ollovral natrd TEémo Avdroyo moog

0 teomxd dxtvwtd, mAnoolv Inhadn Exi mAéov xal 10 GElwpa
a{c=avVvi(bAc)=(avb)Ac

Yo omotadfmote otoixeia tovg a, b, c.

Tevind amodewxviovral meotdoel mov eival Yevixeuon T@V GVTLoTOlY®V Tiig

~ 3 (74 2 ’ \ 3 T4 \ 3 ’ S ~

rhaoouniic Yewolag Gnwg 8nlong nal drheg narvovoyieg mov Ogeirovrar axofdg
otV idopovdpia tiic évwoewg oav vmeomodEems [6]. ("Av H 10 bmepdixtvmto
xal a, bEH eivar a\vvbE H).

>’ #va tuyov Umeedivtumtd 10 supremum dvd otolgelwv tov a, b davrideta

\ ) \ ~ \ € ’ ) \ c \ N b N

e0g T dxtvwtd Yevirdg Ogv Umdoyer [3]. Zta toomixa vmepdixtvwta TO Eml
ahéov GEloua mob ta yaoaxtnoiler Bonddel oty elioeon cuvdnxdv wov moEmel va
alnool &va dvew godyuo Suo otouxelwv Yo va elval supremum  odT®V xadog
xal AoV ouvdnxdy, Etol dote, oty meolmtwon mov TO dvew méoag Ovo ortol-
yetwv Vmdoyet, v’ avixel oty Evwot] Toug.

Sty 6An dewola diaiteon onuacia #yovy ta Aeydueva SraxexQluéva
ctoLyela %ol draxexoiuéva cvvola dud i) xal meooootéowy otolyelmv
100 bmepdintvmtod. “Onwg 08 o1y xhacoxy Vewolo Etol xal oty magovoa Ta
c \ ~ .4 k) ~ 14 o 2 ’ 7 3
omepdintvmta Thg ®hdoewg avtig magovotdlovy peydho Evdiagpégov didti Emain-

Yevovv morrég nal GEloomuelmteg WOGTNTES.
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