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MHXANIKH.— Gauging the Singularity in General Stress Fields by Optical Means,
by the Academician P. S. Theocaris *.

ABSTRACT

The optical method of caustics was used up-to-now for the evaluation of the stress
intensity at the vicinity of singular areas of stress fields. A combination of the properties
of caustics and pseudocaustics created by the singularity and a small circular gauge, traced
in its vicinity, allows the complementary evaluation of the order of singularity and thus
vields the complete information about the state of stress at the singular areas of stress
fields. The method is based on the quasi-conformal mapping of a small circular gauge,
tangent to the initial curve of the caustic and lying outside it, which then is expressed by
a pseudoanalytic function and therefore maps into an ellipse. By measuring the dimensions
and orientation of the elliptic pseudocaustic and combining with data from the caustic
the order of singularity can be readily and accurately evaluated. The method was applied
with satisfactory results to evaluate singularities in cracked or indented plexiglas or poly-
carbonate plates.

INTRODUCTION

The definition of the order of a stress singularity, eventually existing
in elastic fields is of fundamental mmportance in elastomechanics. The only
analytical techniques, which have been used up-to-now for the evaluation
of stress singularities are the eigenfunction-expansion theory and the appli-
cation of Mellin transform. The first attempt to study stress singularilies was
made by Williams|1], who succeeded to derive their characteristic equations
for wedges, by making the assumption that the order of singularity is a real
number. The same assumption has been accepted by Kalandiia| 2], tor evalu-
ating the orders of singularities at corners.

Moreover, Bogy [3], and Dundurs [4] have derived solutions for stress
singularities in wedges, by using a straightforward application of the Mellin
transform. Rice and Sih[5], later on, have treated the plane extension prob-
lem of two bonded dissimilar media with cracks existing along their
common interface and found the stress intensity factors, by using the
eigenfunction-expansion technique for complex-variable integration. Hein
and Erdogan [6] have used the Mellin transform and the theory of residues
to determine the stress singularities in a two-material wedge.

*II. ©. @EOXAPH, Kafopiopog tiig taewg tiic idropopoiag tacikdv nediov da tiig pedo-

50V TAOV YELOOKAVGTIKMV.



438 ITPAKTIKA THY AKAAHMIAY AOHNQON

On the other hand, England [7] used the method of complex variables
to examine a group of boundary-value problems, and has found that the
wedge geometry affects the value of singularity, whereas the imposed boundary
conditions determine its type. Theocaris [8] has evaluated the stress singularity
at the corner of a multiwedge. He extended the analysis made by England
for the cases of arbitrary complex singularities and studied the order of singu-
larity at wedges with different contact conditions prevailing at the inter-
faces between adjacent wedges in the multiwedge.

However, until now, there does not exist any experimental technique
for the evaluation of the order of singularities developed in stress fields. In
the present paper the theory of pseudoanalytic functions and quasi-conformal
mappings were successfully used, in combination with the method of caustics
and pseudocaustics, for the evaluation of the order of stress singularities in
elastic or plastic stress fields. In the theory, only the dominant term in the
Laurent-series expansion of the complex potential, describing the stress
field, was considered for the evaluation of the stresses. Infinitesimal -circles
were drawn in plane specimens at the vicinity of the singular points, which
created elliptic pseudocaustics. A single measurement of the rotation of the
major axis of this ellipse, together with data from the caustics gave the order

of the stress singularity.

THE CONTINUITY LAWS BETWEEN CAUSTICS AND PSEUDOCAUSTICS

In order to define the continuity laws between a caustic and a pseudo-
caustic, whose initial curves possess a common point, we consider both curves
as composite functions, whose we shall determine the tangent vectors at their
common points. For this reason we consider the mapping:

f: R —» R
f:{xy) = (u,v)
where:
u = W, = Ax+CA(x,y)
v =W, = A,y-CB(x,y)
and:
W = W,i + W,i (3)
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with A(x,y) = ReF'(z) and B(x,y) = ImF’(z) and F(z) the complex potential
function, expressing the elastic field of the plate. The coefficient C denotes
a multiplication factor, relying on the experimental set-up, which depends
on the optical properties and the geometry of the plate and, also at the dis-
tance z, between the middle plane of the plate and the reference screen, where
the caustics are formed [9, 10]. Relation (3) expresses the position of the
projection P’ of a generic point P of the loaded plate, referred to the Oxy-
system, on a reference screen, where the deviation of the reflected light
vector, W, is given in the Cartesian system O’x’y’ indicated in Fig. 1.
The singular points of this mapping satisfy the algebraic equation:

J(XaY) = Uy Vyy~ U,y Vox = 0 (4)

where commas before indices mean differentiation with respect to the index.

This equation defines another mapping, hy, in the following manner:

h,: R - R?
(5)
hy:t  — (t,y(t))
under the condition that J(t,y(t)) = 0. This condition constitutes a necessary
and sufficient condition for the creation of a singular curve, the caustic, on
the screen, and it is expressed by:

= Wxﬂ X WY? y Wx7 ¥ \Vy‘s x — U (6)

which is, of course, the same as relation (4). Then, it is easy to show that
the compound function f(h;) defines the equations of the caustic curve.

We consider now a generic curve in the elastic field, for instance, the
boundary of its domain, which can be expressed by:

q(x,y) =0 (7)
If this curve can be represented by the mapping:

h: R - R’
(8)
h':t — (t,g(t))
under the condition that q(t,q(t)) = 0, it can be readily derived that the
compound function f(h,) defines the equations of the pseudocaustic curve,
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which is generated from this boundary. The tangent vectors of the above
curves are, respectively:

VJf — IV = T T T (0,y2V,y)) =

= (_“ Jn'uax + vauvyy - Jwvyx + J,wi) (9)
th =1t Vi == ( == qyyaqyx) ((uvxavax)a (U,y,V,y)) —
- ( — ,yUyx 4 qyxUyys —q 5y Vix E i q1wi) (10)

The vectors J and t are the tangent vectors for the curves, which are expressed
by relations (4) and (7) respectively.
We construct now their vector-product:

Vj f X th = 'k[J’xq,y (ll,yV,x-u,xV,y)'J,xq,y (uawi'uwvax)] (11)

Taking into account relation (4) it is easy to derive for the common points
of the caustics and pseudocaustics that:

Vitx Vif=0 (12)

Relation (12) proves that the caustics and pseudocaustics have common
tangential directions with the same or opposite sense, at their common points
(Fig. 2). However, it is worthwhile indicating that the form of contact shown
in Fig. 2a is a cusplike one, but it is not a real cusp point, because the ne-
cessary condition for the existence of a cusp point is given by the relation [11]:

V=10 (13)

which, in this case, does not hold. Indeed, these points are in reality fold
points, whereas the respective common points in Fig. 2b possess a common
tangent, since at these points the caustic and the pseudocaustic have tangents
at their common point, which lie on the same straight line.

In order to define the form of the contact at the common points of the
caustics and pseudocaustics we construct the scalar product:

Q=V;f.V.f=au’+ agu?, + byvi, 4+ 2c,u,.v,, + 2¢ou,,v,, (14)
where we have inserted the following coefficients:
= b1 == Jw sy
flz — b2 — J,x qax (15)

i
Cy=Cg= — 42_ (Jax qyy +']n' q»x)
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The quadratic form (14) can be written in the following matrix-form:
Q = XTAX (16)
where:
xT = (W Vip My Vg )
and A is the matrix of the coefficients:

a; iy, 0 =0
¢c; a 0 0

The matrix A is symmetric and in general non-singular, because of the

existence of the relationship:

1
2= 16_(J,xqw*“‘lvvqax)2¢0' (18)

We consider now the eigen-equation of the matrix A and we take into
account that at the common points of the caustics and pseudocaustics the

following relation holds:
J. t= (19)

Then, whenever the singular point, which creates the caustic, lies across the

curve it is valid that ¢ = 0. So. we have:
1
LA-MI:()@——f(J,x Qyy — Joy Qux)?)2 =0 (20)
42
which has as double roots the expressions:
‘JA ‘
7‘172 ad i 7 (va Iy “Jﬂ/ q7X) (‘21‘)

which generally are nonzero numbers.
Relation (21) shows that the quadratic form 0 changes sign. So, each
of the contact forms, either the form of Fig. 2a, or the form of Fig. 2b, is

possible for some value of A,,.
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It is evident from this figure that, when the equations for the caustics
and pseudocaustics satisfy the relationship X >0, they possess a common point,
but not a common tangent (case 2a). On the conirary, when the caustics and
pseudocaustics satisfy the relationship » <0, they possess in addition a common
tangent, and either curve lies on either side of this tangent (case 2b).

The above analysis is valid also for every curve, which is parallel to the
curve considered, satisfying the condition q = 0, and therefore cuts the initial
curve of the caustic. Therefore any curve which is expressed by Eq. (7)
creates similar forms of contact at the common points of the caustic and the
respective pseudocaustic created by this curve.

DEFINITION OF THE ORDER OF SINGULARITY IN THE GENERAL ELASTIC
OR ELASTOPLASTIC STRESS FIELD

Consider the following system of partial differential equations:

Mu,x + Nu,y = v,,

(22)
Mu,, — Nu,y, = — v,
If we solve this for M and N, we have:
M— gax Viy — Wy Vix N= U,x Vyx + U,y V,y (23)

u,2+ u,2 u,? + u,?
It is evident from these relations that the sign of the function M depends on
the sign of the function J = u, v,, —u,, v, It is already indicated that in any
elastic field with singular points the curve J =0 represents the initial curve
corresponding to the singular region. Then, the quantity M remains positive
when J > 0, that is for all points which lie outside the initial curve.

Then, the condition:
M= Uyx Vyy = Wy Vix = 0 (24)

R

implies that the points of the stress-field satisfying this condition lie outside

the initial curve of the caustic.
At these points the differential system (22) is of the elliptic type and the
complex-valued function:
W(z) =u + iv (25)

is a pseudoanalytic function of the second kind [12].
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Then, the following rule is valid: A complex-valued function is quasi-
conformal, if and only if a real number 3 can be found, with 8 > 1, for which
the following inequality is valid:

(02t u, 2+ v 2+ v, = 28 (U Vyy — Uy Vi) (26)

where u and ¢ are the real and imaginary parts of the function respectively.

Since every pseudocaustic curve, which is generated by an arbitrary curve
and which lies outside the initial curve of the caustic surrounding the singularity,
defines a pseudoanalytic function, because it satisfies the conditions (22) and
(24), then the same curve defines also a quasi-conformal mapping.

However, the inequality (26) together with relations (5), can be written
in the form:

541
5%7'@” (2)]2 = (Ma/C)? (27)

On the other hand, it has been shown[9] that the equation: | ®(z) |2 =
=(Am / C)? describes the initial curve of the caustic. Then, all points outside
the initial curve are given by the inequality:

[0 ()P < (M/C)?

It is easy to define a real number §(A.,C), 8 > 1, such that the inequality
(27) be wvalid.

A fundamental property of the quasi-conformal mappings is, that they
map infinitesimal circles onto infinitesimal ellipses with uniformly bounded
eccentricities, contrariwise to conformal mappings, which map circles onto circles.

Applying this property, we study now an elastic field with a real singu-
larity at the point z = 0, of order p. If we approximate the series-expansion
of the complex potential with its dominant term, we have:

F(z) = Kzp+l (28)

We consider now an infinitesimal circle centered at the point z,, with radius
e, ¢ = 0, which is defined by:

7= 2z, + eel® (29)

We suppose further that this circle lies outside the area of the initial curve,
so that its pseudocaustic obeys a quasi-conformal mapping. This circle is
mapped on the screen, by using relations (2) and (3). Then, we have:

W (2) —Ap 2x =T (2) = Ay cel® 4 CK (p 4 1) Rreire (30)
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R =z, + cei®|
(31)
@ = arg (z, - cef)
From relation (30) it can be readily deduced that, as ¢ =0, the following
relation holds:

o= arg(r(z)) = L = - tan(pp,) (32)
where:
r, = Re(r(z))
(33)
r, = Im(r(z))
and:

Py = argZy

Since an infinitesimal circle lying outside the initial curve of the caustic may
be mapped into an infinitesimal ellipse, this quasi-conformal mapping, as
e—>0, defines a single direction on the screen, along the major axis of the ellipse,
which allows the evaluation of the order of singularity by means of relation (32).

EVALUATION OF THE ORDER OF SINGULARITY FROM THE CAUSTIC
AND THE PSEUDOCAUSTIC

In order to achieve a high accuracy for the evaluation of the order of
stress singularity, we take into account that the radius of the circle must be
a quantity which can be measured, and therefore it is not negligible. So, if
we consider the polar radius of the ellipse r(z) as a function of the angle 0,
this radius, as indicated in Fig. 3, is expressed in terms of the radius ¢ by:

r(8) = (Ame)® + y*R® + 20ey RP cos (6 + pg) (34)
where:
R = ((x, + ccos0)® + (yy + esinf)?)% (35)
and:
¥ = Clp+1) (36)

We define now the angle 6 in the plane of the mapped ellipse O'x'y’
corresponding to the major-axis of the ellipse, that is we search for r(0) = rmax.
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This is equivalent to satisfy the condition of extremum, that is dr/d6 = 0.
This condition yields:
pY2R2eD 4 eyR®2 — 2 yR®2 {R2 4 p[(x, cosh + v, sinb) +
oy S0 +pe)

= ( 3

el ¥y ¢080 — x,, sinf (57)

with:
R2 = (x,, + cc080)2 4 (y,, -+ esinh)? (38)

and
Yy -+ ssin0>

© = arct S 39
¢ = arctan (xK -+ ecosf (39)

The slope of the generic polar radius of the ellipse is given by:

A esinf — yRPsin (po) .
tanw= - (40)
Am £c0s0 4 yRPcos (peo)

where:

yx—}—ssm()) (41)

= arctan
¥ ( Xy -+ ecosb

The above relations and the fact that the stress-intensity of the singu-
larity K can be evaluated by means of the corresponding caustic, if the order
of singularity is known, give rise to the following iteration procedure, for the
evaluation of the stress singularity. In this procedure the only experimental
data, which are required are the slope of the major azis of the ellipse and the
characteristic diameter of the caustic. The iteration procedure follows the steps:

1) Define an initial value of the p by means of Eq. (32).
i) Evaluate the stress intensity K using the following equations of the

caustics:
1
5 .
FOR (p) (e )P (a2)
P+ (g TR ) )
where Omax is the root of the transcendental equation:
Csin® + A, sin (pb) = 0, for—rn=0=n= (43)

and Dmax is the maximum diameter of the caustic.
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iii) Define tne quantity v from relation (36). Using now relation (37) the
angle 0, which corresponds to the maximum polar radius, rmax, of the
ellipse, is then evaluated.

iv) Solve relation (40) for the successive value of p. If this value is in good
agreement with its previous value, the iterative process may be stopped,
otherwise it must be continued, using for the next step (i) the new value
of p, until it is succeeded to obtain the required approximation.

EXPERIMENTAL EVIDENCE

In order to verify the effectiveness of the abovementioned method, a
series of experiments was executed concerning the evaluation of the order
of singularity. In a companion paper [13] the method has been applied success-
fully to two particular problems, where the elastic fields contained two differ-
ent types of singilarities. The first problem was the evaluation of the stress
singularity at the position of a concentrated load applied on a half plane,
whereas the second was referred to the evaluation of the singilarity at the
tip of an edge crack existing in an infinite plate under conditions of generalized
plane stress. Both problems were applied to two different materials. The one
was polymethyl-methacrylate (PMMA), which behaved as ideally elastic ma-
terial almost up to fracture. The second was polycarbonate (PCBA) and this
material was behaving as an elastic-perfectly plastic material.

In this paper we have replaced the permanently scribed infinitesimal
circle in the vicinity of the crack tip by either the projection of a single circle,
printed on a glass plate interposed in the light beam of the optical set-up,
or by a circular grating of a line-density of 20 lines per milimeter, printed on
a glass plate. In the first case the distorted circle at the vicinity of the initial
curve of the caustic around the crack tip appears in Fig. 4.

This circle compares well with the series of distorted figures of the
scribed cireles, indicated in Fig. 5. In these tests a fine circle with a small
radius was scribed near the position of the singular point at various angular
positions relatively to the expected position of singularity for each specimen.
In order to define the relative position of the gauge-circle to the position of
the initial curve of the caustic formed by the singularity, the known portions
and shapes of the caustics and pseudocaustics for the case of edge cracks

were used [9]. So we have succeeded to trace the reference circles always
29
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Fig. 4: The distorted image of a family of concentric circles projected around
the stress singularity at the tip of a cracked polycarbonate plate.
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outside the initial curves, by changing the magnification factor, A,, and
checking, if the contact-forms of Fig. 2a or Fig. 2b were created.

However, the projected-circle case presents a higher flexibility than the
sceribed circle technique, since the experimenter is free to move the projection
of the circle everywhere around the crack tip and thus to optimize the eva-
luation of angle .

Furthermore, Fig. 6 presents the +1 and —1 orders of diffraction of
the caustic, due to diffraction phenomena created by the interposition of the
dense circular grating. All three diffraction orders are enveloped in a cone
with apex the centre of the circular grating. Again, the distortion of the higher
order diffractions of the caustic yield all the data needed for evaluating p.

The values of the orders of stress singularities for both types of singu-
larities, as they have been experimentally evaluated, were in general good
agreement with their respective theoretical values. However, from these re-
sults it is evident that, in the case of an edge crack, the experimental values
for the PMMA-plates are in excellent agreement with their respective theo-
retical values, the errors not overpassing 2 percent. This was because the
material behaved as an elastic material and the theory of elasticity gave
satisfactory results even for the singular zone. On the contrary, in the case
of PCBA-plates a deviation between the experimental values and the theo-
retical ones appears. These deviations in reality indicate the influence of
plasticity in the singular zone, where the linear theory of elasticity is inade-
quate to predict the actual behaviour.

This deviation between predictions of the ideal theory of elasticity and
reality with materials of the praxis proves the necessity of disposing appro-
priate experimental tools to define the real state of stress around singularities
when plasticity or viscoelasticity phenomena are influencing these singular
zones.

In such cases the experimental method developed in this paper and
based on information taken from the caustics and pseudocaustics developed
in these zones is very efficient.

Concerning the order of elastic and plastic-stress singularities developed
near concentrated loads applied to half-planes, or other forms of specimens,
the theory of elasticity evaluates these singularities to be equal to p = — 1.0.
The deviations found between theory and experiment for PMMA may be
mainly referred to the fact that the application of a concentrated-point load



YTNEAPIA 22 NOEMBPIOY 1984

Iig. 6: The distorted images of the zero and the +1 orders of diffraction of a dense
circular grating (20 lines per mm) as projected around the singularity of the tip
of the crackedfpolycarbonate plate,
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can only be achieved by a blunt indenter of some infinitesimal radius r = a.
Then, the stress distribution around the indenter, which only at the early
beginning of loading could be elastic, develops some kind of constrain, de-
pending on the shape of the indenter, which changes drastically the state of
stress near the singularity because of the constraining plastic zone. This
plastic zone, which for PMMA may be very limited, becomes a large one in
the case of PCBA, which presents an elastic-plastic behaviour, and this in-
fluences more severely the state of stress at the vicinity of the singularity.

Taking into account that the order of stress singularity represents in
reality the velocity of the variation of stresses in the neighbourhood of the
singular point, and the theoretical results developed by Hutchinson [14],
about the form of the stress field near crack tip in the case of development of
plastic deformation there, the order of singularity may be expressed by [14],

p=—1/(N+1) (44)
where N denotes the hardening power-coefficient, evaluated by a simple
tension stress-strain diagram of the material of the plate. The values of the
hardening exponent N for PCBA were evaluated from the respective stress-
strain diagrams of the material, when a series of typical tension specimens
was submitted to simple tension. If the instantaneous values of the hardening
exponent N are evaluated from a stress-strain diagram of the material for
each loading step of the cracked or indented plate and the respective plastic
stress singularity is evaluated, and this value is compared with the value
derived experimentally, a good coincidence of results may be established,
the deviations not overpassing in all cases the 1 to 4 percent [13].

The experimental and theoretical results are incorporated in Table I
for singularities appearing at the tips of cracked plates, or at the points of
application of concentrated loads at the straight boundaries of semi-infinite
plates, made either of elastic (PMMA) or elastic--plastic materials (PC).

CONCLUSIONS

The experimental method based on caustics and pseudocaustics for the
evaluation of the order of singularities developed in elastic, as well as in plastic
fields provides a direct evaluation for the order of singularity, by a simple exper-
imental procedure. The accuracy of the method was grown up by the intro-
duction of a simple iterative procedure using data from the caustic curve.
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TABLE 1

'3
(<21
($)1

Experimental values of the orders of singularities in the case of a concentrated normal
load applied at a straight boundary of a half-plane, and the crack tip of an edge crack
existing in an infinite plate. In both cases the materials of the plates were either
polymethyl-methacrylate (a brittle material), or polycarbonate of bisphenol A (an elastic
quasi-perfectly plastic material). Experimental values were confronted with theoretical

values, where the real stress situation was taken into account.

ELASTIC FIELD

~ Cracked :
":E plate Theory Experimental Values
o s e — i S —
8 order of sing. | —0.500 | —0.495 —0.510 —0.490 —0.490 —0.500
—E, L = e S
é% error (%) ‘—1 — 4.0 0 —80 —20 0
<5} I =
E. Theory | —0.910 —0.870 —0.870 —0.870 —0.870
> trated |~ | Ji S il -
g comeembraled g n. 0920 —0.860 —0.860 —0.860 - 0.860
= | load __ ST o o
= | error % , 1.0 1.0 1.0 1.0 1.0
PLASTIC FIELD

‘ Theory | 0435 ——0.426 —0.414 —0.402 —0.392
é Cracked Exp. —0.420 —0.420 —0.400 —0.390 —0.380
= - TS ,
= error 9, —3.40 —1.40 —3.30 —2.90 -—3.00
"c; .
£ " Theory —0.720
Z Concentrated |” =~ g . = ,
3 — Experim —0.730 —0.730 —0.720 —0.720 —0.710
[=] — P
= | T

| error %, 1.30 1.30 0 0 —1.30
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Thus, the method of caustics, which has been up-to-now exclusively
used for the evaluation of the stress intensity factors existing at the tips of
cracks, is now proved to be a versatile method for the evaluation also of the
order of stress singularities in elastic and plastic fields with real singularities.

The method, with its realistic evaluation of singularities in real cases
of elastic and plastic distributions, constitutes a potential method for the
study of concrete problems with singular domains.
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To mpdBMua xaboproned tic Tdlews Tic Taouxis idtopoppiag clg Elaatina
redla avrepetoniodn péyer ofucpov pt iy BoRleay dvedutindv pehiduv Busilo-
wévoy cle v Bewplay dvantiiewg TEY yapaxtnploTIX®Y B ISt06UVAETHGEWY Xal
elg pappoyog Tob petasynuatiopuod Mellin. Méhig 76 1952 6 duepuravdg xabnyytig
Williams [1] xatdpbwos v suvaydyn thy yapaxtnptatikiy éElowoty Suk Tov Tp0o-
SopLopdv Tig idtopopplag TEY Tdoswy clg oenvoedl Edactixa wedix, Bascioleis cig

\ 8 \ o ¢ ’ ~y8 IP’E cinde 2610ub sE\ ~
TNV TAPAOOYTV OTL 1) TOCEL; NG LOLOWOQQLALS ELVAL TIOAYLATIAOS UDLULOC. TL TV
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adTdv Topadoydy EBactoln celpd EAn EmieTHubévey S Tov xaboplopdy dapbpwmy
b ~ ~ ! ¢ e ~ 3 7 A \ ’
13topoppLdy Tacxdy TeEdlwy, ol 6motor éyemoipomoincay mwoMdxls xal pebédoue
amoteroboag Epappoyas Tob petasynuatiopod Mellin [1-7].

€ 7 bl ’ 2 A b ’ 3 \ \ A 3

H tdfic idropoppiac elc molbopnvov dmotehovpévy &md celpay Topémy ho-
oTixdv YAx@Y xabwpichn St T6d Ocoyden [8] S mepimrdoeg TUatwy pLyadL-
%GV 15L0LopQLBY.

b ! A / A )24 3 ~ 3 ! \ \

Ev toltowg péypr onpepov d&v Exer emwvondy oddeplo melpapotind TEYVLXY
S Tov xalopropdy e Takews Thc iStopopoiag Tacndy wedtwy. Eig thy mapoboay
k) ’ \  : \ % A \ 4 NI
avaxoivoowy 0 mapovoidowpey ety Dempnrinny %ol metpapatinny wéhodov Sua
Tov xpPh xafopiopdy Tig tdéewe Tig Ldopopplac Taoidy mediov. ‘H pébodog
adth omnetletar clg Ty Oewplay @Y Yeudoavautindv cuvapthoemy xal T7g 6(L0-
GLULPLOPPOL ATEOVTGEWS, T 6Ttole, cuvdvalopévy pé thv Dewplay TévV Yevdoxavar:-

~ 3 { \ N 3: ~ LY 3 4 b 3 \ ! 3

%@y, ¢mrpémer TOV Tpoadioplondy Tic TdEews idtopopplag elg EvraTina medto Eo-
GTIRGY Xl TAAGTIRGY THPALOPPOCEMY.

‘H péBodog adth déyeton v yevirde mapadedeypévny Hmobeoy 811 pmovoy o
woupLapy®y Bpog Tob avamtdypatos clg osipay Laurent <ol piyadikol Suvepixol
70l TEpLYpdpOVTOS TO TEDLOY TRV TAGEWY Xol Tapaop@OcEwy tig T6 Dewpoducvoy

\ e

TR AapBavetor BT Yy Sk THV HTOAGYLGLOY TGV GUVLGTWGHY TGV TUGEMY.
’A U o ~ \ \ LN ~ ! ’ 3 \ ~ ~
modetnvbeTar §TL ThGo Yoy xal eldide xdrhog xelpevog Extdg The TEpLoyic
ol TupTivag TépiE THe Ldtopoppliag, 6 6motog 6ptletan G TG dpyixig xapmdANg
TG GvTioTOl oL XaVGTIXTG, Tapdyel YeudoxavoTixfy, f 6motw Omaxolel elg Tog
P4 4 / 3 ! 3 3 \ / e 14 bl \
ovBinag dpocuppbppov dmeovicemg. Kat’ adtiy whxdor ebproxduevor elg iy yer-
Toviay THg &pyixiic xopmdAng dmexovilovtan elg T émimedov mpoPoliig el EMkeldeLs,
ol péyrator &Eoveg TGV 6oty Gptlovy ywviay petd Tol dEovog THe pwyris, 1 6mola
Sovatar vo petendi dnplBds xal edxbhog énl tol dmmédov avagpopig. ‘H Epamrto-
7 ~ ! 3 . 14 3 3 3 ! A y e ~ y 2 \ \ L
pévy e yoviag adtiic cuvdéetar &’ edletag xal SV AmATc oyéoewe pE TV TEEW
~ 3 ’ ~ ’ € 4 ! b b \ \ A ~ \ 3 o
¢ tSropoppiac Tob mediou, f omole %ot adTdV TOV Tebmov umopel va HToAoyLohT
eOn6ALC.
Elc mhv avaxotvwewy adtiy clodyetar dadixacio mposeyyLoTined HTOAGYLGULOD
~ ’ ~ 3 7 \ ’ ’ > o o~ \
e Takens Tig Lopoppiag Sid cuvdéccwe cTolystwy Ex T&Y YeudoxaveTix@y xol
The Omapyovone xavetiric. Eoapuoyal the peddSov St tov dxpiBF Smohoyiowdy
e aalolc Tiuc i iSropopiag pnyraToévey ThAXGY xal TAaxdy Sexopéverv

suyxevtpwuéva poptia xatadeixviovy tag Suvatdryrac ThHe pebédou.
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